1
|
Gasińska K, Czop M, Kosior-Jarecka E, Wróbel-Dudzińska D, Kocki J, Żarnowski T. Small Nucleolar RNAs in Pseudoexfoliation Glaucoma. Cells 2022; 11:cells11172738. [PMID: 36078146 PMCID: PMC9454646 DOI: 10.3390/cells11172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are small non-coding regulatory RNAs that have been investigated extensively in recent years. However, the relationship between snoRNA and glaucoma is still unknown. This study aims to analyze the levels of snoRNA expression in the aqueous humor (AH) of patients with pseudoexfoliation glaucoma (PEXG) compared to a control group and identify hypothetical snoRNA-dependent mechanisms contributing to PEXG. The AH was obtained from eighteen Caucasian patients, comprising nine PEXG and nine age-matched control patients. RNA was isolated, and a microarray system was used to determine the snoRNA expression profiles. Functional and enrichment analyses were performed. We identified seven snoRNAs, SNORD73B, SNORD58A, SNORD56, SNORA77, SNORA72, SNORA64, and SNORA32, in the AH of the PEXG and control group patients. Five snoRNAs showed statistically significantly lower expression in the PEXG group, and two snoRNAs had statistically significantly higher expression in the PEXG group compared to the control group. In addition, we identified two factors-CACNB3 for SNORA64 and TMEM63C for SNORA32, similar to PEX-related genes (CACNA1A and TMEM136). The enrichment analysis for four genes targeted by snoRNAs revealed possible mechanisms associated with glaucoma and/or PEX, but the direct role of snoRNAs in these biological processes was not proven.
Collapse
Affiliation(s)
- Karolina Gasińska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
- Correspondence:
| | - Dominika Wróbel-Dudzińska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland
| | - Tomasz Żarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| |
Collapse
|
2
|
Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022; 18:e1010103. [PMID: 35275914 PMCID: PMC8942280 DOI: 10.1371/journal.pgen.1010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
3
|
Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms. Int J Mol Sci 2019; 20:ijms20092185. [PMID: 31052553 PMCID: PMC6539089 DOI: 10.3390/ijms20092185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/17/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a new type of functional small RNAs involved in the chemical modifications of rRNAs, tRNAs, and small nuclear RNAs. It is reported that they play important roles in tumorigenesis via various regulatory modes. snoRNAs can both participate in the regulation of methylation and pseudouridylation and regulate the expression pattern of their host genes. This research investigated the expression pattern of snoRNAs in eight major cancer types in TCGA via several machine learning algorithms. The expression levels of snoRNAs were first analyzed by a powerful feature selection method, Monte Carlo feature selection (MCFS). A feature list and some informative features were accessed. Then, the incremental feature selection (IFS) was applied to the feature list to extract optimal features/snoRNAs, which can make the support vector machine (SVM) yield best performance. The discriminative snoRNAs included HBII-52-14, HBII-336, SNORD123, HBII-85-29, HBII-420, U3, HBI-43, SNORD116, SNORA73B, SCARNA4, HBII-85-20, etc., on which the SVM can provide a Matthew’s correlation coefficient (MCC) of 0.881 for predicting these eight cancer types. On the other hand, the informative features were fed into the Johnson reducer and repeated incremental pruning to produce error reduction (RIPPER) algorithms to generate classification rules, which can clearly show different snoRNAs expression patterns in different cancer types. The analysis results indicated that extracted discriminative snoRNAs can be important for identifying cancer samples in different types and the expression pattern of snoRNAs in different cancer types can be partly uncovered by quantitative recognition rules.
Collapse
|
4
|
Abstract
One of the most important resources for researchers of noncoding RNAs is the information available in public databases spread over the internet. However, the effective exploration of this data can represent a daunting task, given the large amount of databases available and the variety of stored data. This chapter describes a classification of databases based on information source, type of RNA, source organisms, data formats, and the mechanisms for information retrieval, detailing the relevance of each of these classifications and its usability by researchers. This classification is used to update a 2012 review, indexing now more than 229 public databases. This review will include an assessment of the new trends for ncRNA research based on the information that is being offered by the databases. Additionally, we will expand the previous analysis focusing on the usability and application of these databases in pathogen and disease research. Finally, this chapter will analyze how currently available database schemas can help the development of new and improved web resources.
