1
|
Niedner-Boblenz A, Monecke T, Hennig J, Klostermann M, Hofweber M, Davydova E, Gerber AP, Anosova I, Mayer W, Müller M, Heym RG, Janowski R, Paillart JC, Dormann D, Zarnack K, Sattler M, Niessing D. Intrinsically disordered RNA-binding motifs cooperate to catalyze RNA folding and drive phase separation. Nucleic Acids Res 2024; 52:14205-14228. [PMID: 39558160 DOI: 10.1093/nar/gkae1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
RNA-binding proteins are essential for gene regulation and the spatial organization of cells. Here, we report that the yeast ribosome biogenesis factor Loc1p is an intrinsically disordered RNA-binding protein with eight repeating positively charged, unstructured nucleic acid binding (PUN) motifs. While a single of these previously undefined motifs stabilizes folded RNAs, multiple copies strongly cooperate to catalyze RNA folding. In the presence of RNA, these multivalent PUN motifs drive phase separation. Proteome-wide searches in pro- and eukaryotes for proteins with similar arrays of PUN motifs reveal a strong enrichment in RNA-mediated processes and DNA remodeling. Thus, PUN motifs are potentially involved in a large variety of RNA- and DNA-related processes by concentrating them in membraneless organelles. The general function and wide distribution of PUN motifs across species suggest that in an ancient 'RNA world' PUN-like motifs may have supported the correct folding of early ribozymes.
Collapse
Affiliation(s)
- Annika Niedner-Boblenz
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Janosch Hennig
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Bioscience and Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
- Department of Biochemistry IV-Biophysical Chemistry, University of Bayreuth, Universitätsstraße 30 / BGI, 95447 Bayreuth, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Bioinformatik, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mario Hofweber
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Elena Davydova
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill Campus, 10AX01, Guildford GU2 7XH, UK
| | - Irina Anosova
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Bioscience and Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Wieland Mayer
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Marisa Müller
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Molecular Biology, Biomedical Center of the Ludwig-Maximilians University München,Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Roland Gerhard Heym
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jean-Christophe Paillart
- IBMC, Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, 2 allée Konrad Roentgen, 67000 Strasbourg, France
| | - Dorothee Dormann
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Hanns-Hüsch-Weg 17, 55128Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Bioinformatik, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Bioscience and Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| |
Collapse
|
2
|
Farajzadeh N, Shahbabian K, Bouaziz Y, Querido E, Chartrand P. Phosphorylation controls the oligomeric state of She2 and mRNA localization in yeast. RNA (NEW YORK, N.Y.) 2023; 29:745-755. [PMID: 36921931 PMCID: PMC10187671 DOI: 10.1261/rna.079555.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 05/18/2023]
Abstract
Messenger RNA (mRNA) localization is an important mechanism controlling local protein synthesis. In budding yeast, asymmetric localization of transcripts such as ASH1 mRNA to the bud tip depends on the She2 RNA-binding protein. She2 assembles as a tetramer to bind RNA, but the regulation of this process as part of the mRNA locasome is still unclear. Here, we performed a phosphoproteomic analysis of She2 in vivo and identified new phosphosites, several of which are located at the dimerization or tetramerization interfaces of She2. Remarkably, phosphomimetic mutations at these residues disrupt the capacity of She2 to promote Ash1 asymmetric accumulation. A detailed analysis of one of these residues, T109, shows that a T109D mutation inhibits She2 oligomerization and its interaction with She3 and the importin-α Srp1. She2 proteins harboring the T109D mutation also display reduced expression. More importantly, this phosphomimetic mutation strongly impairs the capacity of She2 to bind RNA and disrupts ASH1 mRNA localization. These results demonstrate that the control of She2 oligomerization by phosphorylation constitutes an important regulatory step in the mRNA localization pathway.
Collapse
Affiliation(s)
- Nastaran Farajzadeh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Karen Shahbabian
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Yani Bouaziz
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
Pankratenko AV, Atabekova AK, Morozov SY, Solovyev AG. Membrane Contacts in Plasmodesmata: Structural Components and Their Functions. BIOCHEMISTRY (MOSCOW) 2020; 85:531-544. [DOI: 10.1134/s0006297920050028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
5
|
Niessing D, Jansen RP, Pohlmann T, Feldbrügge M. mRNA transport in fungal top models. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28994236 DOI: 10.1002/wrna.1453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023]
Abstract
Eukaryotic cells rely on the precise determination of when and where proteins are synthesized. Spatiotemporal expression is supported by localization of mRNAs to specific subcellular sites and their subsequent local translation. This holds true for somatic cells as well as for oocytes and embryos. Most commonly, mRNA localization is achieved by active transport of the molecules along the actin or microtubule cytoskeleton. Key factors are molecular motors, adaptors, and RNA-binding proteins that recognize defined sequences or structures in cargo mRNAs. A deep understanding of this process has been gained from research on fungal model systems such as Saccharomyces cerevisiae and Ustilago maydis. Recent highlights of these studies are the following: (1) synergistic binding of two RNA-binding proteins is needed for high affinity recognition; (2) RNA sequences undergo profound structural rearrangements upon recognition; (3) mRNA transport is tightly linked to membrane trafficking; (4) mRNAs and ribosomes are transported on the cytoplasmic surface of endosomes; and (5) heteromeric protein complexes are, most likely, assembled co-translationally during endosomal transport. Thus, the study of simple fungal model organisms provides valuable insights into fundamental mechanisms of mRNA transport boosting the understanding of similar events in higher eukaryotes. WIREs RNA 2018, 9:e1453. doi: 10.1002/wrna.1453 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Dierk Niessing
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Thomas Pohlmann
- Centre of Excellence on Plant Sciences, Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Centre of Excellence on Plant Sciences, Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Edelmann FT, Schlundt A, Heym RG, Jenner A, Niedner-Boblenz A, Syed MI, Paillart JC, Stehle R, Janowski R, Sattler M, Jansen RP, Niessing D. Molecular architecture and dynamics of ASH1 mRNA recognition by its mRNA-transport complex. Nat Struct Mol Biol 2017; 24:152-161. [PMID: 28092367 DOI: 10.1038/nsmb.3351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
Abstract
mRNA localization is an essential mechanism of gene regulation and is required for processes such as stem-cell division, embryogenesis and neuronal plasticity. It is not known which features in the cis-acting mRNA localization elements (LEs) are specifically recognized by motor-containing transport complexes. To the best of our knowledge, no high-resolution structure is available for any LE in complex with its cognate protein complex. Using X-ray crystallography and complementary techniques, we carried out a detailed assessment of an LE of the ASH1 mRNA from yeast, its complex with its shuttling RNA-binding protein She2p, and its highly specific, cytoplasmic complex with She3p. Although the RNA alone formed a flexible stem loop, She2p binding induced marked conformational changes. However, only joining by the unstructured She3p resulted in specific RNA recognition. The notable RNA rearrangements and joint action of a globular and an unfolded RNA-binding protein offer unprecedented insights into the step-wise maturation of an mRNA-transport complex.
