1
|
Weissman B, Ekesan Ş, Lin HC, Gardezi S, Li NS, Giese TJ, McCarthy E, Harris ME, York DM, Piccirilli JA. Dissociative Transition State in Hepatitis Delta Virus Ribozyme Catalysis. J Am Chem Soc 2023; 145:2830-2839. [PMID: 36706353 PMCID: PMC10112047 DOI: 10.1021/jacs.2c10079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ribonucleases and small nucleolytic ribozymes are both able to catalyze RNA strand cleavage through 2'-O-transphosphorylation, provoking the question of whether protein and RNA enzymes facilitate mechanisms that pass through the same or distinct transition states. Here, we report the primary and secondary 18O kinetic isotope effects for hepatitis delta virus ribozyme catalysis that reveal a dissociative, metaphosphate-like transition state in stark contrast to the late, associative transition states observed for reactions catalyzed by specific base, Zn2+ ions, or ribonuclease A. This new information provides evidence for a discrete ribozyme active site design that modulates the RNA cleavage pathway to pass through an altered transition state.
Collapse
Affiliation(s)
- Benjamin Weissman
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hsuan-Chun Lin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shahbaz Gardezi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nan-Sheng Li
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Messina KJ, Kierzek R, Tracey MA, Bevilacqua PC. Small Molecule Rescue and Glycosidic Conformational Analysis of the Twister Ribozyme. Biochemistry 2019; 58:4857-4868. [PMID: 31742390 PMCID: PMC6901379 DOI: 10.1021/acs.biochem.9b00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The number of self-cleaving ribozymes has increased sharply in recent years, giving rise to elaborations of the four known ribozyme catalytic strategies, α, β, γ, and δ. One such extension is utilized by the twister ribozyme, which is hypothesized to conduct δ, or general acid catalysis, via N3 of the syn adenine +1 nucleobase indirectly via buffer catalysis at biological pH and directly at lower pH. Herein, we test the δ catalysis role of A1 via chemical rescue and the catalytic relevance of the syn orientation of the nucleobase by conformational analysis. Using inhibited twister ribozyme variants with A1(N3) deaza or A1 abasic modifications, we observe >100-fold chemical rescue effects in the presence of protonatable biological small molecules such as imidazole and histidine, similar to observed rescue values previously reported for C75U/C76Δ in the HDV ribozyme. Brønsted plots for the twister variants support a model in which small molecules rescue catalytic activity via a proton transfer mechanism, suggesting that A1 in the wild type is involved in proton transfer, most likely general acid catalysis. Additionally, through glycosidic conformational analysis in an appropriate background that accommodates the bromine atom, we observe that an 8BrA1-modified twister ribozyme is up to 10-fold faster than a nonmodified A1 ribozyme, supporting crystallographic data that show that A1 is syn when conducting proton transfer. Overall, this study provides functional evidence that the nucleotide immediately downstream of the cleavage site participates directly or indirectly in general acid-base catalysis in the twister ribozyme while occupying the syn conformation.
Collapse
Affiliation(s)
- Kyle J. Messina
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Matthew A. Tracey
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
3
|
Lu J, Koo SC, Weissman BP, Harris ME, Li NS, Piccirilli JA. Evidence That Nucleophile Deprotonation Exceeds Bond Formation in the HDV Ribozyme Transition State. Biochemistry 2018; 57:3465-3472. [PMID: 29733591 DOI: 10.1021/acs.biochem.8b00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steric constraints imposed by the active sites of protein and RNA enzymes pose major challenges to the investigation of structure-function relationships within these systems. As a strategy to circumvent such constraints in the HDV ribozyme, we have synthesized phosphoramidites from propanediol derivatives and incorporated them at the 5'-termini of RNA and DNA oligonucleotides to generate a series of novel substrates with nucleophiles perturbed electronically through geminal fluorination. In nonenzymatic, hydroxide-catalyzed intramolecular transphosphorylation of the DNA substrates, pH-rate profiles revealed that fluorine substitution reduces the maximal rate and the kinetic p Ka, consistent with the expected electron-withdrawing effect. In HDV ribozyme reactions, we observed that the RNA substrates undergo transphosphorylation relatively efficiently, suggesting that the conformational constraints imposed by a ribofuranose ring are not strictly required for ribozyme catalysis. In contrast to the nonenzymatic reactions, however, substrate fluorination modestly increases the ribozyme reaction rate, consistent with a mechanism in which (1) the 2'-hydroxyl nucleophile exists predominantly in its neutral, protonated form in the ground state and (2) the 2'-hydroxyl bears some negative charge in the rate-determining step, consistent with a transition state in which the extent of 2'-OH deprotonation exceeds the extent of P-O bond formation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Selene C Koo
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Benjamin P Weissman
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Michael E Harris
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , United States
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| |
Collapse
|
4
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
5
|
