1
|
Wang T, Meng K, Zhu Z, Pan L, Okita TW, Zhang L, Tian L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. PLANTS (BASEL, SWITZERLAND) 2025; 14:1402. [PMID: 40364430 PMCID: PMC12074014 DOI: 10.3390/plants14091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance.
Collapse
Affiliation(s)
- Tangying Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Kaiyuan Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilin Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Linxuan Pan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Aval SF, Seffouh A, Moon KM, Foster LJ, Ortega J, Fredrick K. Role of the sarcin-ricin loop of 23S rRNA in biogenesis of the 50S ribosomal subunit. RNA (NEW YORK, N.Y.) 2025; 31:585-599. [PMID: 39875174 PMCID: PMC11912913 DOI: 10.1261/rna.080335.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
The sarcin-ricin loop (SRL) is one of the most conserved segments of ribosomal RNA (rRNA). Translational GTPases (trGTPases), such as EF-G, EF-Tu, and IF2, form contacts with the SRL that are critical for GTP hydrolysis and factor function. Previous studies showed that expression of 23S rRNA lacking the SRL confers a dominant lethal phenotype in Escherichia coli Isolated ΔSRL particles were found to be not only inactive in protein synthesis but also incompletely assembled. In particular, block 4 of the subunit, which includes the peptidyl transferase center, remained unfolded. Here, we explore the basis of this assembly defect. We find that 23S rRNA extracted from ΔSRL subunits can be efficiently reconstituted into 50S subunits, and these reconstituted ΔSRL particles exhibit full peptidyl transferase activity. We also further characterize ΔSRL particles purified from cells, using cryo-EM and proteomic methods. These particles lack density for rRNA and r-proteins of block 4, consistent with earlier chemical probing data. Incubation of these particles with excess total r-protein of the large subunit (TP50) fails to restore substantial peptidyl transferase activity. Interestingly, proteomic analysis of control and mutant particles shows an overrepresentation of multiple assembly factors in the ΔSRL case. We propose that one or more GTPases normally act to release assembly factors, and this activity is blocked in the absence of the SRL.
Collapse
MESH Headings
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Peptidyl Transferases/metabolism
- Peptidyl Transferases/genetics
- Cryoelectron Microscopy
- Nucleic Acid Conformation
- Protein Biosynthesis
- GTP Phosphohydrolases/metabolism
Collapse
Affiliation(s)
- Sepideh Fakhretaha Aval
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Gong J, Li T, Li Y, Xiong X, Xu J, Chai X, Ma Y. UID-Dual Transcriptome Sequencing Analysis of the Molecular Interactions between Streptococcus agalactiae ATCC 27956 and Mammary Epithelial Cells. Animals (Basel) 2024; 14:2587. [PMID: 39272372 PMCID: PMC11393856 DOI: 10.3390/ani14172587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to treat. However, the molecular interactions between it and mammary epithelial cells remain poorly understood. This study analyzed differential gene expression in mammary epithelial cells with varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses, immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host's innate immune mechanisms by interfering with the alternative splicing processes of mammary epithelial cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes and altering normal molecular regulation.
Collapse
Affiliation(s)
- Jishang Gong
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Taotao Li
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuanfei Li
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xuewen Chai
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Youji Ma
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
5
|
Sun Y, Liu Y, Zhang Y, Lin D, Pan X, Dong Y. The Rice YL4 Gene Encoding a Ribosome Maturation Domain Protein Is Essential for Chloroplast Development. BIOLOGY 2024; 13:580. [PMID: 39194518 DOI: 10.3390/biology13080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Chloroplast RNA splicing and ribosome maturation (CRM) domain proteins are a family of plant-specific proteins associated with RNA binding. In this study, we have conducted a detailed characterization of a novel rice CRM gene (LOC_Os04g39060) mutant, yl4, which showed yellow-green leaves at all the stages, had fewer tillers, and had a decreased plant height. Map-based cloning and CRISPR/Cas9 editing techniques all showed that YL4 encoded a CRM domain protein in rice. In addition, subcellular localization revealed that YL4 was in chloroplasts. YL4 transcripts were highly expressed in all leaves and undetectable in roots and stems, and the mutation of YL4 affected the transcription of chloroplast-development-related genes. This study indicated that YL4 is essential for chloroplast development and affects some agronomic traits.
Collapse
Affiliation(s)
- Yunguang Sun
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yanxia Liu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Youze Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dongzhi Lin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai 200234, China
| | - Xiaobiao Pan
- Crop Institute, Taizhou Academy of Agricultural Sciences, Linhai 317000, China
| | - Yanjun Dong
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai 200234, China
| |
Collapse
|
6
|
Edris R, Sultan LD, Best C, Mizrahi R, Weinstein O, Chen S, Kamennaya NA, Keren N, Zer H, Zhu H, Ostersetzer-Biran O. Root Primordium Defective 1 Encodes an Essential PORR Protein Required for the Splicing of Mitochondria-Encoded Group II Introns and for Respiratory Complex I Biogenesis. PLANT & CELL PHYSIOLOGY 2024; 65:602-617. [PMID: 37702436 DOI: 10.1093/pcp/pcad101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Cellular respiration involves complex organellar metabolic activities that are pivotal for plant growth and development. Mitochondria contain their own genetic system (mitogenome, mtDNA), which encodes key elements of the respiratory machinery. Plant mtDNAs are notably larger than their counterparts in Animalia, with complex genome organization and gene expression characteristics. The maturation of the plant mitochondrial transcripts involves extensive RNA editing, trimming and splicing events. These essential processing steps rely on the activities of numerous nuclear-encoded cofactors, which may also play key regulatory roles in mitochondrial biogenesis and function and hence in plant physiology. Proteins that harbor the plant organelle RNA recognition (PORR) domain are represented in a small gene family in plants. Several PORR members, including WTF1, WTF9 and LEFKOTHEA, are known to act in the splicing of organellar group II introns in angiosperms. The AT4G33495 gene locus encodes an essential PORR protein in Arabidopsis, termed ROOT PRIMORDIUM DEFECTIVE 1 (RPD1). A null mutation of At.RPD1 causes arrest in early embryogenesis, while the missense mutant lines, rpd1.1 and rpd1.2, exhibit a strong impairment in root development and retarded growth phenotypes, especially under high-temperature conditions. Here, we further show that RPD1 functions in the splicing of introns that reside in the coding regions of various complex I (CI) subunits (i.e. nad2, nad4, nad5 and nad7), as well as in the maturation of the ribosomal rps3 pre-RNA in Arabidopsis mitochondria. The altered growth and developmental phenotypes and modified respiration activities are tightly correlated with respiratory chain CI defects in rpd1 mutants.