Collapse
Affiliation(s)
- Franziska Theresia Edelmann
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Schlundt
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Jenner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Annika Niedner-Boblenz
- Biomedical Center of the Ludwig-Maximilians-Universität München, Department of Cell Biology, Planegg-Martinsried, Germany
| | | | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Ralf Stehle
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Biomedical Center of the Ludwig-Maximilians-Universität München, Department of Cell Biology, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Edelmann FT, Niedner A, Niessing D. ASH1 mRNP-core factors form stable complexes in absence of cargo RNA at physiological conditions. RNA Biol 2015; 12:233-7. [PMID: 25826656 PMCID: PMC4615642 DOI: 10.1080/15476286.2015.1017217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Asymmetric ASH1 mRNA transport during mitosis of budding yeast constitutes one of the best-studied examples of mRNA localization. Recently, 2 studies used in vitro motility assays to prove that motile ASH1 mRNA-transport complexes can be reconstituted entirely from recombinant factors. Both studies, however, differed in their conclusions on whether cargo RNA itself is required for particle assembly and thus activation of directional transport. Here we provide direct evidence that stable complexes do assemble in absence of RNA at physiologic conditions and even at ionic strengths above cellular levels. These results directly confirm the previous notion that the ASH1 transport machinery is not activated by the cargo RNA itself, but rather through protein-protein interactions.
Collapse
Affiliation(s)
- Franziska T Edelmann
- a Institute of Structural Biology ; Helmholtz Zentrum München - German Center for Environmental Health ; Neuherberg , Germany
| | | | | |
Collapse
|
8
|
Abstract
The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode.
Collapse
|
9
|
Singer-Krüger B, Jansen RP. Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 2014; 11:1031-9. [PMID: 25482891 DOI: 10.4161/rna.29945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoan, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the mRNA localization process and its molecular machinery are rather complex in higher eukaryotes, the unicellular yeast Saccharomyces cerevisiae has become an attractive model to study mRNA localization. Although the focus has so far been on the mechanism of ASH1 mRNA transport, it has become evident that mRNA localization also assists in protein sorting to organelles, as well as in polarity establishment and maintenance. A diversity of different pathways has been identified that targets mRNA to their destination site, ranging from motor protein-dependent trafficking of translationally silenced mRNAs to co-translational targeting, in which mRNAs hitch-hike to organelles on ribosomes during nascent polypeptide chain elongation. The presence of these diverse pathways in yeast allows a systemic analysis of the contribution of mRNA localization to the physiology of a cell.
Collapse
Affiliation(s)
- Birgit Singer-Krüger
- a Interfaculty Institute of Biochemistry ; University of Tübingen ; Tübingen , Germany
| | | |
Collapse
|
10
|
Sladewski TE, Trybus KM. A single molecule approach to mRNA transport by a class V myosin. RNA Biol 2014; 11:986-91. [PMID: 25482893 DOI: 10.4161/rna.29947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
mRNA localization ensures correct spatial and temporal control of protein synthesis in the cell. We show that an in vitro single molecule approach, using purified recombinant full-length proteins and synthesized mRNA, provides insight into the mechanism by which localizing mRNAs are carried to their destination. A messenger ribonucleoprotein (mRNP) complex was reconstituted from a budding yeast class V myosin motor complex (Myo4p-She3p), an mRNA-binding adaptor protein (She2p), and a localizing mRNA (ASH1). The motion of the mRNP was tracked with high spatial (∼10 nm) and temporal (70 ms) resolution. Using this "bottom-up" methodology, we show that mRNA triggers the assembly of a high affinity double-headed motor-mRNA complex that moves continuously for long distances on actin filaments at physiologic ionic strength. Without mRNA, the myosin is monomeric and unable to move continuously on actin. This finding reveals an elegant strategy to ensure that only cargo-bound motors are activated for transport. Increasing the number of localization elements ("zip codes") in the mRNA enhanced both the frequency of motile events and their run length, features which likely enhance cellular localization. Future in vitro reconstitution of mRNPs with kinesin and dynein motors should similarly yield mechanistic insight into mRNA transport by microtubule-based motors.