Koo SC, Lu J, Li NS, Leung E, Das SR, Harris ME, Piccirilli JA. Transition State Features in the Hepatitis Delta Virus Ribozyme Reaction Revealed by Atomic Perturbations. J Am Chem Soc 2015; 137:8973-82. [PMID: 26125657 PMCID: PMC4758122 DOI: 10.1021/jacs.5b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endonucleolytic ribozymes constitute a class of non-coding RNAs that catalyze single-strand RNA scission. With crystal structures available for all of the known ribozymes, a major challenge involves relating functional data to the physically observed RNA architecture. In the case of the hepatitis delta virus (HDV) ribozyme, there are three high-resolution crystal structures, the product state of the reaction and two precursor variants, with distinct mechanistic implications. Here, we develop new strategies to probe the structure and catalytic mechanism of a ribozyme. First, we use double-mutant cycles to distinguish differences in functional group proximity implicated by the crystal structures. Second, we use a corrected form of the Brønsted equation to assess the functional significance of general acid catalysis in the system. Our results delineate the functional relevance of atomic interactions inferred from structure, and suggest that the HDV ribozyme transition state resembles the cleavage product in the degree of proton transfer to the leaving group.
Collapse
Affiliation(s)
- Selene C. Koo
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Jun Lu
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Nan-Sheng Li
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Edward Leung
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Subha R. Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Michael E. Harris
- Department of Biochemistry and Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Joseph A. Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
6
|
Abstract
Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.
Collapse
Affiliation(s)
- Vipender Singh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Shirvani-Dastgerdi E, Amini-Bavil-Olyaee S, Alavian SM, Trautwein C, Tacke F. Comprehensive analysis of mutations in the hepatitis delta virus genome based on full-length sequencing in a nationwide cohort study and evolutionary pattern during disease progression. Clin Microbiol Infect 2014; 21:510.e11-23. [PMID: 25656625 DOI: 10.1016/j.cmi.2014.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 02/06/2023]
Abstract
Delta hepatitis, caused by co-infection or super-infection of hepatitis D virus (HDV) in hepatitis B virus (HBV) -infected patients, is the most severe form of chronic hepatitis, often progressing to liver cirrhosis and liver failure. Although 15 million individuals are affected worldwide, molecular data on the HDV genome and its proteins, small and large delta antigen (S-/L-HDAg), are limited. We therefore conducted a nationwide study in HBV-HDV-infected patients from Iran and successfully amplified 38 HDV full genomes and 44 L-HDAg sequences from 34 individuals. Phylogenetic analyses of full-length HDV and L-HDAg isolates revealed that all strains clustered with genotype 1 and showed high genotypic distances to HDV genotypes 2 to 8, with a maximal distance to genotype 3. Longitudinal analyses in individual patients indicated a reverse evolutionary trend, especially in L-HDAg amino acid composition, over time. Besides multiple sequence variations in the hypervariable region of HDV, nucleotide substitutions preferentially occurred in the stabilizing P4 domain of the HDV ribozyme. A high rate of single amino acid changes was detected in structural parts of L-HDAg, whereas its post-translational modification sites were highly conserved. Interestingly, several non-synonymous mutations were positively selected that affected immunogenic epitopes of L-HDAg towards CD8 T-cell- and B-cell-driven immune responses. Hence, our comprehensive molecular analysis comprising a nationwide cohort revealed phylogenetic relationships and provided insight into viral evolution within individual hosts. Moreover, preferential areas of frequent mutations in the HDV ribozyme and antigen protein were determined in this study.
Collapse
Affiliation(s)
| | - S Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, Los Angeles, CA, USA
| | - S Moayed Alavian
- Baqiyatallah Research Centre for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - C Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - F Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
8
|
Kapral GJ, Jain S, Noeske J, Doudna JA, Richardson DC, Richardson JS. New tools provide a second look at HDV ribozyme structure, dynamics and cleavage. Nucleic Acids Res 2014; 42:12833-46. [PMID: 25326328 PMCID: PMC4227795 DOI: 10.1093/nar/gku992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme essential for processing viral transcripts during rolling circle viral replication. The first crystal structure of the cleaved ribozyme was solved in 1998, followed by structures of uncleaved, mutant-inhibited and ion-complexed forms. Recently, methods have been developed that make the task of modeling RNA structure and dynamics significantly easier and more reliable. We have used ERRASER and PHENIX to rebuild and re-refine the cleaved and cis-acting C75U-inhibited structures of the HDV ribozyme. The results correct local conformations and identify alternates for RNA residues, many in functionally important regions, leading to improved R values and model validation statistics for both structures. We compare the rebuilt structures to a higher resolution, trans-acting deoxy-inhibited structure of the ribozyme, and conclude that although both inhibited structures are consistent with the currently accepted hammerhead-like mechanism of cleavage, they do not add direct structural evidence to the biochemical and modeling data. However, the rebuilt structures (PDBs: 4PR6, 4PRF) provide a more robust starting point for research on the dynamics and catalytic mechanism of the HDV ribozyme and demonstrate the power of new techniques to make significant improvements in RNA structures that impact biologically relevant conclusions.
