1
|
Palasser M, Breuker K. RNA Chemical Labeling with Site-Specific, Relative Quantification by Mass Spectrometry for the Structural Study of a Neomycin-Sensing Riboswitch Aptamer Domain. Chempluschem 2022; 87:e202200256. [PMID: 36220343 PMCID: PMC9828840 DOI: 10.1002/cplu.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Indexed: 01/12/2023]
Abstract
High-resolution mass spectrometry was used for the label-free, direct localization and relative quantification of CMC+ -modifications of a neomycin-sensing riboswitch aptamer domain in the absence and presence of the aminoglycoside ligands neomycin B, ribostamycin, and paromomycin. The chemical probing and MS data for the free riboswitch show high exposure to solvent of the uridine nucleobases U7, U8, U13, U14, U18 as part of the proposed internal and apical loops, but those of U10 and U21 as part of the proposed internal loop were found to be far less exposed than expected. Thus, our data are in better agreement with the proposed secondary structure of the riboswitch in complexes with aminoglycosides than with that of free RNA. For the riboswitch in complexes with neomycin B, ribostamycin, and paromomycin, we found highly similar CMC+ -modification patterns and excellent agreement with previous NMR studies. Differences between the chemical probing and MS data in the absence and presence of the aminoglycoside ligands were quantitative rather than qualitative (i. e., the same nucleobases were labeled, but to different extents) and can be rationalized by stabilization of both the proposed bulge and the apical loop by aminoglycoside binding. Our study shows that chemical probing and mass spectrometry can provide important structural information and complement other techniques such as NMR spectroscopy.
Collapse
Affiliation(s)
- Michael Palasser
- Institut of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Kathrin Breuker
- Institut of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
2
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
3
|
Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Computational modeling of RNA 3D structure based on experimental data. Biosci Rep 2019; 39:BSR20180430. [PMID: 30670629 PMCID: PMC6367127 DOI: 10.1042/bsr20180430] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Astha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan PL-61-614, Poland
| |
Collapse
|
4
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
5
|
Scalabrin M, Siu Y, Asare-Okai PN, Fabris D. Structure-specific ribonucleases for MS-based elucidation of higher-order RNA structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1136-1145. [PMID: 24845355 PMCID: PMC6911265 DOI: 10.1007/s13361-014-0911-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Supported by high-throughput sequencing technologies, structure-specific nucleases are experiencing a renaissance as biochemical probes for genome-wide mapping of nucleic acid structure. This report explores the benefits and pitfalls of the application of Mung bean (Mb) and V1 nuclease, which attack specifically single- and double-stranded regions of nucleic acids, as possible structural probes to be employed in combination with MS detection. Both enzymes were found capable of operating in ammonium-based solutions that are preferred for high-resolution analysis by direct infusion electrospray ionization (ESI). Sequence analysis by tandem mass spectrometry (MS/MS) was performed to confirm mapping assignments and to resolve possible ambiguities arising from the concomitant formation of isobaric products with identical base composition and different sequences. The observed products grouped together into ladder-type series that facilitated their assignment to unique regions of the substrate, but revealed also a certain level of uncertainty in identifying the boundaries between paired and unpaired regions. Various experimental factors that are known to stabilize nucleic acid structure, such as higher ionic strength, presence of Mg(II), etc., increased the accuracy of cleavage information, but did not completely eliminate deviations from expected results. These observations suggest extreme caution in interpreting the results afforded by these types of reagents. Regardless of the analytical platform of choice, the results highlighted the need to repeat probing experiments under the most diverse possible conditions to recognize potential artifacts and to increase the level of confidence in the observed structural information.