Collapse
Affiliation(s)
- Thomas E Sladewski
- a Department of Molecular Physiology & Biophysics ; University of Vermont ; Burlington , VT USA
| | | |
Collapse
|
11
|
Niedner A, Edelmann FT, Niessing D. Of social molecules: The interactive assembly of ASH1 mRNA-transport complexes in yeast. RNA Biol 2014; 11:998-1009. [PMID: 25482892 PMCID: PMC4615550 DOI: 10.4161/rna.29946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Asymmetric, motor-protein dependent transport of mRNAs and subsequent localized translation is an important mechanism of gene regulation. Due to the high complexity of such motile particles, our mechanistic understanding of mRNA localization is limited. Over the last two decades, ASH1 mRNA localization in budding yeast has served as comparably simple and accessible model system. Recent advances have helped to draw an increasingly clear picture on the molecular mechanisms governing ASH1 mRNA localization from its co-transcriptional birth to its delivery at the site of destination. These new insights help to better understand the requirement of initial nuclear mRNPs, the molecular basis of specific mRNA-cargo recognition via cis-acting RNA elements, the different stages of RNP biogenesis and reorganization, as well as activation of the motile activity upon cargo binding. We discuss these aspects in context of published findings from other model organisms.
Collapse
Affiliation(s)
- Annika Niedner
- a Institute of Structural Biology; Helmholtz Zentrum München - German Center for Environmental Health ; Neuherberg , Germany
| | | | | |
Collapse
|
12
|
mRNA transport meets membrane traffic. Trends Genet 2014; 30:408-17. [DOI: 10.1016/j.tig.2014.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
13
|
Makarova SS, Solovyev AG, Morozov SY. RNA-binding properties of the plant protein Nt-4/1. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:717-26. [PMID: 25108334 DOI: 10.1134/s000629791407013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tobacco α-helical protein Nt-4/1 with unknown function forms ribonucleoprotein (RNP) complexes in vitro. Results obtained by retardation of RNP complexes in agarose gel were confirmed by Western-Northern hybridization. Several deletion and point mutants of Nt-4/1 were constructed, and the RNA-binding site was mapped in a positively charged region of the C-terminal domain of the protein. The results of this study and those described earlier support our hypothesis of the participation of Nt-4/1 protein in spreading RNA-containing pathogens in the plant.
Collapse
Affiliation(s)
- S S Makarova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia.
| | | | | |
Collapse
|
14
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
15
|
Heym RG, Zimmermann D, Edelmann FT, Israel L, Ökten Z, Kovar DR, Niessing D. In vitro reconstitution of an mRNA-transport complex reveals mechanisms of assembly and motor activation. ACTA ACUST UNITED AC 2014; 203:971-84. [PMID: 24368805 PMCID: PMC3871432 DOI: 10.1083/jcb.201302095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The budding yeast SHE mRNA-transport complex dimerizes to activate processive RNA transport, irrespective of the presence of RNA cargo, and multimerizes upon binding RNAs with multiple localization elements. The assembly and composition of ribonucleic acid (RNA)–transporting particles for asymmetric messenger RNA (mRNA) localization is not well understood. During mitosis of budding yeast, the Swi5p-dependent HO expression (SHE) complex transports a set of mRNAs into the daughter cell. We recombinantly reconstituted the core SHE complex and assessed its properties. The cytoplasmic precomplex contains only one motor and is unable to support continuous transport. However, a defined interaction with a second, RNA-bound precomplex after its nuclear export dimerizes the motor and activates processive RNA transport. The run length observed in vitro is compatible with long-distance transport in vivo. Surprisingly, SHE complexes that either contain or lack RNA cargo show similar motility properties, demonstrating that the RNA-binding protein and not its cargo activates motility. We further show that SHE complexes have a defined size but multimerize into variable particles upon binding of RNAs with multiple localization elements. Based on these findings, we provide an estimate of number, size, and composition of such multimeric SHE particles in the cell.
Collapse
Affiliation(s)
- Roland G Heym
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Structural insights into the assembly of a monomeric class V myosin. Proc Natl Acad Sci U S A 2014; 111:4351-2. [PMID: 24627360 DOI: 10.1073/pnas.1403205111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Abstract
Myosin 4 protein (Myo4p), one of five distinct myosins of yeast, is dedicated to cytoplasmic transport of two types of cargos, zipcoded messenger ribonucleoprotein particles (mRNPs) and tubular endoplasmic reticulum (tER). Neither cargo binds directly to Myo4p. Instead, swi5p-dependent HO expression 3 protein (She3p) serves as an "adaptor" that contains three binding modules, one for Myo4p and one each for zipcoded mRNP and tER. The assembly of a transport-competent motor complex is poorly understood. Here, we report that Myo4p•She3p forms a stable 1:2 heterotrimer in solution. In the Myo4p•She3p crystal structure, Myo4p's C-terminal domain (CTD) assumes a lobster claw-shaped form, the minor prong of which adheres to a pseudocoiled-coil region of She3p. The extensive Myo4p•She3p interactome buries 3,812 Å(2) surface area and is primarily hydrophobic. Because the Myo4p•She3p heterotrimer contains only one myosin molecule, it is not transport-competent. By stepwise reconstitution, we found a single molecule of synthetic oligonucleotide (representing the mRNA zipcode element) bound to a single tetramer of zipcode binding protein She2p to be sufficient for Myo4p•She3p dimerization. Therefore, cargo initiates cross-linking of two Myo4p•She3p heterotrimers to an ensemble that contains two myosin molecules obligatory for movement. An additional crystal structure comprising an overlapping upstream portion of She3p showed continuation of the pseudocoiled-coil structure and revealed another highly conserved surface region. We suggest this region as a candidate binding site for a yet unidentified tER ligand. We propose a model whereby zipcoded mRNP and/or tER ligands couple two Myo4p•She3p heterotrimers and thereby generate a transport-competent motor complex either for separate transport or cotransport of these two cargos.
