1
|
Soenarjo AL, Lan Z, Sazanovich IV, Chan YS, Ringholm M, Jha A, Klug DR. The Transition from Unfolded to Folded G-Quadruplex DNA Analyzed and Interpreted by Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2023; 145:19622-19632. [PMID: 37647128 PMCID: PMC10510320 DOI: 10.1021/jacs.3c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/01/2023]
Abstract
A class of DNA folds/structures known collectively as G-quadruplexes (G4) commonly forms in guanine-rich areas of genomes. G4-DNA is thought to have a functional role in the regulation of gene transcription and telomerase-mediated telomere maintenance and, therefore, is a target for drugs. The details of the molecular interactions that cause stacking of the guanine-tetrads are not well-understood, which limits a rational approach to the drugability of G4 sequences. To explore these interactions, we employed electron-vibration-vibration two-dimensional infrared (EVV 2DIR) spectroscopy to measure extended vibrational coupling spectra for a parallel-stranded G4-DNA formed by the Myc2345 nucleotide sequence. We also tracked the structural changes associated with G4-folding as a function of K+-ion concentration. To classify the structural elements that the folding process generates in terms of vibrational coupling characteristics, we used quantum-chemical calculations utilizing density functional theory to predict the coupling spectra associated with given structures, which are compared against the experimental data. Overall, 102 coupling peaks are experimentally identified and followed during the folding process. Several phenomena are noted and associated with formation of the folded form. This includes frequency shifting, changes in cross-peak intensity, and the appearance of new coupling peaks. We used these observations to propose a folding sequence for this particular type of G4 under our experimental conditions. Overall, the combination of experimental 2DIR data and DFT calculations suggests that guanine-quartets may already be present before the addition of K+-ions, but that these quartets are unstacked until K+-ions are added, at which point the full G4 structure is formed.
Collapse
Affiliation(s)
- A. Larasati Soenarjo
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Zhihao Lan
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Yee San Chan
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Magnus Ringholm
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ajay Jha
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - David R. Klug
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| |
Collapse
|
2
|
Morla-Folch J, Alvarez-Puebla RA, Guerrini L. Direct Quantification of DNA Base Composition by Surface-Enhanced Raman Scattering Spectroscopy. J Phys Chem Lett 2016; 7:3037-3041. [PMID: 27441814 DOI: 10.1021/acs.jpclett.6b01424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Design of ultrasensitive DNA sensors based on the unique physical properties of plasmonic nanostructures has become one of the most exciting areas in nanomedicine. However, despite the vast number of proposed applications, the determination of the base composition in nucleic acids, a fundamental parameter in genomic analyses and taxonomic classification, is still restricted to time-consuming and poorly sensitive conventional methods. Herein, we demonstrate the possibility of determining the base composition in single- and double-stranded DNA by using a simple, low-cost, high-throughput, and label-free surface-enhanced Raman scattering (SERS) method in combination with cationic nanoparticles.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Centro Tecnológico de la Química de Catalunya and Universitat Rovira I Virgili , Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Ramon A Alvarez-Puebla
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Centro Tecnológico de la Química de Catalunya and Universitat Rovira I Virgili , Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
- ICREA , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Luca Guerrini
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Centro Tecnológico de la Química de Catalunya and Universitat Rovira I Virgili , Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Morla-Folch J, Xie HN, Alvarez-Puebla RA, Guerrini L. Fast Optical Chemical and Structural Classification of RNA. ACS NANO 2016; 10:2834-2842. [PMID: 26831953 DOI: 10.1021/acsnano.5b07966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As more biological activities of ribonucleic acids continue to emerge, the development of efficient analytical tools for RNA identification and characterization is necessary to acquire an in-depth understanding of their functions and chemical properties. Herein, we demonstrate the capacity of label-free direct surface-enhanced Raman scattering (SERS) analysis to access highly specific structural information on RNAs at the ultrasensitive level. This includes the recognition of distinctive vibrational features of RNAs organized into a variety of conformations (micro-, fully complementary duplex-, small interfering- and short hairpin-RNAs) or characterized by subtle chemical differences (single-base variances, nucleobase modifications and backbone composition). This method represents a key advance in the ribonucleic acid analysis and will have a direct impact in a wide range of different fields, including medical diagnosis, drug design, and biotechnology, by enabling the rapid, high-throughput, simple, and low-cost identification and classification of structurally similar RNAs.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Universitat Rovira i Virgili and Centro Tecnológico de la Química de Catalunya , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Hai-nan Xie
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
| | - Ramon A Alvarez-Puebla
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Universitat Rovira i Virgili and Centro Tecnológico de la Química de Catalunya , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Luca Guerrini
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
| |
Collapse
|
4
|
Jangir DK, Mehrotra R. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:386-389. [PMID: 24810023 DOI: 10.1016/j.saa.2014.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 03/30/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites.