Collapse
Affiliation(s)
- Matteo Scalabrin
- The RNA Institute, University at Albany-SUNY, Albany, NY, 12222, USA
| | | | | | | |
Collapse
|
6
|
Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional asymmetry. Nat Struct Mol Biol 2014; 21:389-96. [PMID: 24608367 PMCID: PMC6321743 DOI: 10.1038/nsmb.2785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
Abstract
Retrotransposons are a class of mobile genetic elements that replicate by converting their single-stranded RNA intermediate to double-stranded DNA through the combined DNA polymerase and ribonuclease H (RNase H) activities of the element-encoded reverse transcriptase (RT). Although a wealth of structural information is available for lentiviral and gammaretroviral RTs, equivalent studies on counterpart enzymes of long terminal repeat (LTR)-containing retrotransposons, from which they are evolutionarily derived, is lacking. In this study, we report the first crystal structure of a complex of RT from the Saccharomyces cerevisiae LTR retrotransposon Ty3 in the presence of its polypurine tract-containing RNA-DNA hybrid. In contrast to its retroviral counterparts, Ty3 RT adopts an asymmetric homodimeric architecture whose assembly is substrate dependent. Moreover, our structure and biochemical data suggest that the RNase H and DNA polymerase activities are contributed by individual subunits of the homodimer.
Collapse
|
7
|
Wright DW, Deuzing IP, Flandre P, van den Eede P, Govaert M, Setiawan L, Coveney PV, Marcelin AG, Calvez V, Boucher CAB, Beerens N. A polymorphism at position 400 in the connection subdomain of HIV-1 reverse transcriptase affects sensitivity to NNRTIs and RNaseH activity. PLoS One 2013; 8:e74078. [PMID: 24098331 PMCID: PMC3788777 DOI: 10.1371/journal.pone.0074078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Reverse transcriptase (RT) plays an essential role in HIV-1 replication, and inhibition of this enzyme is a key component of HIV-treatment. However, the use of RT inhibitors can lead to the emergence of drug-resistant variants. Until recently, most clinically relevant resistance mutations were found in the polymerase domain of RT. Lately, an increasing number of resistance mutations has been identified in the connection and RNaseH domain. To further explore the role of these domains we analyzed the complete RT sequence of HIV-1 subtype B patients failing therapy. Position A/T400 in the connection subdomain is polymorphic, but the proportion of T400 increases from 41% in naïve patients to 72% in patients failing therapy. Previous studies suggested a role for threonine in conferring resistance to nucleoside RT inhibitors. Here we report that T400 also mediates resistance to non-nucleoside RT inhibitors. The susceptibility to NVP and EFV was reduced 5-fold and 2-fold, respectively, in the wild-type subtype B NL4.3 background. We show that substitution A400T reduces the RNaseH activity. The changes in enzyme activity are remarkable given the distance to both the polymerase and RNaseH active sites. Molecular dynamics simulations were performed, which provide a novel atomistic mechanism for the reduction in RNaseH activity induced by T400. Substitution A400T was found to change the conformation of the RNaseH primer grip region. Formation of an additional hydrogen bond between residue T400 and E396 may play a role in this structural change. The slower degradation of the viral RNA genome may provide more time for dissociation of the bound NNRTI from the stalled RT-template/primer complex, after which reverse transcription can resume.
Collapse
Affiliation(s)
- David W. Wright
- Centre for Computational Science, Department of Chemistry, University College London, United Kingdom
| | - Ilona P. Deuzing
- Department of Virology, ViroscienceLab, Erasmus MC, Rotterdam, The Netherlands
| | - Philippe Flandre
- Institut National de la Santé et de la Recherche Médicale UMR-S 943 and Université Pierre and Marie Curie, Paris, France
| | | | | | - Laurentia Setiawan
- Department of Virology, ViroscienceLab, Erasmus MC, Rotterdam, The Netherlands
| | - Peter V. Coveney
- Centre for Computational Science, Department of Chemistry, University College London, United Kingdom
| | - Anne-Geneviève Marcelin
- Institut National de la Santé et de la Recherche Médicale UMR-S 943 and Université Pierre and Marie Curie, Paris, France
| | - Vincent Calvez
- Institut National de la Santé et de la Recherche Médicale UMR-S 943 and Université Pierre and Marie Curie, Paris, France
| | | | - Nancy Beerens
- Department of Virology, ViroscienceLab, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Nair GR, Dash C, Le Grice SFJ, DeStefano JJ. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract. PLoS One 2012; 7:e41712. [PMID: 22848574 PMCID: PMC3407194 DOI: 10.1371/journal.pone.0041712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment)-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT) showed that primers mimicking the 3' end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5'-AAAAGAAAAGGGGGG-3') were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV) and avian myeloblastosis virus (AMV)) and one retrotransposon (Ty3) RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3' end (AMV PPT: 5'-AGGGAGGGGGA-3'; MuLV PPT: 5'-AGAAAAAGGGGGG-3'). In contrast, Ty3, whose PPT lacks a G tract (5'-GAGAGAGAGGAA-3') showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs) mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3' end of the PPT where extension can occur.