Collapse
Affiliation(s)
- Rana Edris
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Laure D Sultan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Corinne Best
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Ron Mizrahi
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Ofir Weinstein
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Stav Chen
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Nina A Kamennaya
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Bluestein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, Sede Boqer 8499000, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
8
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
9
|
Best C, Mizrahi R, Edris R, Tang H, Zer H, Colas des Francs-Small C, Finkel OM, Zhu H, Small ID, Ostersetzer-Biran O. MSP1 encodes an essential RNA-binding pentatricopeptide repeat factor required for nad1 maturation and complex I biogenesis in Arabidopsis mitochondria. THE NEW PHYTOLOGIST 2023; 238:2375-2392. [PMID: 36922396 DOI: 10.1111/nph.18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Mitochondrial biogenesis relies on nuclearly encoded factors, which regulate the expression of the organellar-encoded genes. Pentatricopeptide repeat (PPR) proteins constitute a major gene family in angiosperms that are pivotal in many aspects of mitochondrial (mt)RNA metabolism (e.g. trimming, splicing, or stability). Here, we report the analysis of MITOCHONDRIA STABILITY/PROCESSING PPR FACTOR1 (MSP1, At4g20090), a canonical PPR protein that is necessary for mitochondrial functions and embryo development. Loss-of-function allele of MSP1 leads to seed abortion. Here, we employed an embryo-rescue method for the molecular characterization of msp1 mutants. Our analyses reveal that msp1 embryogenesis fails to proceed beyond the heart/torpedo stage as a consequence of a nad1 pre-RNA processing defect, resulting in the loss of respiratory complex I activity. Functional complementation confirmed that msp1 phenotypes result from a disruption of the MSP1 gene. In Arabidopsis, the maturation of nad1 involves the processing of three RNA fragments, nad1.1, nad1.2, and nad1.3. Based on biochemical analyses and mtRNA profiles of wild-type and msp1 plants, we concluded that MSP1 facilitates the generation of the 3' terminus of nad1.1 transcript, a prerequisite for nad1 exons a-b splicing. Our data substantiate the importance of mtRNA metabolism for the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ron Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rana Edris
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hui Tang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Omri M Finkel
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
11
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
12
|
Fan M, Zhang Y, Li X, Wu S, Yang M, Yin H, Liu W, Fan Z, Li J. Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. FRONTIERS IN PLANT SCIENCE 2022; 13:811791. [PMID: 35283896 PMCID: PMC8914472 DOI: 10.3389/fpls.2022.811791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding the molecular mechanism of the cold response is critical to improve horticultural plant cold tolerance. Here, we documented the physiological, transcriptome, proteome, and hormonal dynamics to cold stress in temperate genotype (Tg) and subtropical genotype (Sg) populations of Camellia japonica. Tg C. japonica suffered minimal osmotic and oxidative damage compared to Sg C. japonica under the same cold treatment. Transcriptional and translational differences increased under the cold treatment, indicating that Tg C. japonica was affected by the environment and displayed both conserved and divergent mechanisms. About 60% of the genes responding to cold had similar dynamics in the two populations, but 1,896 transcripts and 455 proteins differentially accumulated in response to the cold between Tg and Sg C. japonica. Co-expression analysis showed that the ribosomal protein and genes related to photosynthesis were upregulated in Tg C. japonica, and tryptophan, phenylpropanoid, and flavonoid metabolism were regulated differently between the two populations under cold stress. The divergence of these genes reflected a difference in cold responsiveness. In addition, the decrease in the abscisic acid (ABA)/gibberellic acid (GA) ratio regulated by biosynthetic signal transduction pathway enhanced cold resistance in Tg C. japonica, suggesting that hormones may regulate the difference in cold responsiveness. These results provide a new understanding of the molecular mechanism of cold stress and will improve cold tolerance in horticultural plants.
Collapse
Affiliation(s)
| | | | - XinLei Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin WC, Chen YH, Gu SY, Shen HL, Huang KC, Lin WD, Chang MC, Chang IF, Hong CY, Cheng WH. CFM6 is an Essential CRM Protein Required for the Splicing of nad5 Transcript in Arabidopsis Mitochondria. PLANT & CELL PHYSIOLOGY 2022; 63:217-233. [PMID: 34752612 DOI: 10.1093/pcp/pcab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 05/21/2023]
Abstract
Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ya-Huei Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| |
Collapse
|
14
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
15
|
Rollar S, Geyer M, Hartl L, Mohler V, Ordon F, Serfling A. Quantitative Trait Loci Mapping of Adult Plant and Seedling Resistance to Stripe Rust ( Puccinia striiformis Westend.) in a Multiparent Advanced Generation Intercross Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:684671. [PMID: 35003147 PMCID: PMC8733622 DOI: 10.3389/fpls.2021.684671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/19/2021] [Indexed: 05/20/2023]
Abstract
Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.
Collapse
Affiliation(s)
- Sandra Rollar
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
16
|
CAF Proteins Help SOT1 Regulate the Stability of Chloroplast ndhA Transcripts. Int J Mol Sci 2021; 22:ijms222312639. [PMID: 34884441 PMCID: PMC8657633 DOI: 10.3390/ijms222312639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022] Open
Abstract
Protein-mediated RNA stabilization plays profound roles in chloroplast gene expression. Genetic studies have indicated that chloroplast ndhA transcripts, encoding a key subunit of the NADH dehydrogenase-like complex that mediates photosystem I cyclic electron transport and facilitates chlororespiration, are stabilized by PPR53 and its orthologs, but the underlying mechanisms are unclear. Here, we report that CHLOROPLAST RNA SPLICING 2 (CRS2)-ASSOCIATED FACTOR (CAF) proteins activate SUPPRESSOR OF THYLAKOID FORMATION 1 (SOT1), an ortholog of PPR53 in Arabidopsis thaliana, enhancing their affinity for the 5' ends of ndhA transcripts to stabilize these molecules while inhibiting the RNA endonuclease activity of the SOT1 C-terminal SMR domain. In addition, we established that SOT1 improves the splicing efficiency of ndhA by facilitating the association of CAF2 with the ndhA intron, which may be due to the SOT1-mediated stability of the ndhA transcripts. Our findings shed light on the importance of PPR protein interaction partners in moderating RNA metabolism.