Collapse
|
18
|
Hermesh O, Genz C, Yofe I, Sinzel M, Rapaport D, Schuldiner M, Jansen RP. Yeast phospholipid biosynthesis is linked to mRNA localization. J Cell Sci 2014; 127:3373-81. [DOI: 10.1242/jcs.149799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Localization of mRNAs and local translation are universal features in eukaryotes and contribute to cellular asymmetry and differentiation. In Saccharomyces cerevisiae, localization of mRNAs that encode membrane proteins requires the She protein machinery including the RNA-binding protein She2p as well as movement of the cortical endoplasmic reticulum (cER) to the yeast bud. In a screen for ER-specific proteins necessary for directional transport of WSC2 and EAR1 mRNAs, we have identified enzymes of the phospholipid metabolism. Loss of the phospholipid methyltransferase Cho2p, which showed the strongest impact on mRNA localization, disturbs mRNA localization as well as ER morphology and segregation due to an increase in cellular phosphatidylethanolamine (PE). Mislocalized mRNPs containing She2p co-localize with aggregated cER structures suggesting entrapment of mRNA and She2p by the elevated PE level, which is confirmed by elevated binding of She2p to PE-containing liposomes. These findings underscore the importance of ER membrane integrity in mRNA transport.
Collapse
|
19
|
Niedner A, Müller M, Moorthy BT, Jansen RP, Niessing D. Role of Loc1p in assembly and reorganization of nuclear ASH1 messenger ribonucleoprotein particles in yeast. Proc Natl Acad Sci U S A 2013; 110:E5049-58. [PMID: 24324176 PMCID: PMC3876240 DOI: 10.1073/pnas.1315289111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Directional transport of mRNA is a universal feature in eukaryotes, requiring the assembly of motor-dependent RNA-transport particles. The cytoplasmic transport of mRNAs is preceded by the nuclear assembly of pre-messenger ribonucleoprotein particles (mRNPs). In budding yeast, the asymmetric synthesis of HO 1 (ASH1) pre-mRNP originates already cotranscriptionally and passes through the nucleolus before its nuclear export. The nucleolar localization of ASH1 mRNA protein 1 (Loc1p) is required for efficient ASH1 mRNA localization. Immunoprecipitation experiments have revealed that Loc1p forms cocomplexes with other components of the ASH1 transport complex. However, it remains unclear how Loc1p is recruited into this mRNP and why Loc1p is important for ASH1 mRNA localization. Here we demonstrate that Loc1p undergoes a direct and specific interaction with the ASH1 mRNA-binding Swi5p-dependent HO expression protein 2 (She2p). This cocomplex shows higher affinity and specificity for RNA bearing localization elements than the individual proteins. It also stabilizes the otherwise transient binding of She2p to ASH1 mRNA, suggesting that cooperative mRNA binding of Loc1p with She2p is the required nuclear function of Loc1p for ASH1 mRNA localization. After nuclear export, myosin-bound She3p joins the ASH1 mRNP to form a highly specific cocomplex with She2p and ASH1 mRNA. Because Loc1p is found only in the nucleus, it must be removed from the complex directly before or after export. In vitro and in vivo experiments indicate that the synergistic interaction of She2p and She3p displaces Loc1p from the ASH1 complex, allowing free Loc1p to rapidly reenter the nucle(ol)us. Together these findings suggest an ordered process of nuclear assembly and reorganization for the maturation of localizing ASH1 mRNPs.
Collapse
Affiliation(s)
- Annika Niedner
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University, 81377 Munich, Germany; and
| | - Marisa Müller
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University, 81377 Munich, Germany; and
| | - Balaji T. Moorthy
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - Dierk Niessing
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University, 81377 Munich, Germany; and
| |
Collapse
|
20
|
Velvarska H, Niessing D. Structural insights into the globular tails of the human type v myosins Myo5a, Myo5b, And Myo5c. PLoS One 2013; 8:e82065. [PMID: 24339992 PMCID: PMC3858360 DOI: 10.1371/journal.pone.0082065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/21/2013] [Indexed: 01/11/2023] Open
Abstract
Vertebrate type V myosins (MyoV) Myo5a, Myo5b, and Myo5c mediate transport of several different cargoes. All MyoV paralogs bind to cargo complexes mainly by their C-terminal globular domains. In absence of cargo, the globular domain of Myo5a inhibits its motor domain. Here, we report low-resolution SAXS models for the globular domains from human Myo5a, Myo5b, and Myo5c, which suggest very similar overall shapes of all three paralogs. We determined the crystal structures of globular domains from Myo5a and Myo5b, and provide a homology model for human Myo5c. When we docked the Myo5a crystal structure into a previously published electron microscopy density of the autoinhibited full-length Myo5a, only one domain orientation resulted in a good fit. This structural arrangement suggests the participation of additional region of the globular domain in autoinhibition. Quantification of the interaction of the Myo5a globular domain with its motor complex revealed a tight binding with dissociation half-life in the order of minutes, suggesting a rather slow transition between the active and inactive states.