Collapse
Affiliation(s)
- Gary J Kapral
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Swati Jain
- Department of Biochemistry, Duke University, Durham, NC 27710, USA Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Jonas Noeske
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
9
|
Sripathi KN, Tay WW, Banáš P, Otyepka M, Šponer J, Walter NG. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. RNA (NEW YORK, N.Y.) 2014; 20:1112-28. [PMID: 24854621 PMCID: PMC4114689 DOI: 10.1261/rna.044982.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.
Collapse
Affiliation(s)
- Kamali N. Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Wendy W. Tay
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Pavel Banáš
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
- Masaryk University, Campus Bohunice, 625 00 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
10
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
11
|
Thaplyal P, Ganguly A, Golden BL, Hammes-Schiffer S, Bevilacqua PC. Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme. Biochemistry 2013; 52:6499-514. [PMID: 24001219 DOI: 10.1021/bi4000673] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg(2+) ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies of the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn(2+). Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd(2+). Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg(2+) or Cd(2+), supporting the idea that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold and the slow-reacting phase displaying a thio effect of ~1000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd(2+) of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd(2+) inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments with the antigenomic HDV ribozyme. Experiments without divalent ions, with a double mutant that interferes with Mg(2+) binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2'-hydroxyl, supporting the experimental findings.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
12
|
Abstract
The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.
Collapse
Affiliation(s)
- Júlia Viladoms
- Department of Chemical Physiology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
13
|
Abstract
Catalysis in living cells is carried out by both proteins and RNA. Protein enzymes have been known for over 200 years, but RNA enzymes, or "ribozymes", were discovered only 30 years ago. Developing insight into RNA enzyme mechanisms is invaluable for better understanding both extant biological catalysis as well as the primitive catalysis envisioned in an early RNA-catalyzed life. Natural ribozymes include large RNAs such as the group I and II introns; small RNAs such as the hepatitis delta virus and the hairpin, hammerhead, VS, and glmS ribozymes; and the RNA portion of the ribosome and spliceosome. RNA enzymes use many of the same catalytic strategies as protein enzymes, but do so with much simpler side chains. Among these strategies are metal ion, general acid-base, and electrostatic catalysis. In this Account, we examine evidence for participation of charged nucleobases in RNA catalysis. Our overall approach is to integrate direct measurements on catalytic RNAs with thermodynamic studies on oligonucleotide model systems. The charged amino acids make critical contributions to the mechanisms of nearly all protein enzymes. Ionized nucleobases should be critical for RNA catalysis as well. Indeed, charged nucleobases have been implicated in RNA catalysis as general acid-bases and oxyanion holes. We provide an overview of ribozyme studies involving nucleobase catalysis and the complications involved in developing these mechanisms. We also consider driving forces for perturbation of the pK(a) values of the bases. Mechanisms for pK(a) values shifting toward neutrality involve electrostatic stabilization and the addition of hydrogen bonding. Both mechanisms couple protonation with RNA folding, which we treat with a thermodynamic formalism and conceptual models. Furthermore, ribozyme reaction mechanisms can be multichannel, which demonstrates the versatility of ribozymes but makes analysis of experimental data challenging. We examine advances in measuring and analyzing perturbed pK(a) values in RNA. Raman crystallography and fluorescence spectroscopy have been especially important for pK(a) measurement. These methods reveal pK(a) values for the nucleobases A or C equal to or greater than neutrality, conferring potential histidine- and lysine/arginine-like behavior on them. Structural support for ionization of the nucleobases also exists: an analysis of RNA structures in the databases conducted herein suggests that charging of the bases is neither especially uncommon nor difficult to achieve under cellular conditions. Our major conclusions are that cationic and anionic charge states of the nucleobases occur in RNA enzymes and that these states make important catalytic contributions to ribozyme activity. We conclude by considering outstanding questions and possible experimental and theoretical approaches for further advances.