Collapse
|
17
|
Zhang L, Chen J, Zhang L, Wei Y, Li Y, Xu X, Wu H, Yang ZN, Huang J, Hu F, Huang W, Cui YL. The pentatricopeptide repeat protein EMB1270 interacts with CFM2 to splice specific group II introns in Arabidopsis chloroplasts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1952-1966. [PMID: 34427970 DOI: 10.1111/jipb.13165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis requires the coordinated expression of chloroplast and nuclear genes. Here, we show that EMB1270, a plastid-localized pentatricopeptide repeat (PPR) protein, is required for chloroplast biogenesis in Arabidopsis thaliana. Knockout of EMB1270 led to embryo arrest, whereas a mild knockdown mutant of EMB1270 displayed a virescent phenotype. Almost no photosynthetic proteins accumulated in the albino emb1270 knockout mutant. By contrast, in the emb1270 knockdown mutant, the levels of ClpP1 and photosystem I (PSI) subunits were significantly reduced, whereas the levels of photosystem II (PSII) subunits were normal. Furthermore, the splicing efficiencies of the clpP1.2, ycf3.1, ndhA, and ndhB plastid introns were dramatically reduced in both emb1270 mutants. RNA immunoprecipitation revealed that EMB1270 associated with these introns in vivo. In an RNA electrophoretic mobility shift assay (REMSA), a truncated EMB1270 protein containing the 11 N-terminal PPR motifs bound to the predicted sequences of the clpP1.2, ycf3.1, and ndhA introns. In addition, EMB1270 specifically interacted with CRM Family Member 2 (CFM2). Given that CFM2 is known to be required for splicing the same plastid RNAs, our results suggest that EMB1270 associates with CFM2 to facilitate the splicing of specific group II introns in Arabidopsis.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yajuan Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyun Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
18
|
Fan K, Ren Z, Zhang X, Liu Y, Fu J, Qi C, Tatar W, Rasmusson AG, Wang G, Liu Y. The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial Nad1 intron 2 and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6933-6948. [PMID: 34279607 DOI: 10.1093/jxb/erab339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Wang M, Li K, Li Y, Mi L, Hu Z, Guo S, Song CP, Duan Z. An Exon Skipping in CRS1 Is Associated with Perturbed Chloroplast Development in Maize. Int J Mol Sci 2021; 22:ijms221910668. [PMID: 34639010 PMCID: PMC8508894 DOI: 10.3390/ijms221910668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Chloroplasts of higher plants are semi-autonomous organelles that perform photosynthesis and produce hormones and metabolites. They play crucial roles in plant growth and development. Although many seedling-lethal nuclear genes or regulators required for chloroplast development have been characterized, the understanding of chloroplast development is still limited. Using a genetic screen, we isolated a mutant named ell1, with etiolated leaves and a seedling-lethal phenotype. Analysis by BN-PAGE and transmission electron microscopy revealed drastic morphological defects of chloroplasts in ell1 mutants. Genetic mapping of the mutant gene revealed a single mutation (G-to-A) at the 5′ splice site of intron 5 in CRS1, resulting in an exon skipping in CRS1, indicating that this mutation in CRS1 is responsible for the observed phenotype, which was further confirmed by genetic analysis. The incorrectly spliced CRS1 failed to mediate the splicing of atpF intron. Moreover, the quantitative analysis suggested that ZmCRS1 may participate in chloroplast transcription to regulate the development of chloroplast. Taken together, these findings improve our understanding of the ZmCRS1 protein and shed new light on the regulation of chloroplast development in maize.
Collapse
|
20
|
Feiz L, Asakura Y, Mao L, Strickler SR, Fei Z, Rojas M, Barkan A, Stern DB. CFM1, a member of the CRM-domain protein family, functions in chloroplast group II intron splicing in Setaria viridis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:639-648. [PMID: 33140462 DOI: 10.1111/tpj.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast RNA splicing and ribosome maturation (CRM) domain is a RNA-binding domain found in a plant-specific protein family whose characterized members play essential roles in splicing group I and group II introns in mitochondria and chloroplasts. Together, these proteins are required for splicing of the majority of the approximately 20 chloroplast introns in land plants. Here, we provide evidence from Setaria viridis and maize that an uncharacterized member of this family, CRM Family Member1 (CFM1), promotes the splicing of most of the introns that had not previously been shown to require a CRM domain protein. A Setaria mutant expressing mutated CFM1 was strongly disrupted in the splicing of three chloroplast tRNAs: trnI, trnV and trnA. Analyses by RNA gel blot and polysome association suggest that the tRNA deficiencies lead to compromised chloroplast protein synthesis and the observed whole-plant chlorotic phenotypes. Co-immunoprecipitation data demonstrate that the maize CFM1 ortholog is bound to introns whose splicing is disrupted in the cfm1 mutant. With these results, CRM domain proteins have been shown to promote the splicing of all but two of the introns found in angiosperm chloroplast genomes.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Yukari Asakura
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - David B Stern
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Kück U, Schmitt O. The Chloroplast Trans-Splicing RNA-Protein Supercomplex from the Green Alga Chlamydomonas reinhardtii. Cells 2021; 10:cells10020290. [PMID: 33535503 PMCID: PMC7912774 DOI: 10.3390/cells10020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, RNA trans-splicing is a significant RNA modification process for the end-to-end ligation of exons from separately transcribed primary transcripts to generate mature mRNA. So far, three different categories of RNA trans-splicing have been found in organisms within a diverse range. Here, we review trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. We discuss the origin of intronic sequences and the evolutionary relationship between chloroplast ribonucleoprotein complexes and the nuclear spliceosome. Finally, we focus on the ribonucleoprotein supercomplex involved in trans-splicing of chloroplast group II introns from the green alga Chlamydomonas reinhardtii. This complex has been well characterized genetically and biochemically, resulting in a detailed picture of the chloroplast ribonucleoprotein supercomplex. This information contributes substantially to our understanding of the function of RNA-processing machineries and might provide a blueprint for other splicing complexes involved in trans- as well as cis-splicing of organellar intron RNAs.
Collapse
|
22
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Abstract
Production and expression of RNA requires the action of multiple RNA-binding proteins (RBPs). New RBPs are most often created by novel combinations of dedicated RNA-binding modules. However, recruiting existing genes to create new RBPs is also an important evolutionary strategy. In this report, we analyzed the eight-member uL18 ribosomal protein family in Arabidopsis uL18 proteins share a short structurally conserved domain that binds the 5S ribosomal RNA (rRNA) and allows its incorporation into ribosomes. Our results indicate that Arabidopsis uL18-Like proteins are targeted to either mitochondria or chloroplasts. While two members of the family are found in organelle ribosomes, we show here that two uL18-type proteins function as factors necessary for the splicing of certain mitochondrial and plastid group II introns. These two proteins do not cosediment with mitochondrial or plastid ribosomes but instead associate with the introns whose splicing they promote. Our study thus reveals that the RNA-binding capacity of uL18 ribosomal proteins has been repurposed to create factors that facilitate the splicing of organellar introns.
Collapse
|
24
|
Lee K, Kang H. Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses. Int J Mol Sci 2020; 21:ijms21124548. [PMID: 32604726 PMCID: PMC7352785 DOI: 10.3390/ijms21124548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Kwanuk Lee
- Plant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
- Correspondence: (K.L.); (H.K.); Tel.: +49-157-8852-8990 (K.L.); +82-62-530-2181 (H.K.); Fax: +82-62-530-2079 (H.K.)
| | - Hunseung Kang
- Department of Applied Biology and AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (K.L.); (H.K.); Tel.: +49-157-8852-8990 (K.L.); +82-62-530-2181 (H.K.); Fax: +82-62-530-2079 (H.K.)
| |
Collapse
|
25
|
Nagashima Y, Ohshiro K, Iwase A, Nakata MT, Maekawa S, Horiguchi G. The bRPS6-Family Protein RFC3 Prevents Interference by the Splicing Factor CFM3b during Plastid rRNA Biogenesis in Arabidopsis thaliana. PLANTS 2020; 9:plants9030328. [PMID: 32143506 PMCID: PMC7154815 DOI: 10.3390/plants9030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.