Collapse
Affiliation(s)
- Hana Velvarska
- Institute of Structural Biology; Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Dierk Niessing
- Institute of Structural Biology; Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- * E-mail:
| |
Collapse
|
21
|
Velvarska H, Niessing D. Purification, crystallization and preliminary crystallographic analysis of the globular domain of the human type V myosin Myo5a. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1220-3. [PMID: 24192353 PMCID: PMC3818037 DOI: 10.1107/s1744309113025578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
Type V myosins constitute the main cargo-transporting class of myosin motors in higher eukaryotes. They are mainly defined by their C-terminal globular domain, which is required for cargo binding as well as for motor auto-inhibition in the absence of cargo. To date, high-resolution structures only exist for globular domains from yeast. Since the majority of cellular cargoes in yeast are very different from the cargoes in higher eukaryotes, structural insights into the domain organization of globular domains from human type V myosins are important. The globular domain of human Myo5a was cloned, expressed and crystallized and data sets were collected. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 75.04, b = 86.70, c = 131.41 Å, α = β = γ = 90°, and diffracted with data-collection quality to 2.5 Å resolution.
Collapse
Affiliation(s)
- Hana Velvarska
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
22
|
Genz C, Fundakowski J, Hermesh O, Schmid M, Jansen RP. Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J Biol Chem 2013; 288:32384-32393. [PMID: 24056370 DOI: 10.1074/jbc.m113.486431] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Localization of mRNAs contributes to the generation and maintenance of cellular asymmetry in a wide range of organisms. In Saccharomyces cerevisiae, the so-called locasome complex with its core components Myo4p, She2p, and She3p localizes more than 30 mRNAs to the yeast bud tip. A significant fraction of these mRNAs encodes membrane or secreted proteins. Their localization requires, besides the locasome, a functional segregation apparatus of the cortical endoplasmic reticulum (ER), including the machinery that is involved in the movement of ER tubules into the bud. Colocalization of RNA-containing particles with these tubules suggests a coordinated transport of localized mRNAs and the cortical ER to the bud. Association of localized mRNAs to the ER requires the presence of the locasome component She2p. Here we report that She2p is not only an RNA-binding protein but can specifically bind to ER-derived membranes in a membrane curvature-dependent manner in vitro. Although it does not contain any known curvature recognizing motifs, the protein shows a binding preference for liposomes with a diameter resembling that of yeast ER tubules. In addition, membrane binding depends on tetramerization of She2p. In an in vivo membrane-tethering assay, She2p can target a viral peptide GFP fusion protein to the cortical ER, indicating that a fraction of She2p associates with the ER in vivo. Combining RNA- and membrane-binding features makes She2p an ideal coordinator of ER tubule and mRNA cotransport.
Collapse
Affiliation(s)
- Christian Genz
- From the Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - Julia Fundakowski
- From the Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - Orit Hermesh
- From the Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - Maria Schmid
- the Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ralf-Peter Jansen
- From the Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Production of pure and functional RNA for in vitro reconstitution experiments. Methods 2013; 65:333-41. [PMID: 24021718 DOI: 10.1016/j.ymeth.2013.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022] Open
Abstract
Reconstitution of protein complexes has been a valuable tool to test molecular functions and to interpret in vivo observations. In recent years, a large number of RNA-protein complexes has been identified to regulate gene expression and to be important for a range of cellular functions. In contrast to protein complexes, in vitro analyses of RNA-protein complexes are hampered by the fact that recombinant expression and purification of RNA molecules is more difficult and less well established than for proteins. Here we review the current state of technology available for in vitro experiments with RNAs. We outline the possibilities to produce and purify large amounts of homogenous RNA and to perform the required quality controls. RNA-specific problems such as degradation, 5' and 3' end heterogeneity, co-existence of different folding states, and prerequisites for reconstituting RNAs with recombinantly expressed proteins are discussed. Additionally a number of techniques for the characterization of direct and indirect RNA-protein interactions are explained.
Collapse
|
24
|
Gonsalvez GB, Long RM. Spatial regulation of translation through RNA localization. F1000 BIOLOGY REPORTS 2012; 4:16. [PMID: 22912650 PMCID: PMC3412389 DOI: 10.3410/b4-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA localization is a mechanism to post-transcriptionally regulate gene
expression. Eukaryotic organisms ranging from fungi to mammals localize mRNAs to
spatially restrict synthesis of specific proteins to distinct regions of the
cytoplasm. In this review, we provide a general summary of RNA localization
pathways in Saccharomyces cerevisiae, Xenopus,
Drosophila and mammalian neurons.