Collapse
Affiliation(s)
- Jennifer L. Wilcox
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | | | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
14
|
Yaren O, Mosimann M, Leumann CJ. Ein paralleles Testverfahren zur Entdeckung neuer DNA-Basenpaare. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Yaren O, Mosimann M, Leumann CJ. A parallel screen for the discovery of novel DNA base pairs. Angew Chem Int Ed Engl 2011; 50:1935-8. [PMID: 21328674 DOI: 10.1002/anie.201005300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/15/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Oezlem Yaren
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|
16
|
Abstract
DNA (deoxyribonucleic acid) is the genetic material common to all of Earth's organisms. Our biological understanding of DNA is extensive and well-exploited. In recent years, chemists have begun to develop DNA for nonbiological applications in catalysis, encoding, and stereochemical control. This Review summarizes key advances in these three exciting research areas, each of which takes advantage of a different subset of DNA's useful chemical properties.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Thomas JM, Yoon JK, Perrin DM. Investigation of the catalytic mechanism of a synthetic DNAzyme with protein-like functionality: an RNaseA mimic? J Am Chem Soc 2010; 131:5648-58. [PMID: 20560639 DOI: 10.1021/ja900125n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protein enzyme ribonuclease A (RNaseA) cleaves RNA with catalytic perfection, although with little sequence specificity, by a divalent metal ion (M(2+))-independent mechanism in which a pair of imidazoles provides general acid and base catalysis, while a cationic amine provides electrostatic stabilization of the transition state. Synthetic imitation of this remarkable organo-catalyst ("RNaseA mimicry") has been a longstanding goal in biomimetic chemistry. The 9(25)-11 DNAzyme contains synthetically modified nucleotides presenting both imidazole and cationic amine side chains, and catalyzes RNA cleavage with turnover in the absence of M(2+) similarly to RNaseA. Nevertheless, the catalytic roles, if any, of the "protein-like" functional groups have not been defined, and hence the question remains whether 9(25)-11 engages any of these functionalities to mimic aspects of the mechanism of RNaseA. To address this question, we report a mechanistic investigation of 9(25)-11 catalysis wherein we have employed a variety of experiments, such as DNAzyme functional group deletion, mechanism-based affinity labeling, and bridging and nonbridging phosphorothioate substitution of the scissile phosphate. Several striking parallels exist between the results presented here for 9(25)-11 and the results of analogous experiments applied previously to RNaseA. Specifically, our results implicate two particular imidazoles in general acid and base catalysis and suggest that a specific cationic amine stabilizes the transition state via diastereoselective interaction with the scissile phosphate. Overall, 9(25)-11 appears to meet the minimal criteria of an RNaseA mimic; this demonstrates how added synthetic functionality can expand the mechanistic repertoire available to a synthetic DNA-based catalyst.
Collapse
Affiliation(s)
- Jason M Thomas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
18
|
Silverman SK. DNA - eine vielseitige chemische Verbindung für die Katalyse, zur Kodierung und zur Stereokontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906345] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage. Biochemistry 2010; 49:6508-18. [DOI: 10.1021/bi100670p] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Rieko Yajima
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Durga M. Chadalavada
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| |
Collapse
|
20
|
Reymond C, Beaudoin JD, Perreault JP. Modulating RNA structure and catalysis: lessons from small cleaving ribozymes. Cell Mol Life Sci 2009; 66:3937-50. [PMID: 19718544 PMCID: PMC2777235 DOI: 10.1007/s00018-009-0124-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/12/2023]
Abstract
RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today's knowledge in the field.
Collapse
Affiliation(s)
- Cedric Reymond
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| |
Collapse
|
21
|
Abstract
Self-cleaving hammerhead, hairpin, hepatitis delta virus, and glmS ribozymes comprise a family of small catalytic RNA motifs that catalyze the same reversible phosphodiester cleavage reaction, but each motif adopts a unique structure and displays a unique array of biochemical properties. Recent structural, biochemical, and biophysical studies of these self-cleaving RNAs have begun to reveal how active site nucleotides exploit general acid-base catalysis, electrostatic stabilization, substrate destabilization, and positioning and orientation to reduce the free energy barrier to catalysis. Insights into the variety of catalytic strategies available to these model RNA enzymes are likely to have important implications for understanding more complex RNA-catalyzed reactions fundamental to RNA processing and protein synthesis.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Smedile A, Ciancio A, Rizzetto M. Hepatitis D Virus. CLINICAL VIROLOGY 2009:1291-1306. [DOI: 10.1128/9781555815981.ch56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
Jiang Z, Smith NW, Ferguson PD, Taylor MR. Mixed-mode reversed-phase and ion-exchange monolithic columns for micro-HPLC. J Sep Sci 2008; 31:2774-83. [PMID: 18666170 DOI: 10.1002/jssc.200800124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.