Collapse
Affiliation(s)
- Yumi Nagashima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Katsutomo Ohshiro
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akiyasu Iwase
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Current address: Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shugo Maekawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
26
|
Murik O, Chandran SA, Nevo-Dinur K, Sultan LD, Best C, Stein Y, Hazan C, Ostersetzer-Biran O. Topologies of N 6 -adenosine methylation (m 6 A) in land plant mitochondria and their putative effects on organellar gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1269-1286. [PMID: 31657869 DOI: 10.1111/tpj.14589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Mitochondria serve as major sites of ATP production and play key roles in many other metabolic processes that are critical to the cell. As relicts of an ancient bacterial endosymbiont, mitochondria contain their own hereditary material (i.e. mtDNA, or mitogenome) and a machinery for protein biosynthesis. The expression of the mtDNA in plants is complex, particularly at the post-transcriptional level. Following transcription, the polycistronic pre-RNAs undergo extensive modifications, including trimming, splicing and editing, before being translated by organellar ribosomes. Our study focuses on N6 -methylation of adenosine ribonucleotides (m6 A-RNA) in plant mitochondria. m6 A is a prevalent modification in nuclear-encoded mRNAs. The biological significance of this dynamic modification is under investigation, but it is widely accepted that m6 A mediates structural switches that affect RNA stability and/or activity. Using m6 A-pulldown/RNA-seq (m6 A-RIP-seq) assays of Arabidopsis and cauliflower mitochondria, we provide information on the m6 A-RNA landscapes in Arabidopsis thaliana and Brassica oleracea mitochondria. The results show that m6 A targets different types of mitochondrial transcripts, including known genes, mtORFs, as well as non-coding (transcribed intergenic) RNA species. While ncRNAs undergo multiple m6 A modifications, N6 -methylation of adenosine residues with mRNAs seem preferably positioned near start codons and may modulate their translatability.
Collapse
Affiliation(s)
- Omer Murik
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sam Aldrin Chandran
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Keren Nevo-Dinur
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Laure D Sultan
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Corinne Best
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Yuval Stein
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Carina Hazan
- Analytical Chemistry Laboratory, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Oren Ostersetzer-Biran
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
27
|
Zhang Q, Shen L, Ren D, Hu J, Zhu L, Gao Z, Zhang G, Guo L, Zeng D, Qian Q. Characterization of the CRM Gene Family and Elucidating the Function of OsCFM2 in Rice. Biomolecules 2020; 10:biom10020327. [PMID: 32085638 PMCID: PMC7072668 DOI: 10.3390/biom10020327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
The chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins regulate the expression of chloroplast or mitochondrial genes that influence plant growth and development. Although 14 CRM domain proteins have previously been identified in rice, there are few studies of these gene expression patterns in various tissues and under abiotic stress. In our study, we found that 14 CRM domain-containing proteins have a conservative motif1. Under salt stress, the expression levels of 14 CRM genes were downregulated. However, under drought and cold stress, the expression level of some CRM genes was increased. The analysis of gene expression patterns showed that 14 CRM genes were expressed in all tissues but especially highly expressed in leaves. In addition, we analyzed the functions of OsCFM2 and found that this protein influences chloroplast development by regulating the splicing of a group I and five group II introns. Our study provides information for the function analysis of CRM domain-containing proteins in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qian Qian
- Correspondence: ; Tel.: +86-571-6337-0483
| |
Collapse
|
28
|
Wang HC, Chen Z, Yang YZ, Sun F, Ding S, Li XL, Xu C, Tan BC. PPR14 Interacts With PPR-SMR1 and CRM Protein Zm-mCSF1 to Facilitate Mitochondrial Intron Splicing in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:814. [PMID: 32595685 PMCID: PMC7304344 DOI: 10.3389/fpls.2020.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
In plants, splicing of organellar group II introns involves numerous nucleus-encoded trans-factors. But, how these trans-factors function and interact is not well understood. Here we report the function of a pentatricopeptide repeat (PPR) protein PPR14 and its physical relationship with other splicing factors in mitochondria. Null mutations of PPR14 severely arrest the embryo and endosperm development, causing an empty pericarp phenotype. PPR14 is required for the splicing of NADH dehydrogenase 2 (nad2) intron 3 and nad7 introns 1 and 2 in mitochondria. The absence of nad2 and nad7 transcripts leads to disruption of the mitochondrial complex I assembly and abolishes its NADH dehydrogenase activity. This is accompanied with increased levels of other mitochondrial complexes and elevated expression of the alternative oxidase proteins. As the function of PPR14 overlaps with PPR-SMR1 and the CRM-domain containing protein Zm-mCSF1, we tested their interactions. Protein-protein interaction analysis indicated that PPR14 interacts with PPR-SMR1 and Zm-mCSF1, suggesting that these three proteins may form a complex. As PPR proteins and CRM-domain containing proteins have many members in mitochondria and chloroplasts, we propose that organellar group II intron splicing is probably mediated by a dynamic complex that includes different PPR and CRM proteins in plants.
Collapse
|
29
|
Lee K, Park SJ, Colas des Francs-Small C, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1193-1207. [PMID: 31442349 DOI: 10.1111/tpj.14509] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat proteins PPR4 and EMB2654 have been shown to be required for the trans-splicing of plastid rps12 transcripts in Zea mays (maize) and Arabidopsis, respectively, but their roles in this process are not well understood. We investigated the functions of the Arabidopsis and Oryza sativa (rice) orthologs of PPR4, designated AtPPR4 (At5g04810) and OsPPR4 (Os4g58780). Arabidopsis atppr4 and rice osppr4 mutants are embryo-lethal and seedling-lethal 3 weeks after germination, respectively, showing that PPR4 is essential in the development of both dicot and monocot plants. Artificial microRNA-mediated mutants of AtPPR4 displayed a specific defect in rps12 trans-splicing, with pale-green, yellowish or albino phenotypes, according to the degree of knock-down of AtPPR4 expression. Comparison of RNA footprints in atppr4 and emb2654 mutants showed a similar concordant loss of extensive footprints at the 3' end of intron 1a and at the 5' end of intron 1b in both cases. EMB2654 is known to bind within the footprint region in intron 1a and we show that AtPPR4 binds to the footprint region in intron 1b, via its PPR motifs. Binding of both PPR4 and EMB2654 is essential to juxtapose the two intron halves and to maintain the RNAs in a splicing-competent structure for the efficient trans-splicing of rps12 intron 1, which is crucial for chloroplast biogenesis and plant development. The similarity of EMB2654 and PPR4 orthologs and their respective binding sites across land plant phylogeny indicates that their coordinate function in rps12 trans-splicing has probably been conserved for 500 million years.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Whitby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
30
|
Lee K, Park SJ, Park YI, Kang H. CFM9, a Mitochondrial CRM Protein, Is Crucial for Mitochondrial Intron Splicing, Mitochondria Function and Arabidopsis Growth and Stress Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2538-2548. [PMID: 31359042 DOI: 10.1093/pcp/pcz147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/18/2019] [Indexed: 05/24/2023]
Abstract
Although the importance of chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins has been established for chloroplast RNA metabolism and plant development, the functional role of CRM proteins in mitochondria remains largely unknown. Here, we investigated the role of a mitochondria-targeted CRM protein (At3g27550), named CFM9, in Arabidopsis thaliana. Confocal analysis revealed that CFM9 is localized in mitochondria. The cfm9 mutant exhibited delayed seed germination, retarded growth and shorter height compared with the wild type under normal conditions. The growth-defect phenotypes were more manifested upon high salinity, dehydration or ABA application. Complementation lines expressing CFM9 in the mutant background fully recovered the wild-type phenotypes. Notably, the mutant had abnormal mitochondria, increased hydrogen peroxide and reduced respiration activity, implying that CFM9 is indispensable for normal mitochondrial function. More important, the splicing of many intron-containing genes in mitochondria was defective in the mutant, suggesting that CFM9 plays a crucial role in the splicing of mitochondrial introns. Collectively, our results provide clear evidence emphasizing that CFM9 is an essential factor in the splicing of mitochondrial introns, which is crucial for mitochondrial biogenesis and function and the growth and development of Arabidopsis.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, Korea
| |
Collapse
|
31
|
Mahalingam R, Walling JG. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare). Genomics 2019; 112:1829-1839. [PMID: 31669702 DOI: 10.1016/j.ygeno.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/29/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023]
Abstract
One of the major mechanisms of post-transcriptional gene regulation is achieved by proteins bearing well-defined sequence motifs involved in 'RNA binding'. In eukaryotes, RNA binding proteins (RBPs) are key players of RNA metabolism that includes synthesis, processing, editing, modifying, transport, storage and stability of RNA. In plants, the family of RBPs is vastly expanded compared to other eukaryotes including humans. In this study we identified 363 RBPs in the barley genome. Gene ontology enrichment analysis of barley RBPs indicated these proteins were in all the major cellular compartments and associated with key biological processes including translation, splicing, seed development and stress signaling. Members with the classical RNA binding motifs such as the RNA recognition motif (RRM), KH domain, Helicase, CRM, dsRNA and Pumilio were identified in the repertoire of barley RBPs. Similar to Arabidopsis, the RRM containing RBPs were the most abundant in barley genome. In-depth analysis of the RRM containing proteins - polyA binding proteins, Ser/Arg rich proteins and Glycine-rich RBPs were undertaken. Reanalysis of the proteome dataset of various stages during barley malting identified 38 RBPs suggesting an important role for these proteins during the malting process. This survey provides a systematic analysis of barley RBPs and serves as the basis for the further functional characterization of this important family of proteins.