Collapse
Affiliation(s)
- Graydon B. Gonsalvez
- Department of Cellular Biology and
Anatomy, Georgia Health Sciences UniversityC2915D,
1459 Laney Walker Blvd., Augusta, GA
30912USA
| | - Roy M. Long
- Department of Microbiology, Immunology
& Molecular Genetics, Medical College of
Wisconsin8701 Watertown Plank Rd., Milwaukee, WI
53226USA
| |
Collapse
|
25
|
Jansen RP, Niessing D. Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes--an overview. Curr Protein Pept Sci 2012; 13:284-93. [PMID: 22708485 PMCID: PMC3474952 DOI: 10.2174/138920312801619493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 12/11/2022]
Abstract
At all steps from transcription to translation, RNA-binding proteins play important roles in determining mRNA function. Initially it was believed that for the vast majority of transcripts the role of RNA-binding proteins is limited to general functions such as splicing and translation. However, work from recent years showed that members of this class of proteins also recognize several mRNAs via cis-acting elements for their incorporation into large motor-containing particles. These particles are transported to distant subcellular sites, where they become subsequently translated. This process, called mRNA localization, occurs along microtubules or actin filaments, and involves kinesins, dyneins, as well as myosins. Although mRNA localization has been detected in a large number of organisms from fungi to humans, the underlying molecular machineries are not well understood. In this review we will outline general principles of mRNA localization and highlight three examples, for which a comparably large body of information is available. The first example is She2p/She3p-dependent localization of ASH1 mRNA in budding yeast. It is particularly well suited to highlight the interdependence between different steps of mRNA localization. The second example is Staufen-dependent localization of oskar mRNA in the Drosophila embryo, for which the importance of nuclear events for cytoplasmic localization and translational control has been clearly demonstrated. The third example summarizes Egalitarian/Bicaudal D-dependent mRNA transport events in the oocyte and embryo of Drosophila. We will highlight general themes and differences, point to similarities in other model systems, and raise open questions that might be answered in the coming years.
Collapse
Affiliation(s)
- Ralf-Peter Jansen
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| |
Collapse
|
26
|
Lin CL, Huang YT, Richter JD. Transient CPEB dimerization and translational control. RNA (NEW YORK, N.Y.) 2012; 18:1050-1061. [PMID: 22456264 PMCID: PMC3334692 DOI: 10.1261/rna.031682.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/16/2012] [Indexed: 05/29/2023]
Abstract
During oocyte development, the cytoplasmic polyadenylation element-binding protein (CPEB) nucleates a set of factors on mRNA that controls cytoplasmic polyadenylation and translation. The regulation of polyadenylation is mediated in part through serial phosphorylations of CPEB, which control both the dynamic integrity of the cytoplasmic polyadenylation apparatus and CPEB stability, events necessary for meiotic progression. Because the precise stoichiometry between CPEB and CPE-containing RNA is responsible for the temporal order of mRNA polyadenylation during meiosis, we hypothesized that, if CPEB production exceeded the amount required to bind mRNA, the excess would be sequestered in an inactive form. One attractive possibility for the sequestration is protein dimerization. We demonstrate that not only does CPEB form a dimer, but dimerization requires its RNA-binding domains. Dimer formation prevents CPEB from being UV cross-linked to RNA, which establishes a second pool of CPEB that is inert for polyadenylation and translational control. During oocyte maturation, the dimers are degraded much more rapidly than the CPEB monomers, due to their greater affinity for polo-like kinase 1 (plx1) and the ubiquitin E3 ligase β-TrCP. Because dimeric CPEB also binds cytoplasmic polyadenylation factors with greater affinity than monomeric CPEB, it may act as a hub or reservoir for the polyadenylation machinery. We propose that the balance between CPEB and its target mRNAs is maintained by CPEB dimerization, which inactivates spare proteins and prevents them from inducing polyadenylation of RNAs with low affinity binding sites. In addition, the dimers might serve as molecular hubs that release polyadenylation factors for translational activation upon CPEB dimer destruction.
Collapse
Affiliation(s)
- Chien-Ling Lin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yen-Tsung Huang
- Department of Epidemiology and
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
27
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
28
|
Krementsova EB, Hodges AR, Bookwalter CS, Sladewski TE, Travaglia M, Sweeney HL, Trybus KM. Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex. ACTA ACUST UNITED AC 2012; 195:631-41. [PMID: 22084309 PMCID: PMC3257522 DOI: 10.1083/jcb.201106146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myo4p, one of two class V myosins in budding yeast, continuously transports messenger RNA (mRNA) cargo in the cell but is nonprocessive when characterized in vitro. The adapter protein She3p tightly binds to the Myo4p rod, forming a single-headed motor complex. In this paper, we show that two Myo4p-She3p motors are recruited by the tetrameric mRNA-binding protein She2p to form a processive double-headed complex. The binding site for She3p was mapped to a single α helix that protrudes at right angles from She2p. Processive runs of several micrometers on yeast actin-tropomyosin filaments were observed only in the presence of She2p, and, thus, motor activity is regulated by cargo binding. While moving processively, each head steps ~72 nm in a hand-over-hand motion. Coupling two high-duty cycle monomeric motors via a common cargo-binding adapter protein creates a complex with transport properties comparable with a single dimeric processive motor such as vertebrate myosin Va.
Collapse
Affiliation(s)
- Elena B Krementsova
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Heym RG, Niessing D. Principles of mRNA transport in yeast. Cell Mol Life Sci 2011; 69:1843-53. [PMID: 22159587 PMCID: PMC3350770 DOI: 10.1007/s00018-011-0902-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/20/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022]
Abstract
mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.
Collapse
Affiliation(s)
- Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 81377 Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 81377 Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
30
|
Messengers, motors and mysteries: sorting of eukaryotic mRNAs by cytoskeletal transport. Biochem Soc Trans 2011; 39:1161-5. [DOI: 10.1042/bst0391161] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has become increasingly apparent in recent years that the subcellular localization of specific mRNAs is a prevalent method for spatially controlling gene expression. In most cases, targeting of mRNAs is mediated by transport along cytoskeletal filaments by molecular motors. However, the means by which specific messages are recognized and linked to the motors are poorly understood. Here, I will provide an overview of recent progress in elucidating the molecular mechanisms and principles of mRNA transport, including several studies highlighting the co-operation of different motors during the localization process. Important outstanding questions will also be highlighted.