Collapse
Affiliation(s)
- Gauri R. Nair
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chandravanu Dash
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Stuart F. J. Le Grice
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Probing Retroviral and Retrotransposon Genome Structures: The "SHAPE" of Things to Come. Mol Biol Int 2012; 2012:530754. [PMID: 22685659 PMCID: PMC3362945 DOI: 10.1155/2012/530754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 11/28/2022] Open
Abstract
Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges.
Collapse
|
10
|
McGinnis JL, Dunkle JA, Cate JHD, Weeks KM. The mechanisms of RNA SHAPE chemistry. J Am Chem Soc 2012; 134:6617-24. [PMID: 22475022 DOI: 10.1021/ja2104075] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biological functions of RNA are ultimately governed by the local environment at each nucleotide. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry is a powerful approach for measuring nucleotide structure and dynamics in diverse biological environments. SHAPE reagents acylate the 2'-hydroxyl group at flexible nucleotides because unconstrained nucleotides preferentially sample rare conformations that enhance the nucleophilicity of the 2'-hydroxyl. The critical corollary is that some constrained nucleotides must be poised for efficient reaction at the 2'-hydroxyl group. To identify such nucleotides, we performed SHAPE on intact crystals of the Escherichia coli ribosome, monitored the reactivity of 1490 nucleotides in 16S rRNA, and examined those nucleotides that were hyper-reactive toward SHAPE and had well-defined crystallographic conformations. Analysis of these conformations revealed that 2'-hydroxyl reactivity is broadly facilitated by general base catalysis involving multiple RNA functional groups and by two specific orientations of the bridging 3'-phosphate group. Nucleotide analog studies confirmed the contributions of these mechanisms to SHAPE reactivity. These results provide a strong mechanistic explanation for the relationship between SHAPE reactivity and local RNA dynamics and will facilitate interpretation of SHAPE information in the many technologies that make use of this chemistry.
Collapse
Affiliation(s)
- Jennifer L McGinnis
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Feng Xian
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
| | - Christopher L. Hendrickson
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Alan G. Marshall
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
12
|
Bindewald E, Wendeler M, Legiewicz M, Bona MK, Wang Y, Pritt MJ, Le Grice SF, Shapiro BA. Correlating SHAPE signatures with three-dimensional RNA structures. RNA (NEW YORK, N.Y.) 2011; 17:1688-96. [PMID: 21752927 PMCID: PMC3162334 DOI: 10.1261/rna.2640111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/27/2011] [Indexed: 05/16/2023]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a facile technique for quantitative analysis of RNA secondary structure. In general, low SHAPE signal values indicate Watson-Crick base-pairing, and high values indicate positions that are single-stranded within the RNA structure. However, the relationship of SHAPE signals to structural properties such as non-Watson-Crick base-pairing or stacking has thus far not been thoroughly investigated. Here, we present results of SHAPE experiments performed on several RNAs with published three-dimensional structures. This strategy allows us to analyze the results in terms of correlations between chemical reactivities and structural properties of the respective nucleotide, such as different types of base-pairing, stacking, and phosphate-backbone interactions. We find that the RNA SHAPE signal is strongly correlated with cis-Watson-Crick/Watson-Crick base-pairing and is to a remarkable degree not dependent on other structural properties with the exception of stacking. We subsequently generated probabilistic models that estimate the likelihood that a residue with a given SHAPE score participates in base-pairing. We show that several models that take SHAPE scores of adjacent residues into account perform better in predicting base-pairing compared with individual SHAPE scores. This underscores the context sensitivity of SHAPE and provides a framework for an improved interpretation of the response of RNA to chemical modification.