Collapse
Affiliation(s)
| | - Jason G Walling
- 502 Walnut Street, Cereal Crops Research Unit, USDA-ARS, Madison, WI 53726, USA.
| |
Collapse
|
32
|
Chen Z, Wang HC, Shen J, Sun F, Wang M, Xu C, Tan BC. PPR-SMR1 is required for the splicing of multiple mitochondrial introns, interacts with Zm-mCSF1, and is essential for seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5245-5258. [PMID: 31257441 PMCID: PMC6793435 DOI: 10.1093/jxb/erz305] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/19/2019] [Indexed: 05/18/2023]
Abstract
Group II introns are ribozymes that can excise themselves from precursor-RNA transcripts, but plant organellar group II introns have structural deviations that inhibit ribozyme activity. Therefore, splicing of these introns requires the assistance of nuclear- and/or organellar-encoded splicing factors; however, how these splicing factors function remains unclear. In this study, we report the functions and interactions of two splicing factors, PPR-SMR1 and Zm-mCSF1, in intron splicing in maize mitochondria. PPR-SMR1 is a SMR domain-containing pentatricopeptide repeat (PPR) protein and Zm-mCSF1 is a CRM domain-containing protein, and both are targeted to mitochondria. Loss-of-function mutations in each of them severely arrests embryogenesis and endosperm development in maize. Functional analyses indicate that PPR-SMR1 and Zm-mCSF1 are required for the splicing of most mitochondrial group II introns. Among them, nad2-intron 2 and 3, and nad5-intron 1 are PPR-SMR1/Zm-mCSF1-dependent introns. Protein interaction assays suggest that PPR-SMR1 can interact with Zm-mCSF1 through its N-terminus, and that Zm-mCSF1 is self-interacting. Our findings suggest that PPR-SMR1, a novel splicing factor, acts in the splicing of multiple group II introns in maize mitochondria, and the protein-protein interaction between it and Zm-mCSF1 might allow the formation of large macromolecular splicing complexes.
Collapse
Affiliation(s)
- Zongliang Chen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiayu Shen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Miaodi Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Correspondence:
| |
Collapse
|
33
|
Yang H, Zhou Y, Zhang Y, Wang J, Shi H. Identification of transcription factors of nitrate reductase gene promoters and NRE2 cis-element through yeast one-hybrid screening in Nicotiana tabacum. BMC PLANT BIOLOGY 2019; 19:145. [PMID: 30991965 PMCID: PMC6469061 DOI: 10.1186/s12870-019-1724-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND This study aimed to identify the transcription factors of nitrate reductase genes (NIA1 and NIA2) promoters and hypothetical cis-element of NRE2. Based on the constructed cDNA library of Nicotiana tabacum K326, a yeast one-hybrid system was established using the Matchmaker® Gold Yeast One-Hybrid Library Screening System from Clontech. The transcription factors of NIA1 andNIA2 promoters and NRE2 cis-elements were screened. RESULTS After sequencing and bioinformatics analysis, 15 cDNA sequences were identified: 9 for NIA1 (including XP_016503563.1 and NP_001312236.1), 3 for NIA2 (including XP_016510250.1), and 3 for NRE2 (including XM_016576899.1). XP_016503563.1 was annotated in PREDICTED: CRM-domain containing factor CFM3, and NP_001312236.1chloroplastic/mitochondrial-like in Nicotiana tabacum. NP_001312236.1 was annotated in Sulfite oxidase-like of Nicotiana tabacum. XP_016510250.1 was annotated as PREDICTED: uncharacterized protein LOC107827596 in Nicotiana tabacum. XM_016576899.1 was annotated in PREDICTED: Nicotiana tabacum RING-H2 finger protein ATL16-like (LOC107759033). CONCLUSION A yeast one-hybrid library was successfully constructed. The identified transcription factors may provide a theoretical basis for the study of plant nitrate reductase.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Yan Zhou
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Yuning Zhang
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Jing Wang
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 Henan China
| |
Collapse
|
34
|
Gagarinova A, Stewart G, Samanfar B, Phanse S, White CA, Aoki H, Deineko V, Beloglazova N, Yakunin AF, Golshani A, Brown ED, Babu M, Emili A. Systematic Genetic Screens Reveal the Dynamic Global Functional Organization of the Bacterial Translation Machinery. Cell Rep 2017; 17:904-916. [PMID: 27732863 DOI: 10.1016/j.celrep.2016.09.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 07/30/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Bacterial protein synthesis is an essential, conserved, and environmentally responsive process. Yet, many of its components and dependencies remain unidentified. To address this gap, we used quantitative synthetic genetic arrays to map functional relationships among >48,000 gene pairs in Escherichia coli under four culture conditions differing in temperature and nutrient availability. The resulting data provide global functional insights into the roles and associations of genes, pathways, and processes important for efficient translation, growth, and environmental adaptation. We predict and independently verify the requirement of unannotated genes for normal translation, including a previously unappreciated role of YhbY in 30S biogenesis. Dynamic changes in the patterns of genetic dependencies across the four growth conditions and data projections onto other species reveal overarching functional and evolutionary pressures impacting the translation system and bacterial fitness, underscoring the utility of systematic screens for investigating protein synthesis, adaptation, and evolution.