Collapse
|
31
|
Müller M, Heym RG, Mayer A, Kramer K, Schmid M, Cramer P, Urlaub H, Jansen RP, Niessing D. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 2011; 9:e1000611. [PMID: 21526221 PMCID: PMC3079584 DOI: 10.1371/journal.pbio.1000611] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 03/10/2011] [Indexed: 11/18/2022] Open
Abstract
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes. In eukaryotes, hundreds of mRNAs are localized by specialized transport complexes. For localization, transcripts are recognized by RNA-binding proteins and incorporated into motor-containing messenger ribonucleoprotein particles (mRNPs). To date, the molecular assembly of such mRNPs is not well understood and most details on cargo specificity remain unresolved. We used ASH1-mRNA transport in yeast to provide a first assessment of where and how localizing mRNAs are specifically recognized and incorporated into mRNPs. By using in vitro–interaction and reconstitution assays, we found that none of the implicated mRNA-binding proteins showed highly specific cargo binding. Instead, we identified the cytoplasmic myosin adapter She3p as additional RNA-binding protein. We further found that only the complex of the RNA-binding proteins She2p and She3p achieves synergistic cargo binding, with an at least 60-fold higher affinity for localizing mRNAs when compared to control RNA. Mutational studies identified a C-terminal RNA-binding fragment of She3p to be important for synergistic RNA binding with She2p. The observed cargo specificity of the ternary complex is considerably higher than previously reported for localizing mRNAs. It suggests that RNA binding for mRNP localization generally exhibits higher selectivity than inferred from previous in vitro data. This conclusion is fully consistent with a large body of in vivo evidence from different organisms. Since the ternary yeast complex only assembles in the cytoplasm, specific mRNA recognition might be limited to the very last steps of mRNP assembly. Remarkably, the mRNA itself triggers the assembly of mature, motor-containing complexes. Our reconstitution of a major portion of the mRNA-transport complex offers new and unexpected insights into the molecular assembly of specific, localization-competent mRNPs and provides an important step forward in our mechanistic understanding of mRNA localization in general. In eukaryotes, the majority of cells are asymmetric and a way to establish such polarity is directional transport of macromolecules along cytoskeletal filaments. Among the cargoes transported, mRNAs play an essential role, as their localized translation contributes significantly to the generation of asymmetry. To date, hundreds of asymmetrically localized mRNAs in various organisms have been identified. These mRNAs are recognized by RNA-binding proteins and incorporated into large motor-containing messenger ribonucleoprotein particles (mRNPs) whose molecular assembly is poorly understood. In this study, we used the well-characterized process of ASH1-mRNA transport in Saccharomyces cerevisiae to address the question of how localizing mRNAs are recognized and specifically incorporated into mRNPs. Surprisingly, we found that the previously implicated mRNA-binding proteins She2p and Puf6p do not bind to cargo mRNAs with high specificity. Instead, the cytoplasmic motor-adapter protein She3p is responsible for synergistic cargo binding with She2p and for the stable incorporation of specific localizing mRNA into the transport complex. We propose that the specific recognition of localizing mRNAs happens at the very last step of cytoplasmic mRNP maturation. Other organisms might employ similar mechanisms to establish cellular polarity.
Collapse
Affiliation(s)
- Marisa Müller
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Andreas Mayer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria Schmid
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Patrick Cramer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- Center for Integrated Protein Science CIPSM, München, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf-Peter Jansen
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- * E-mail:
| |
Collapse
|
32
|
Graebsch A, Roche S, Kostrewa D, Söding J, Niessing D. Of bits and bugs--on the use of bioinformatics and a bacterial crystal structure to solve a eukaryotic repeat-protein structure. PLoS One 2010; 5:e13402. [PMID: 20976240 PMCID: PMC2954813 DOI: 10.1371/journal.pone.0013402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/24/2010] [Indexed: 11/19/2022] Open
Abstract
Pur-α is a nucleic acid-binding protein involved in cell cycle control, transcription, and neuronal function. Initially no prediction of the three-dimensional structure of Pur-α was possible. However, recently we solved the X-ray structure of Pur-α from the fruitfly Drosophila melanogaster and showed that it contains a so-called PUR domain. Here we explain how we exploited bioinformatics tools in combination with X-ray structure determination of a bacterial homolog to obtain diffracting crystals and the high-resolution structure of Drosophila Pur-α. First, we used sensitive methods for remote-homology detection to find three repetitive regions in Pur-α. We realized that our lack of understanding how these repeats interact to form a globular domain was a major problem for crystallization and structure determination. With our information on the repeat motifs we then identified a distant bacterial homolog that contains only one repeat. We determined the bacterial crystal structure and found that two of the repeats interact to form a globular domain. Based on this bacterial structure, we calculated a computational model of the eukaryotic protein. The model allowed us to design a crystallizable fragment and to determine the structure of Drosophila Pur-α. Key for success was the fact that single repeats of the bacterial protein self-assembled into a globular domain, instructing us on the number and boundaries of repeats to be included for crystallization trials with the eukaryotic protein. This study demonstrates that the simpler structural domain arrangement of a distant prokaryotic protein can guide the design of eukaryotic crystallization constructs. Since many eukaryotic proteins contain multiple repeats or repeating domains, this approach might be instructive for structural studies of a range of proteins.