Collapse
Affiliation(s)
- Zhengjin Jiang
- Pharmaceutical Sciences Research Division, King's College London, London, UK
| | | | | | | |
Collapse
|
24
|
Cerrone-Szakal AL, Siegfried NA, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: solvent isotope effects and proton inventories in the absence of divalent metal ions support C75 as the general acid. J Am Chem Soc 2008; 130:14504-20. [PMID: 18842044 DOI: 10.1021/ja801816k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa. Inversion of the rate-pH profile was used as the crux of a mechanistic argument that C75 serves as general acid both in the presence and absence of Mg(2+). However, subsequent studies on a double mutant (DM) ribozyme suggested that the pKa observed for WT in the absence of Mg(2+) arises from ionization of C41, a structural nucleobase. To investigate this further, we acquired rate-pH/pD profiles and proton inventories for WT and DM in the absence of Mg(2+). Corrections were made for effects of ionic strength on hydrogen ion activity and pH meter readings. Results are accommodated by a model wherein the Mg(2+)-free pKa observed for WT arises from ionization of C75, and DM reactivity is compromised by protonation of C41. The Brønsted base appears to be water or hydroxide ion depending on pH. The observed pKa's are related to salt-dependent pH titrations of a model oligonucleotide, as well as electrostatic calculations, which support the local environment for C75 in the absence of Mg(2+) being similar to that in the presence of Mg(2+) and impervious to bulk ions. Accordingly, the catalytic role of C75 as the general acid does not appear to depend on divalent ions or the identity of the Brønsted base.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
25
|
Banáš P, Rulíšek L, Hánošová V, Svozil D, Walter NG, Šponer J, Otyepka M. General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility. J Phys Chem B 2008; 112:11177-87. [PMID: 18686993 PMCID: PMC2566740 DOI: 10.1021/jp802592z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.
Collapse
Affiliation(s)
- Pavel Banáš
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Palacky University, tr. Svobody 26, 771 46, Olomouc, Czech Republic; phone/fax: +420 585634756, e-mail:
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
- Gilead Sciences and IOCB Research Center & IOCB, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
- Gilead Sciences and IOCB Research Center & IOCB, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Veronika Hánošová
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Palacky University, tr. Svobody 26, 771 46, Olomouc, Czech Republic; phone/fax: +420 585634756, e-mail:
| | - Daniel Svozil
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; phone: +420 541517133, e-mail:
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
- Gilead Sciences and IOCB Research Center & IOCB, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Palacky University, tr. Svobody 26, 771 46, Olomouc, Czech Republic; phone/fax: +420 585634756, e-mail:
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; phone: +420 541517133, e-mail:
| |
Collapse
|
26
|
Cerrone-Szakal AL, Chadalavada DM, Golden BL, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: the cleavage site base pair plays a structural role in facilitating catalysis. RNA (NEW YORK, N.Y.) 2008; 14:1746-60. [PMID: 18658121 PMCID: PMC2525964 DOI: 10.1261/rna.1140308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme occurs in the genomic and antigenomic strands of the HDV RNA and within mammalian transcriptomes. Previous kinetic studies suggested that a wobble pair (G*U or A(+)*C) is preferred at the cleavage site; however, the reasons for this are unclear. We conducted sequence comparisons, which indicated that while G*U is the most prevalent combination at the cleavage site, G-C occurs to a significant extent in genomic HDV isolates, and G*U, G-C, and A-U pairs are present in mammalian ribozymes. We analyzed the folding of genomic HDV ribozymes by free energy minimization and found that variants with purine-pyrimidine combinations at the cleavage site are predicted to form native structures while pyrimidine-purine combinations misfold, consistent with earlier kinetic data and sequence comparisons. To test whether the cleavage site base pair contributes to catalysis, we characterized the pH and Mg(2+)-dependence of reaction kinetics of fast-folding genomic HDV ribozymes with cleavage site base pair purine-pyrimidine combinations: G*U, A-U, G-C, and A(+)*C. Rates for these native-folding ribozymes displayed highly similar pH and Mg(2+) concentration dependencies, with the exception of the A(+)*C ribozyme, which deviated at high pH. None of the four ribozymes underwent miscleavage. These observations support the A(+)*C ribozyme as being more active with a wobble pair at the cleavage site than with no base pair at all. Overall, the data support a model in which the cleavage site base pair provides a structural role in catalysis and does not need to be a wobble pair.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