Collapse
Affiliation(s)
- Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Michaela Wendeler
- RT Biochemistry Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | - Michal Legiewicz
- RT Biochemistry Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | - Marion K. Bona
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Yi Wang
- RT Biochemistry Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | - Mark J. Pritt
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
13
|
Parr C, Pierce SE, Smith SI, Brodbelt JS. Investigation of the Reactivity of Oligodeoxynucleotides with Glyoxal and KMnO(4) Chemical Probes by Electrospray Ionization Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 304:115-123. [PMID: 21743793 PMCID: PMC3130548 DOI: 10.1016/j.ijms.2010.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The reactions of two well-known chemical probes, glyoxal and potassium permanganate (KMnO(4)), with oligodeoxynucleotides were monitored by electrospray ionization (ESI) mass spectrometry to evaluate the influence of the sequence of DNA, its secondary structure, and interactions with associated ligands on the reactivity of the two probes. Glyoxal, a guanine-reactive probe, incorporated a mass shift of 58 Da, and potassium permanganate (KMnO(4)) is a thymine-reactive probe that resulted in a mass shift of 34 Da. The reactions depended on the accessibility of the nucleobases, and the peak abundances of the adducts in the ESI-mass spectra were used to quantify the extent of the chemical probe reactions. In this study, both mixed-base sequences were studied as well as control sequences in which one reactive site was located at the terminus or center of the oligodeoxynucleotide while the surrounding bases were a second, different nucleobase. In addition, the reactions of the chemical probes with non-covalent complexes formed between DNA and either actinomycin D or ethidium bromide, both known to interact with single strand DNA, were evaluated.
Collapse
Affiliation(s)
- Carol Parr
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| | | | | | | |
Collapse
|
14
|
Abstract
Alternative approaches complementing the existing technologies for analysis of nucleic acids and their assemblies are necessary to take on the new challenges posed by the postgenomic era. The versatility of MS in biopolymer analysis and its ability to reach beyond sequence information are the basis of ever expanding applications aimed at the elucidation of nucleic acid structure-function relationships. This Feature summarizes the current state of MS-based approaches devised to overcome the limitations of traditional techniques and to advance different facets of nucleic acids research.
Collapse
Affiliation(s)
- D Fabris
- The RNA Institute, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
15
|
Noble E, Mathews DH, Chen JL, Turner DH, Takimoto T, Kim B. Biophysical analysis of influenza A virus RNA promoter at physiological temperatures. J Biol Chem 2011; 286:22965-70. [PMID: 21555520 PMCID: PMC3123064 DOI: 10.1074/jbc.m111.239509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Each segment of the influenza A virus (IAV) genome contains conserved sequences at the 5′- and 3′-terminal ends, which form the promoter region necessary for polymerase binding and initiation of RNA synthesis. Although several models of interaction have been proposed it remains unclear if these two short, partially complementary, and highly conserved sequences can form a stable RNA duplex at physiological temperatures. First, our time-resolved FRET analysis revealed that a 14-mer 3′-RNA and a 15-mer 5′-RNA associate in solution, even at 42 °C. We also found that a nonfunctional RNA promoter containing the 3′-G3U mutation, as well as a promoter containing the compensatory 3′-G3U/C8A mutations, was able to form a duplex as efficiently as wild type. Second, UV melting analysis demonstrated that the wild-type and mutant RNA duplexes have similar stabilities in solution. We also observed an increase in thermostability for a looped promoter structure. The absence of differences in the stability and binding kinetics between wild type and a nonfunctional sequence suggests that the IAV promoter can be functionally inactivated without losing the capability to form a stable RNA duplex. Finally, using uridine specific chemical probing combined with mass spectrometry, we confirmed that the 5′ and 3′ sequences form a duplex which protects both RNAs from chemical modification, consistent with the previously published panhandle structure. These data support that these short, conserved promoter sequences form a stable complex at physiological temperatures, and this complex likely is important for polymerase recognition and viral replication.