Collapse
Affiliation(s)
- Deepak K Jangir
- Quantum Optics and Photon Physics, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Ranjana Mehrotra
- Quantum Optics and Photon Physics, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India.
| |
Collapse
|
5
|
Holmstrom ED, Nesbitt DJ. Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics. J Phys Chem B 2014; 118:3853-63. [PMID: 24617561 PMCID: PMC4030807 DOI: 10.1021/jp501893c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 02/06/2023]
Abstract
The ribonucleoprotein telomerase is an RNA-dependent DNA polymerase that catalyzes the repetitive addition of a short, species-specific, DNA sequence to the ends of linear eukaryotic chromosomes. The single RNA component of telomerase contains both the template sequence for DNA synthesis and a functionally critical pseudoknot motif, which can also exist as a less stable hairpin. Here we use a minimal version of the human telomerase RNA pseudoknot to study this hairpin-pseudoknot structural equilibrium using temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) experiments. The urea dependence of these experiments aids in determination of the folding kinetics and thermodynamics. The wild-type pseudoknot behavior is compared and contrasted to a mutant pseudoknot sequence implicated in a genetic disorder-dyskeratosis congenita. These findings clearly identify that this 2nt noncomplementary mutation destabilizes the folding of the wild-type pseudoknot by substantially reducing the folding rate constant (≈ 400-fold) while only nominally increasing the unfolding rate constant (≈ 5-fold). Furthermore, the urea dependence of the equilibrium and rate constants is used to develop a free energy landscape for this unimolecular equilibrium and propose details about the structure of the transition state. Finally, the urea-dependent folding experiments provide valuable physical insights into the mechanism for destabilization of RNA pseudoknots by such chemical denaturants.
Collapse
Affiliation(s)
- Erik D. Holmstrom
- JILA, University of Colorado and National
Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - David J. Nesbitt
- JILA, University of Colorado and National
Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
6
|
Al-Khatib RM, Rashid NAA, Abdullah R. Thermodynamic Heuristics with Case-Based Reasoning: Combined Insights for RNA Pseudoknot Secondary Structure. J Biomol Struct Dyn 2011; 29:1-26. [DOI: 10.1080/07391102.2011.10507373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Donfack P, Multhoff G, Materny A. Label-free nondestructive discrimination of colon carcinoma sublines and biomolecular insights into their differential Hsp70 expression: DNA/RNA nucleobase specific changes. Chembiochem 2011; 12:1922-36. [PMID: 21739554 DOI: 10.1002/cbic.201000653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/19/2011] [Indexed: 11/11/2022]
Abstract
Hsp70 is biologically relevant for its chaperon functions. The CX(-) and CX(+) sublines, which derive from the parental colon carcinoma CX2 cell line, are accordingly very similar. They have been reported to be specifically different only in Hsp70 membrane expression, which is associated with immunostimulatory effects. CX(-) /CX(+) have been phenotypically characterized by immunofluorescence studies and Raman spectroscopy combined with robust clustering and multivariate analysis. With the latter we address the potential of overall characterization for CX(-) /CX(+) discrimination and gain molecular insights into Hsp70 differential expression. Due to their strong resemblance, CX(-) and CX(+) show similar mean Raman spectra, which look indiscernible at first. Interestingly, their rather protein-dominated Raman spectra reveal, besides changes in protein and amino acids, very specific changes in DNA/RNA nucleotides involving pyrimidine ring Raman hypochromic effects. Therefore, discriminating CX(-) from CX(+) is ultimately achieved based on principal component scores. Because CX(-) /CX(+) are associated with the same lipid marker, changes in proteins support lipid interactions with regulatory proteins. More importantly, changes observed in nucleobases, which are indicative of DNA/RNA-protein binding interactions, suggest transcription deregulations as participating precursor onsets of different transport mechanisms that lead to Hsp70 differential expression and associated phenotypic variation. Besides immunofluorescence, we have used Raman spectroscopy combined with multivariate analysis within an autologous tumor system for label-free nondestructive cell-subline discrimination, and demonstrate, to our knowledge, the first overall phenotypic monitoring with insights into Hsp70 differential expression. This might well prove to be useful for Raman label-free cell-sorting of the CX(-) /CX(+) sublines.
Collapse
Affiliation(s)
- Patrice Donfack
- Department of Physics, Molecular Life Science Center, Jacobs University, Campus Ring 1, 28759 Bremenm, Germany
| | | | | |
Collapse
|
8
|
Chen G, Wen JD, Tinoco I. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. RNA (NEW YORK, N.Y.) 2007; 13:2175-88. [PMID: 17959928 PMCID: PMC2080604 DOI: 10.1261/rna.676707] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|