27
|
Abstract
[Structure: see text]. Five naturally occurring nucleolytic ribozymes have been identified: the hammerhead, hairpin, glmS, hepatitis delta virus (HDV), and Varkud satellite (VS) ribozymes. All of these RNA enzymes catalyze self-scission of the RNA backbone using a chemical mechanism equivalent to that of RNase A. RNase A uses four basic strategies to promote this reaction: geometric constraints, activation of the nucleophile, transition-state stabilization, and leaving group protonation. In this Account, we discuss the current thinking on how nucleolytic ribozymes harness RNase A's four sources of catalytic power. The geometry of the phosphodiester cleavage reaction constrains the nucleotides flanking the scissile phosphate so that they are unstacked from a canonical A-form helix and thus require alternative stabilization. Crystal structures and mutational analysis reveal that cross-strand base pairing, along with unconventional stacking and tertiary hydrogen-bonding interactions, work to stabilize the splayed conformation in nucleolytic ribozymes. Deprotonation of the 2'-OH nucleophile greatly increases its nucleophilicity in the strand scission reaction. Crystal structures of the hammerhead, hairpin, and glmS ribozymes reveal the N1 of a G residue within hydrogen-bonding distance of the 2'-OH. In each case, this residue has also been shown to be important for catalysis. In the HDV ribozyme, a hydrated magnesium has been implicated as the general base. Catalysis by the VS ribozyme requires both an A and a G, but the precise role of either has not been elucidated. Enzymes can lower the energy of a chemical reaction by binding more tightly to the transition state than to the ground states. Comparison of the hairpin ground- and transition-state mimic structures reveal greater hydrogen bonding to the transition-state mimic structure, suggesting transition-state stabilization as a possible catalytic strategy. However, the hydrogen-bonding pattern in the glmS ribozyme transition-state mimic structure and the ground-state structures are equivalent. Protonation of the 5'-O leaving group by a variety of functional groups can promote the cleavage reaction. In the HDV ribozyme, the general acid is a conserved C residue. In the hairpin ribozyme, a G residue has been implicated in protonation of the leaving group. An A in the hammerhead ribozyme probably plays a similar role. In the glmS ribozyme, an exogenous cofactor may provide the general acid. This diversity is in contrast to the relatively small number of functional groups that serve as a general base, where at least three of the nucleolytic ribozymes may use the N1 of a G.
Collapse
Affiliation(s)
- Jesse C. Cochrane
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
- Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
28
|
Jaikaran D, Smith MD, Mehdizadeh R, Olive J, Collins RA. An important role of G638 in the cis-cleavage reaction of the Neurospora VS ribozyme revealed by a novel nucleotide analog incorporation method. RNA (NEW YORK, N.Y.) 2008; 14:938-49. [PMID: 18356538 PMCID: PMC2327350 DOI: 10.1261/rna.936508] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We describe a chemical coupling procedure that allows joining of two RNAs, one of which contains a site-specific base analog substitution, in the absence of divalent ions. This method allows incorporation of nucleotide analogs at specific positions even into large, cis-cleaving ribozymes. Using this method we have studied the effects of substitution of G638 in the cleavage site loop of the VS ribozyme with a variety of purine analogs having different functional groups and pK(a) values. Cleavage rate versus pH profiles combined with kinetic solvent isotope experiments indicate an important role for G638 in proton transfer during the rate-limiting step of the cis-cleavage reaction.
Collapse
Affiliation(s)
- Dominic Jaikaran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
29
|
Nelson JA, Uhlenbeck OC. Hammerhead redux: does the new structure fit the old biochemical data? RNA (NEW YORK, N.Y.) 2008; 14:605-615. [PMID: 18287565 PMCID: PMC2271363 DOI: 10.1261/rna.912608] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The cleavage rates of 78 hammerhead ribozymes containing structurally conservative chemical modifications were collected from the literature and compared to the recently determined crystal structure of the Schistosoma mansoni hammerhead. With only a few exceptions, the biochemical data were consistent with the structure, indicating that the new structure closely resembles the transition state of the reaction. Since all the biochemical data were collected on minimal hammerheads that have a very different structure, the minimal hammerhead must be dynamic and occasionally adopt the quite different extended structure in order to cleave.