Collapse
Affiliation(s)
- Erin Noble
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
16
|
Smith SI, Brodbelt JS. Characterization of oligodeoxynucleotides and modifications by 193 nm photodissociation and electron photodetachment dissociation. Anal Chem 2011; 82:7218-26. [PMID: 20681614 DOI: 10.1021/ac100989q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet photodissociation (UVPD) at 193 nm is compared to collision induced dissociation (CID) for sequencing and determination of modifications of multideprotonated 6-20-mer oligodeoxynucleotides. UVPD at 193 nm causes efficient charge reduction of the deprotonated oligodeoxynucleotides via electron detachment, in addition to extensive backbone cleavages to yield sequence ions of relatively low abundance, including w, x, y, z, a, a-B, b, c, and d ions. Although internal ions populate UVPD spectra, base loss ions from the precursor are absent. Subsequent CID of the charge-reduced oligodeoxynucleotides formed upon electron detachment, in a net process called electron photodetachment dissociation (EPD), results in abundant sequence ions in terms of w, z, a, a-B, and d products, with a marked decrease in the abundance of precursor base loss ions and internal fragments. Complete sequencing was possible for virtually all oligodeoxynucleotides studied. EPD of three modified oligodeoxynucleotides, a methylated oligodeoxynucleotide, a phosphorothioate-modified oligodeoxynucleotide, and an ethylated-oligodeoxynucleotide, resulted in specific and extensive backbone cleavages, specifically, w, z, a, a-B, and d products, which allowed the modification site(s) to be pinpointed to a more specific location than by conventional CID.
Collapse
Affiliation(s)
- Suncerae I Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
17
|
Gardner MW, Li N, Ellington AD, Brodbelt JS. Infrared multiphoton dissociation of small-interfering RNA anions and cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:580-91. [PMID: 20129797 PMCID: PMC2847665 DOI: 10.1016/j.jasms.2009.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 05/13/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5' P-O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for approximately 25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5' P-O bonds began to populate the product ion mass spectra as well as higher abundances of [a - Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a - Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H](+), [A + H](+), and [C + H](+), which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | |
Collapse
|
18
|
Revisiting plus-strand DNA synthesis in retroviruses and long terminal repeat retrotransposons: dynamics of enzyme: substrate interactions. Viruses 2009; 1:657-77. [PMID: 21994564 PMCID: PMC3185511 DOI: 10.3390/v1030657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 11/16/2022] Open
Abstract
Although polypurine tract (PPT)-primed initiation of plus-strand DNA synthesis in retroviruses and LTR-containing retrotransposons can be accurately duplicated, the molecular details underlying this concerted series of events remain largely unknown. Importantly, the PPT 3' terminus must be accommodated by ribonuclease H (RNase H) and DNA polymerase catalytic centers situated at either terminus of the cognate reverse transcriptase (RT), and in the case of the HIV-1 enzyme, ∼70Å apart. Communication between RT and the RNA/DNA hybrid therefore appears necessary to promote these events. The crystal structure of the HIV-1 RT/PPT complex, while informative, positions the RNase H active site several bases pairs from the PPT/U3 junction, and thus provides limited information on cleavage specificity. To fill the gap between biochemical and crystallographic approaches, we review a multidisciplinary approach combining chemical probing, mass spectrometry, NMR spectroscopy and single molecule spectroscopy. Our studies also indicate that nonnucleoside RT inhibitors affect enzyme orientation, suggesting initiation of plus-strand DNA synthesis as a potential therapeutic target.
Collapse
|