Collapse
Affiliation(s)
- Alla Gagarinova
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Geordie Stewart
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Bahram Samanfar
- Department of Biology and the Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Sadhna Phanse
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Carl A White
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Viktor Deineko
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Ashkan Golshani
- Department of Biology and the Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mohan Babu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
35
|
Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria. Int J Mol Sci 2017; 18:ijms18112428. [PMID: 29149092 PMCID: PMC5713396 DOI: 10.3390/ijms18112428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondria are remarkable with respect to the presence of numerous group II introns which reside in many essential genes. The removal of the organellar introns from the coding genes they interrupt is essential for respiratory functions, and is facilitated by different enzymes that belong to a diverse set of protein families. These include maturases and RNA helicases related proteins that function in group II intron splicing in different organisms. Previous studies indicate a role for the nMAT2 maturase and the RNA helicase PMH2 in the maturation of different pre-RNAs in Arabidopsis mitochondria. However, the specific roles of these proteins in the splicing activity still need to be resolved. Using transcriptome analyses of Arabidopsis mitochondria, we show that nMAT2 and PMH2 function in the splicing of similar subsets of group II introns. Fractionation of native organellar extracts and pulldown experiments indicate that nMAT2 and PMH2 are associated together with their intron-RNA targets in large ribonucleoprotein particle in vivo. Moreover, the splicing efficiencies of the joint intron targets of nMAT2 and PMH2 are more strongly affected in a double nmat2/pmh2 mutant-line. These results are significant as they may imply that these proteins serve as components of a proto-spliceosomal complex in plant mitochondria.
Collapse
|
36
|
Lee K, Han JH, Park YI, Colas des Francs-Small C, Small I, Kang H. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development. THE NEW PHYTOLOGIST 2017; 215:202-216. [PMID: 28332713 DOI: 10.1111/nph.14528] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/19/2017] [Indexed: 05/06/2023]
Abstract
Despite the importance of pentatricopeptide repeat (PPR) proteins in organellar RNA metabolism and plant development, the functions of many PPR proteins remain unknown. Here, we determined the role of a mitochondrial PPR protein (At1g52620) comprising 19 PPR motifs, thus named PPR19, in Arabidopsis thaliana. The ppr19 mutant displayed abnormal seed development, reduced seed yield, delayed seed germination, and retarded growth, indicating that PPR19 is indispensable for normal growth and development of Arabidopsis thaliana. Splicing pattern analysis of mitochondrial genes revealed that PPR19 specifically binds to the specific sequence in the 3'-terminus of the NADH dehydrogenase 1 (nad1) transcript and stabilizes transcripts containing the second and third exons of nad1. Loss of these transcripts in ppr19 leads to multiple secondary effects on accumulation and splicing of other nad1 transcripts, from which we can infer the order in which cis- and trans-spliced nad1 transcripts are normally processed. Improper splicing of nad1 transcripts leads to the absence of mitochondrial complex I and alteration of the nuclear transcriptome, notably influencing the alternative splicing of a variety of nuclear genes. Our results indicate that the mitochondrial PPR19 is an essential component in the splicing of nad1 transcripts, which is crucial for mitochondrial function and plant development.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Ji Hoon Han
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 306-764, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
37
|
Muthuramalingam M, Wang Y, Li Y, Mahalingam R. Interacting protein partners of Arabidopsis RNA-binding protein AtRBP45b. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:327-334. [PMID: 28039930 DOI: 10.1111/plb.12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 05/19/2023]
Abstract
RNA binding proteins, important players in post-transcriptional gene regulation, usually exist in ribonuclear complexes. However, even in model systems like Arabidopsis characterisation of RBP associated proteins is limited. In this study, we investigated the interacting proteins of the Arabidopsis AtRBP45b, which is involved in stress signalling. In vivo localisation of AtRBP45b was conducted using 35S-GFP. FLAG-tagged AtRBP45b under control of the 35S promoter in the Atrbp45b-1 mutant background was used to pull down AtRBP45b interacting proteins. Yeast two-hybrid analysis, fluorescence energy resonance transfer assays were used to confirm the veracity of the AtRBP45b interacting proteins. In planta GFP-tagging indicated AtRBP45b is localised to the nucleus and the cytosol. AtRBP45b protein has a N-terminal proline-rich region and a C-terminal glutamine-rich domain that are usually involved in protein-protein interactions. Co-immunoprecipitation followed by mass spectrometry-based protein sequencing led to identification of 30 proteins that interacted with AtRBP45b. Using information from interactome databases (BIOGRID, INTACT and STRING), pull-down assays and localisation data, 12 putative interacting proteins were selected for yeast two-hybrid analysis. Cap-binding protein (CBP20, At5g44200) and polyA-binding protein (PAB8, At1g49760) were shown to interact with AtRBP45b. Based on its interacting partners we speculate that AtRBP45b may play an important role in RNA metabolism, especially in aspects related to mRNA stability and translation initiation during stress conditions in plants.
Collapse
Affiliation(s)
- M Muthuramalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Y Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Y Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - R Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- USDA-ARS, Cereal Crops Research Unit, Madison, WI, USA
| |
Collapse
|
38
|
Sperschneider J, Catanzariti AM, DeBoer K, Petre B, Gardiner DM, Singh KB, Dodds PN, Taylor JM. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 2017; 7:44598. [PMID: 28300209 PMCID: PMC5353544 DOI: 10.1038/srep44598] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 12/17/2022] Open
Abstract
Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia
| | - Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Kathleen DeBoer
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Donald M. Gardiner
- Queensland Bioscience Precinct, CSIRO Agriculture and Food, Brisbane, QLD, Australia
| | - Karam B. Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia
| | - Peter N. Dodds
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jennifer M. Taylor
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
39
|
Aryamanesh N, Ruwe H, Sanglard LVP, Eshraghi L, Bussell JD, Howell KA, Small I, des Francs-Small CC. The Pentatricopeptide Repeat Protein EMB2654 Is Essential for Trans-Splicing of a Chloroplast Small Ribosomal Subunit Transcript. PLANT PHYSIOLOGY 2017; 173:1164-1176. [PMID: 28011633 PMCID: PMC5291019 DOI: 10.1104/pp.16.01840] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 05/04/2023]
Abstract
We report the partial complementation and subsequent comparative molecular analysis of two nonviable mutants impaired in chloroplast translation, one (emb2394) lacking the RPL6 protein, and the other (emb2654) carrying a mutation in a gene encoding a P-class pentatricopeptide repeat protein. We show that EMB2654 is required for the trans-splicing of the plastid rps12 transcript and that therefore the emb2654 mutant lacks Rps12 protein and fails to assemble the small subunit of the plastid ribosome, explaining the loss of plastid translation and consequent embryo-lethal phenotype. Predictions of the EMB2654 binding site match a small RNA "footprint" located on the 5' half of the trans-spliced intron that is almost absent in the partially complemented mutant. EMB2654 binds sequence specifically to this target sequence in vitro. Altered patterns in nuclease-protected small RNA fragments in emb2654 show that EMB2654 binding must be an early step in, or prior to, the formation of a large protein-RNA complex covering the free ends of the two rps12 intron halves.