Collapse
Affiliation(s)
- Almut Graebsch
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stéphane Roche
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dirk Kostrewa
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Johannes Söding
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
33
|
Kraut-Cohen J, Gerst JE. Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 2010; 35:459-69. [DOI: 10.1016/j.tibs.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 12/26/2022]
|
34
|
Heuck A, Fetka I, Brewer DN, Hüls D, Munson M, Jansen RP, Niessing D. The structure of the Myo4p globular tail and its function in ASH1 mRNA localization. ACTA ACUST UNITED AC 2010; 189:497-510. [PMID: 20439999 PMCID: PMC2867299 DOI: 10.1083/jcb.201002076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A conserved patch of amino acids in the globular tail of type V myosin binds She3p to localize ASH1 mRNA to the bud of dividing yeast cells. Type V myosin (MyoV)–dependent transport of cargo is an essential process in eukaryotes. Studies on yeast and vertebrate MyoV showed that their globular tails mediate binding to the cargo complexes. In Saccharomyces cerevisiae, the MyoV motor Myo4p interacts with She3p to localize asymmetric synthesis of HO 1 (ASH1) mRNA into the bud of dividing cells. A recent study showed that localization of GFP-MS2–tethered ASH1 particles does not require the Myo4p globular tail, challenging the supposed role of this domain. We assessed ASH1 mRNA and Myo4p distribution more directly and found that their localization is impaired in cells expressing globular tail–lacking Myo4p. In vitro studies further show that the globular tail together with a more N-terminal linker region is required for efficient She3p binding. We also determined the x-ray structure of the Myo4p globular tail and identify a conserved surface patch important for She3p binding. The structure shows pronounced similarities to membrane-tethering complexes and indicates that Myo4p may not undergo auto-inhibition of its motor domain.
Collapse
Affiliation(s)
- Alexander Heuck
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Chung S, Takizawa PA. Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. J Cell Biol 2010; 189:755-67. [PMID: 20457760 PMCID: PMC2872910 DOI: 10.1083/jcb.200912011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/15/2010] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, ASH1 mRNA is transported to the bud tip by the class V myosin Myo4. In vivo, Myo4 moves RNA in a rapid and continuous fashion, but in vitro Myo4 is a nonprocessive, monomeric motor that forms a complex with She3. To understand how nonprocessive motors generate continuous transport, we used a novel purification method to show that Myo4, She3, and the RNA-binding protein She2 are the sole major components of an active ribonucleoprotein transport unit. We demonstrate that a single localization element contains multiple copies of Myo4 and a tetramer of She2, which suggests that She2 may recruit multiple motors to an RNA. Furthermore, we show that increasing the number of Myo4-She3 molecules bound to ASH1 RNA in the absence of She2 increases the efficiency of RNA transport to the bud. Our data suggest that multiple, nonprocessive Myo4 motors can generate continuous transport of mRNA to the bud tip.
Collapse
Affiliation(s)
- Sunglan Chung
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
36
|
Meignin C, Davis I. Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 2010; 22:112-9. [DOI: 10.1016/j.ceb.2009.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
|
37
|
Graebsch A, Roche S, Niessing D. X-ray structure of Pur-alpha reveals a Whirly-like fold and an unusual nucleic-acid binding surface. Proc Natl Acad Sci U S A 2009; 106:18521-6. [PMID: 19846792 PMCID: PMC2765457 DOI: 10.1073/pnas.0907990106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Indexed: 01/23/2023] Open
Abstract
The PUR protein family is a distinct and highly conserved class that is characterized by its sequence-specific RNA- and DNA-binding. Its best-studied family member, Pur-alpha, acts as a transcriptional regulator, as host factor for viral replication, and as cofactor for mRNP localization in dendrites. Pur-alpha-deficient mice show severe neurologic defects and die after birth. Nucleic-acid binding by Pur-alpha is mediated by its central core region, for which no structural information is available. We determined the x-ray structure of residues 40 to 185 from Drosophila melanogaster Pur-alpha, which constitutes a major part of the core region. We found that this region contains two almost identical structural motifs, termed "PUR repeats," which interact with each other to form a PUR domain. DNA- and RNA-binding studies confirmed that PUR domains are indeed functional nucleic-acid binding domains. Database analysis show that PUR domains share a fold with the Whirly class of nucleic-acid binding proteins. Structural analysis combined with mutational studies suggest that a PUR domain binds nucleic acids through two independent surface regions involving concave beta-sheets. Structure-based sequence alignment revealed that the core region harbors a third PUR repeat at its C terminus. Subsequent characterization by small-angle x-ray scattering (SAXS) and size-exclusion chromatography indicated that PUR repeat III mediates dimerization of Pur-alpha. Surface envelopes calculated from SAXS data show that the Pur-alpha dimer consisting of repeats I to III is arranged in a Z-like shape. This unexpected domain organization of the entire core domain of Pur-alpha has direct implications for ssDNA/ssRNA and dsDNA binding.
Collapse
Affiliation(s)
- Almut Graebsch
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchionini-Strasse 25, Munich, 81377, Germany; and
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich, 81377, Germany
| | - Stéphane Roche
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchionini-Strasse 25, Munich, 81377, Germany; and
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich, 81377, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchionini-Strasse 25, Munich, 81377, Germany; and
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich, 81377, Germany
| |
Collapse
|