Collapse
Affiliation(s)
- Jennifer A Nelson
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
30
|
Gong B, Chen JH, Chase E, Chadalavada DM, Yajima R, Golden BL, Bevilacqua PC, Carey PR. Direct measurement of a pK(a) near neutrality for the catalytic cytosine in the genomic HDV ribozyme using Raman crystallography. J Am Chem Soc 2007; 129:13335-42. [PMID: 17924627 DOI: 10.1021/ja0743893] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme uses a cytosine to facilitate general acid-base catalysis. Biochemical studies suggest that C75 has a pKa perturbed to near neutrality. To measure this pKa directly, Raman spectra were recorded on single ribozyme crystals using a Raman microscope. A spectral feature arising from a single neutral cytosine was identified at 1528 cm(-1). At low pH, this mode was replaced with a new spectral feature. Monitoring these features as a function of pH revealed pKa values for the cytosine that couple anticooperatively with Mg2+ binding, with values of 6.15 and 6.40 in the presence of 20 and 2 mM Mg2+, respectively. These pKa values agree well with those obtained from ribozyme activity experiments in solution. To correlate the observed pKa with a specific nucleotide, crystals of C75U, which is catalytically inactive, were examined. The Raman difference spectra show that this mutation does not affect the conformation of the ribozyme. However, crystals of C75U did not produce a signal from a protonatable cytosine, providing strong evidence that protonation of C75 is being monitored in the wild-type ribozyme. These studies provide the first direct physical measurement of a pKa near neutrality for a catalytic residue in a ribozyme and show that ribozymes, like their protein enzyme counterparts, can optimize the pKa of their side chains for proton transfer.
Collapse
Affiliation(s)
- Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Torelli AT, Krucinska J, Wedekind JE. A comparison of vanadate to a 2'-5' linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA (NEW YORK, N.Y.) 2007; 13:1052-70. [PMID: 17488874 PMCID: PMC1894929 DOI: 10.1261/rna.510807] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/05/2007] [Indexed: 05/15/2023]
Abstract
The potential for water to participate in RNA catalyzed reactions has been the topic of several recent studies. Here, we report crystals of a minimal, hinged hairpin ribozyme in complex with the transition-state analog vanadate at 2.05 A resolution. Waters are present in the active site and are discussed in light of existing views of catalytic strategies employed by the hairpin ribozyme. A second structure harboring a 2',5'-phosphodiester linkage at the site of cleavage was also solved at 2.35 A resolution and corroborates the assignment of active site waters in the structure containing vanadate. A comparison of the two structures reveals that the 2',5' structure adopts a conformation that resembles the reaction intermediate in terms of (1) the positioning of its nonbridging oxygens and (2) the covalent attachment of the 2'-O nucleophile with the scissile G+1 phosphorus. The 2',5'-linked structure was then overlaid with scissile bonds of other small ribozymes including the glmS metabolite-sensing riboswitch and the hammerhead ribozyme, and suggests the potential of the 2',5' linkage to elicit a reaction-intermediate conformation without the need to form metalloenzyme complexes. The hairpin ribozyme structures presented here also suggest how water molecules bound at each of the nonbridging oxygens of G+1 may electrostatically stabilize the transition state in a manner that supplements nucleobase functional groups. Such coordination has not been reported for small ribozymes, but is consistent with the structures of protein enzymes. Overall, this work establishes significant parallels between the RNA and protein enzyme worlds.
Collapse
Affiliation(s)
- Andrew T Torelli
- Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | |
Collapse
|
32
|
Smith MD, Collins RA. Evidence for proton transfer in the rate-limiting step of a fast-cleaving Varkud satellite ribozyme. Proc Natl Acad Sci U S A 2007; 104:5818-23. [PMID: 17389378 PMCID: PMC1851575 DOI: 10.1073/pnas.0608864104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Indexed: 11/18/2022] Open
Abstract
A fast-cleaving version of the Varkud satellite ribozyme, called RG, shows an apparent cis-cleavage rate constant of 5 sec(-1), similar to the rates of protein enzymes that catalyze similar reactions. Here, we describe mutational, pH-rate, and kinetic solvent isotope experiments that investigate the identity and rate constant of the rate-limiting step in this reaction. Self-cleavage of RG exhibits a bell-shaped rate vs. pH profile with apparent pK(a)s of 5.8 and 8.3, consistent with the protonation state of two nucleotides being important for the rate of cleavage. Cleavage experiments in heavy water (D(2)O) revealed a kinetic solvent isotope effect consistent with proton transfer in the rate-limiting step. A mutant RNA that disrupts a peripheral loop-loop interaction involved in RNA folding exhibits pH- and D(2)O-independent cleavage approximately 10(3)-fold slower than wild type, suggesting that this mutant is limited by a different step than wild type. Substitution of adenosine 756 in the putative active-site loop with cytosine also decreases the cleavage rate approximately 10(3)-fold, but the A756C mutant retains pH- and D(2)O-sensitivity similar to wild type, consistent with this mutant and wild type being limited by the chemical step of the reaction. These results suggest that the RG ribozyme provides a good experimental system to investigate the nature of fast, rate-limiting steps in a ribozyme cleavage reaction.