Collapse
Affiliation(s)
- Nader Aryamanesh
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - Hannes Ruwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - Leila Eshraghi
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - John D Bussell
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia (N.A., H.R., L.V.P.S., L.E., J.D.B., K.A.H., I.S., C.C.d.F.-S.); and
- Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R.)
| |
Collapse
|
40
|
Liu C, Zhu H, Xing Y, Tan J, Chen X, Zhang J, Peng H, Xie Q, Zhang Z. Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5339-5347. [PMID: 27543605 PMCID: PMC5049385 DOI: 10.1093/jxb/erw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an essential role in plant growth and development through manipulating photosynthesis and the production of hormones and metabolites. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, identification of novel components is still lacking. We isolated a rice (Oryza sativa) mutant, termed albino leaf 2 (al2), using genetic screening. Phenotypic analysis revealed that the al2 mutation caused obvious albino leaves at the early developmental stage, eventually leading to al2 seedling death. Electron microscopy investigations indicated that the chloroplast structure was disrupted in the al2 mutants at an early developmental stage and subsequently resulted in the breakdown of the entire chloroplast. Molecular cloning illustrated that AL2 encodes a chloroplast group IIA intron splicing facilitator (CRS1) in rice, which was confirmed by a genetic complementation experiment. Moreover, our results demonstrated that AL2 was constitutively expressed in various tissues, including green and non-green tissues. Interestingly, we found that the expression levels of a subset of chloroplast genes that contain group IIA and IIB introns were significantly reduced in the al2 mutant compared to that in the wild type, suggesting that AL2 is a functional CRS1 in rice. Differing from the orthologous CRS1 in maize and Arabidopsis that only regulates splicing of the chloroplast group II intron, our results demonstrated that the AL2 gene is also likely to be involved in the splicing of the chloroplast group I intron. They also showed that disruption of AL2 results in the altered expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded polymerases and nuclear-encoded chloroplast genes. Taken together, these findings shed new light on the function of nuclear-encoded chloroplast group I and II intron splicing factors in rice.
Collapse
Affiliation(s)
- Changhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haitao Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yi Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjie Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xionghui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haifeng Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
41
|
Lee K, Kang H. Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses. Mol Cells 2016; 39:179-85. [PMID: 26831454 PMCID: PMC4794599 DOI: 10.14348/molcells.2016.2359] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022] Open
Abstract
Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
42
|
Lefebvre-Legendre L, Reifschneider O, Kollipara L, Sickmann A, Wolters D, Kück U, Goldschmidt-Clermont M. A pioneer protein is part of a large complex involved in trans-splicing of a group II intron in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:57-69. [PMID: 26611495 DOI: 10.1111/tpj.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 05/08/2023]
Abstract
Splicing of organellar introns requires the activity of numerous nucleus-encoded factors. In the chloroplast of Chlamydomonas reinhardtii, maturation of psaA mRNA encoding photosystem I subunit A involves two steps of trans-splicing. The exons, located on three separate transcripts, are flanked by sequences that fold to form the conserved structures of two group II introns. A fourth transcript contributes to assembly of the first intron, which is thus tripartite. The raa7 mutant (RNA maturation of psaA 7) is deficient in trans-splicing of the second intron of psaA, and may be rescued by transforming the chloroplast genome with an intron-less version of psaA. Using mapped-based cloning, we identify the RAA7 locus, which encodes a pioneer protein with no previously known protein domain or motif. The Raa7 protein, which is not associated with membranes, localizes to the chloroplast. Raa7 is a component of a large complex and co-sediments in sucrose gradients with the previously described splicing factors Raa1 and Raa2. Based on tandem affinity purification of Raa7 and mass spectrometry, Raa1 and Raa2 were identified as interacting partners of Raa7. Yeast two-hybrid experiments indicate that the interaction of Raa7 with Raa1 and Raa2 may be direct. We conclude that Raa7 is a component of a multimeric complex that is required for trans-splicing of the second intron of psaA. The characterization of this psaA trans-splicing complex is also of interest from an evolutionary perspective because the nuclear spliceosomal introns are thought to derive from group II introns, with which they show mechanistic and structural similarity.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | - Olga Reifschneider
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften- ISAS - e.V., Otto Hahn Straße 6b, Dortmund, 44227, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften- ISAS - e.V., Otto Hahn Straße 6b, Dortmund, 44227, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Dirk Wolters
- Department of Analytical Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
43
|
Zhang HD, Cui YL, Huang C, Yin QQ, Qin XM, Xu T, He XF, Zhang Y, Li ZR, Yang ZN. PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2015; 126:311-21. [PMID: 26123918 DOI: 10.1007/s11120-015-0171-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/22/2015] [Indexed: 05/10/2023]
Abstract
After transcription, most chloroplast precursor RNAs undergo further post-transcriptional processing including cleavage, editing, and splicing. Previous investigation has shown that the cleavage of the rpoA transcript and most editing sites, including accD-1, are defective in the knockout mutant of PDM1/SEL1, a PLS-type PPR protein, and that PDM1 is associated with the rpoA transcript. In this work, we found that the splicing of group II introns in trnK and ndhA is also affected in pdm1. Co-immunoprecipitation mass spectrometry experiments were performed to identify proteins that are associated with PDM1. We obtained 126 non-redundant proteins, of which MORF9 was reported to be involved in RNA editing in chloroplast. Yeast two-hybrid assays showed that PDM1 interacts directly with MORF9, MORF2, and MORF8. RNA immunoprecipitation showed that PDM1 associates with the transcripts of trnK and ndhA, as well as accD-1, suggesting that PDM1 is involved in RNA editing and splicing. Therefore, PDM1 is an important protein for post-transcriptional regulation in chloroplast.
Collapse
Affiliation(s)
- Hong-Dao Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian-Qian Yin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Mei Qin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Te Xu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Fang He
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Ran Li
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
44
|
Manavski N, Torabi S, Lezhneva L, Arif MA, Frank W, Meurer J. HIGH CHLOROPHYLL FLUORESCENCE145 Binds to and Stabilizes the psaA 5' UTR via a Newly Defined Repeat Motif in Embryophyta. THE PLANT CELL 2015; 27:2600-15. [PMID: 26307378 PMCID: PMC4815088 DOI: 10.1105/tpc.15.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/06/2015] [Indexed: 05/10/2023]
Abstract
The seedling-lethal Arabidopsis thaliana high chlorophyll fluorescence145 (hcf145) mutation leads to reduced stability of the plastid tricistronic psaA-psaB-rps14 mRNA and photosystem I (PSI) deficiency. Here, we genetically mapped the HCF145 gene, which encodes a plant-specific, chloroplast-localized, modular protein containing two homologous domains related to the polyketide cyclase family comprising 37 annotated Arabidopsis proteins of unknown function. Two further highly conserved and previously uncharacterized tandem repeat motifs at the C terminus, herein designated the transcript binding motif repeat (TMR) domains, confer sequence-specific RNA binding capability to HCF145. Homologous TMR motifs are often found as multiple repeats in quite diverse proteins of green and red algae and in the cyanobacterium Microcoleus sp PCC 7113 with unknown function. HCF145 represents the only TMR protein found in vascular plants. Detailed analysis of hcf145 mutants in Arabidopsis and Physcomitrella patens as well as in vivo and in vitro RNA binding assays indicate that HCF145 has been recruited in embryophyta for the stabilization of the psaA-psaB-rps14 mRNA via specific binding to its 5' untranslated region. The polyketide cyclase-related motifs support association of the TMRs to the psaA RNA, presumably pointing to a regulatory role in adjusting PSI levels according to the requirements of the plant cell.