Collapse
Affiliation(s)
- M. Duane Smith
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Richard A. Collins
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
33
|
Sefcikova J, Krasovska MV, Šponer J, Walter NG. The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis. Nucleic Acids Res 2007; 35:1933-46. [PMID: 17337436 PMCID: PMC1874588 DOI: 10.1093/nar/gkl1104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The genome of the human hepatitis delta virus (HDV) harbors a self-cleaving catalytic RNA motif, the genomic HDV ribozyme, whose crystal structure shows the dangling nucleotides 5′ of the cleavage site projecting away from the catalytic core. This 5′-sequence contains a clinically conserved U − 1 that we find to be essential for fast cleavage, as the order of activity follows U − 1 > C − 1 > A − 1 > G − 1, with a >25-fold activity loss from U − 1 to G − 1. Terbium(III) footprinting detects conformations for the P1.1 stem, the cleavage site wobble pair and the A-minor motif of the catalytic trefoil turn that depend on the identity of the N − 1 base. The most tightly folded catalytic core, resembling that of the reaction product, is found in the U − 1 wild-type precursor. Molecular dynamics simulations demonstrate that a U − 1 forms the most robust kink around the scissile phosphate, exposing it to the catalytic C75 in a previously unnoticed U-turn motif found also, for example, in the hammerhead ribozyme and tRNAs. Strikingly, we find that the common structural U-turn motif serves distinct functions in the HDV and hammerhead ribozymes.
Collapse
Affiliation(s)
- Jana Sefcikova
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Maryna V. Krasovska
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- *To whom correspondence should be addressed. +1-(734) 615-2060+1-(734) 647-4865
| |
Collapse
|
34
|
Ke A, Ding F, Batchelor JD, Doudna JA. Structural Roles of Monovalent Cations in the HDV Ribozyme. Structure 2007; 15:281-7. [PMID: 17355864 DOI: 10.1016/j.str.2007.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/22/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.
Collapse
Affiliation(s)
- Ailong Ke
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
35
|
Tinsley RA, Walter NG. Long-range impact of peripheral joining elements on structure and function of the hepatitis delta virus ribozyme. Biol Chem 2007; 388:705-15. [PMID: 17570823 DOI: 10.1515/bc.2007.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The HDV ribozyme is an RNA enzyme from the human pathogenic hepatitis delta virus (HDV) that has recently also been identified in the human genome. It folds into a compact, nested double-pseudoknot. We examined here the functional relevance of the capping loop L4 and the helical crossover J1/2, which tightly interlace the two helical stacks of the ribozyme. Peripheral structural elements such as these are present in cis-acting, but not trans-acting ribozymes, which may explain the order-of-magnitude decrease in cleavage activity observed in trans-acting ribozymes with promise in gene therapy applications. Comparison of a systematic set of cis- and trans-acting HDV ribozymes shows that the absence of either L4 or J1/2 significantly and independently impacts catalytic activity. Using terbium(III) footprinting and affinity studies, as well as distance measurements based on time-resolved fluorescence resonance energy transfer, we find that J1/2 is most important for conferring structural properties similar to those of the cis-acting ribozyme. Our results are consistent with a model in which removal of either a helical crossover or surprisingly a capping loop induces greater dynamics and expansion of the catalytic core at long range, impacting local and global folding, as well as catalytic function.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
36
|
Tang CL, Alexov E, Pyle AM, Honig B. Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. J Mol Biol 2006; 366:1475-96. [PMID: 17223134 DOI: 10.1016/j.jmb.2006.12.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 12/01/2022]
Abstract
pK(a) calculations based on the Poisson-Boltzmann equation have been widely used to study proteins and, more recently, DNA. However, much less attention has been paid to the calculation of pK(a) shifts in RNA. There is accumulating evidence that protonated nucleotides can stabilize RNA structure and participate in enzyme catalysis within ribozymes. Here, we calculate the pK(a) shifts of nucleotides in RNA structures using numerical solutions to the Poisson-Boltzmann equation. We find that significant shifts are predicted for several nucleotides in two catalytic RNAs, the hairpin ribozyme and the hepatitis delta virus ribozyme, and that the shifts are likely to be related to their functions. We explore how different structural environments shift the pK(a)s of nucleotides from their solution values. RNA structures appear to use two basic strategies to shift pK(a)s: (a) the formation of compact structural motifs with structurally-conserved, electrostatic interactions; and (b) the arrangement of the phosphodiester backbone to focus negative electrostatic potential in specific regions.
Collapse
Affiliation(s)
- Christopher L Tang
- Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|