Collapse
Affiliation(s)
- Nikolay Manavski
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Salar Torabi
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Lina Lezhneva
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Muhammad Asif Arif
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
45
|
Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly. Proc Natl Acad Sci U S A 2015; 112:E4707-16. [PMID: 26261349 DOI: 10.1073/pnas.1506749112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2'-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2'-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly.
Collapse
|
46
|
Belcher S, Williams-Carrier R, Stiffler N, Barkan A. Large-scale genetic analysis of chloroplast biogenesis in maize. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1004-16. [PMID: 25725436 DOI: 10.1016/j.bbabio.2015.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chloroplast biogenesis involves a collaboration between several thousand nuclear genes and ~100 genes in the chloroplast. Many of the nuclear genes are of cyanobacterial ancestry and continue to perform their ancestral function. However, many others evolved subsequently and comprise a diverse set of proteins found specifically in photosynthetic eucaryotes. Genetic approaches have been key to the discovery of nuclear genes that participate in chloroplast biogenesis, especially those lacking close homologs outside the plant kingdom. SCOPE OF REVIEW This article summarizes contributions from a genetic resource in maize, the Photosynthetic Mutant Library (PML). The PML collection consists of ~2000 non-photosynthetic mutants induced by Mu transposons. We include a summary of mutant phenotypes for 20 previously unstudied maize genes, including genes encoding chloroplast ribosomal proteins, a PPR protein, tRNA synthetases, proteins involved in plastid transcription, a putative ribosome assembly factor, a chaperonin 60 isoform, and a NifU-domain protein required for Photosystem I biogenesis. MAJOR CONCLUSIONS Insertions in 94 maize genes have been linked thus far to visible and molecular phenotypes with the PML collection. The spectrum of chloroplast biogenesis genes that have been genetically characterized in maize is discussed in the context of related efforts in other organisms. This comparison shows how distinct organismal attributes facilitate the discovery of different gene classes, and reveals examples of functional divergence between monocot and dicot plants. GENERAL SIGNIFICANCE These findings elucidate the biology of an organelle whose activities are fundamental to agriculture and the biosphere. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Nicholas Stiffler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
47
|
Levey T, Westhoff P, Meierhoff K. Expression of a nuclear-encoded psbH gene complements the plastidic RNA processing defect in the PSII mutant hcf107 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:292-304. [PMID: 25081859 DOI: 10.1111/tpj.12632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The helical-repeat RNA-binding protein HCF107 is required for processing, stabilization and translation of plastid-encoded psbH mRNA. The psbH gene encodes a small, hydrophilic subunit of the PSII complex and is part of the plastidic psbB-psbT-psbH-petB-petD transcription unit. In Arabidopsis hcf107 mutants, only trace amounts of PSII proteins can be detected. Beside drastically reduced synthesis of PsbH, the synthesis of CP47 was also reduced in these mutants, although the corresponding psbB transcripts accumulate to wild type levels. This situation raises the question, whether the reduction of CP47 is a direct consequence of the mutation, based on targeting of HCF107 to the psbB mRNA, or a secondary affect due to the absent PsbH. To clarify this issue we introduced a chimeric psbH construct comprising a sequence encoding a chloroplast transit peptide into the hcf107-2 background. We found that the nucleus-localized psbH was able to complement the mutant defect resulting in photoautotrophic plants. The PSII proteins CP47 and D1 accumulated to barely half of the wild type level. Further experiments showed that cytosolically synthesized PsbH was imported into chloroplasts and assembled into PSII complexes. Using this approach, we showed that the tetratricopeptide repeat protein HCF107 of Arabidopsis is only responsible for expression of PsbH and not for synthesis of CP47. In addition the data suggest the necessity of the small, one-helix membrane spanning protein PsbH for the accumulation of CP47 in higher plants.
Collapse
Affiliation(s)
- Tatjana Levey
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
48
|
Gu L, Xu T, Lee K, Lee KH, Kang H. A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:309-18. [PMID: 25043599 DOI: 10.1016/j.plaphy.2014.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/03/2014] [Indexed: 05/06/2023]
Abstract
Although many DEAD-box RNA helicases (RHs) are targeted to chloroplasts, the functional roles of the majority of RHs are still unknown. Recently, the chloroplast-localized Arabidopsis thaliana AtRH3 has been demonstrated to play important roles in intron splicing, ribosome biogenesis, and seedling growth. To further understand the functional role of AtRH3 in intron splicing and growth and the stress response in Arabidopsis, the newly-generated artificial microRNA-mediated knockdown plants as well as the previously characterized T-DNA tagged rh3-4 mutant were analyzed under normal and stress conditions. The rh3 mutants displayed retarded growth and pale-green phenotypes, and the growth of mutant plants was inhibited severely under salt or cold stress but marginally under dehydration stress conditions. Splicing of several intron-containing chloroplast genes was defective in the mutant plants. Importantly, splicing of ndhA and ndhB genes was severely inhibited in the mutant plants compared with the wild-type plants under salt or cold stress but not under dehydration stress conditions. Moreover, AtRH3 complemented the growth-defect phenotype of the RNA chaperone-deficient Escherichia coli mutant and had the ability to disrupt RNA and DNA base pairs, indicating that AtRH3 possesses RNA chaperone activity. Taken together, these results demonstrate that AtRH3 plays a prominent role in the growth and stress response of Arabidopsis, and suggest that proper splicing of introns governed by RNA chaperone activity of AtRH3 is crucial for chloroplast function and the growth and stress response of plants.
Collapse
Affiliation(s)
- Lili Gu
- Department of Plant Biotechnology and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Tao Xu
- Department of Plant Biotechnology and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwang Ho Lee
- Department of Wood Science and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
49
|
Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X, Ren Y, Wang J, Guo X, Zhang X, Cheng Z, Jiang L, Liu X, Wang H, Wan J. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. MOLECULAR PLANT 2014; 7:1329-1349. [PMID: 24821718 DOI: 10.1093/mp/ssu054] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and modulate organellar gene expression by participating in various aspects of organellar RNA metabolism. In rice, the family contains 477 members, and the majority of their functions remain unclear. In this study, we isolated and characterized a rice mutant, white stripe leaf (wsl), which displays chlorotic striations early in development. Map-based cloning revealed that WSL encodes a newly identified rice PPR protein which targets the chloroplasts. In wsl mutants, PEP-dependent plastid gene expression was significantly down-regulated, and plastid rRNAs and translation products accumulate to very low levels. Consistently with the observations, wsl shows a strong defect in the splicing of chloroplast transcript rpl2, resulting in aberrant transcript accumulation and its product reduction in the mutant. The wsl shows enhanced sensitivity to ABA, salinity, and sugar, and it accumulates more H2O2 than wild-type. These results suggest the reduced translation efficiency may affect the response of the mutant to abiotic stress.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhenhua Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Peike Sheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yueqin Heng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xinhua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
50
|
Hammani K, Giegé P. RNA metabolism in plant mitochondria. TRENDS IN PLANT SCIENCE 2014; 19:380-9. [PMID: 24462302 DOI: 10.1016/j.tplants.2013.12.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/02/2023]
Abstract
Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Philippe Giegé
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|