Collapse
|
5
|
Hayes MH, Peuchen EH, Dovichi NJ, Weeks DL. Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli. eLife 2018; 7:35224. [PMID: 30015615 PMCID: PMC6050040 DOI: 10.7554/elife.35224] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/01/2018] [Indexed: 12/25/2022] Open
Abstract
For many proteins, aggregation is one part of a structural equilibrium that can occur. Balancing productive aggregation versus pathogenic aggregation that leads to toxicity is critical and known to involve adenosine triphosphate (ATP) dependent action of chaperones and disaggregases. Recently a second activity of ATP was identified, that of a hydrotrope which, independent of hydrolysis, was sufficient to solubilize aggregated proteins in vitro. This novel function of ATP was postulated to help regulate proteostasis in vivo. We tested this hypothesis on aggregates found in Xenopus oocyte nucleoli. Our results indicate that ATP has dual roles in the maintenance of protein solubility. We provide evidence of endogenous hydrotropic action of ATP but show that hydrotropic solubilization of nucleolar aggregates is preceded by a destabilizing event. Destabilization is accomplished through an energy dependent process, reliant upon ATP and one or more soluble nuclear factors, or by disruption of a co-aggregate like RNA.
Collapse
Affiliation(s)
- Michael H Hayes
- Molecular Medicine Doctoral Program, University of Iowa Carver College of Medicine, Iowa City, United States
| | - Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, United States
| | - Daniel L Weeks
- Molecular Medicine Doctoral Program, University of Iowa Carver College of Medicine, Iowa City, United States.,Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
6
|
Irimie AI, Zimta AA, Ciocan C, Mehterov N, Dudea D, Braicu C, Berindan-Neagoe I. The Unforeseen Non-Coding RNAs in Head and Neck Cancer. Genes (Basel) 2018; 9:genes9030134. [PMID: 29494516 PMCID: PMC5867855 DOI: 10.3390/genes9030134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Previously ignored non-coding RNAs (ncRNAs) have become the subject of many studies. However, there is an imbalance in the amount of consideration that ncRNAs are receiving. Some transcripts such as microRNAs (miRNAs) or small interfering RNAs (siRNAs) have gained much attention, but it is necessary to investigate other “pieces of the RNA puzzle”. These can offer a more complete view over normal and pathological cell behavior. The other ncRNA species are less studied, either due to their recent discovery, such as stable intronic sequence RNA (sisRNA), YRNA, miRNA-offset RNAs (moRNA), telomerase RNA component (TERC), natural antisense transcript (NAT), transcribed ultraconserved regions (T-UCR), and pseudogene transcript, or because they are still largely seen as non-coding transcripts with no relevance to pathogenesis. Moreover, some are still considered housekeeping RNAs, for instance small nucleolar RNAs (snoRNAs) and TERC. Our review summarizes the biogenesis, mechanism of action and potential role of less known ncRNAs in head and neck cancer, with a particular focus on the installment and progress for this particular cancer type.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, "IuliuHatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University Plovdiv, BulVasilAprilov 15-А, Plovdiv 4002, Bulgaria.
- Technological Center for Emergency Medicine, BulVasilAprilov 15-А, Plovdiv 4002, Bulgaria.
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, "IuliuHatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "IuliuHatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Research Center for Functional Genomics and Translational Medicine, "IuliuHatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Chen X, Lu L, Qian S, Scalf M, Smith LM, Zhong X. Canonical and Noncanonical Actions of Arabidopsis Histone Deacetylases in Ribosomal RNA Processing. THE PLANT CELL 2018; 30:134-152. [PMID: 29343504 PMCID: PMC5810568 DOI: 10.1105/tpc.17.00626] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 05/13/2023]
Abstract
Ribosome biogenesis is a fundamental process required for all cellular activities. Histone deacetylases play critical roles in many biological processes including transcriptional repression and rDNA silencing. However, their function in pre-rRNA processing remains poorly understood. Here, we discovered a previously uncharacterized role of Arabidopsis thaliana histone deacetylase HD2C in pre-rRNA processing via both canonical and noncanonical manners. HD2C interacts with another histone deacetylase HD2B and forms homo- and/or hetero-oligomers in the nucleolus. Depletion of HD2C and HD2B induces a ribosome-biogenesis deficient phenotype and aberrant accumulation of 18S pre-rRNA intermediates. Our genome-wide analysis revealed that HD2C binds and represses the expression of key genes involved in ribosome biogenesis. Using RNA immunoprecipitation and sequencing, we further uncovered a noncanonical mechanism of HD2C directly associating with pre-rRNA and small nucleolar RNAs to regulate rRNA methylation. Together, this study reveals a multifaceted role of HD2C in ribosome biogenesis and provides mechanistic insights into how histone deacetylases modulate rRNA maturation at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Xiangsong Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Li Lu
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Shuiming Qian
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Huang C, Shi J, Guo Y, Huang W, Huang S, Ming S, Wu X, Zhang R, Ding J, Zhao W, Jia J, Huang X, Xiang AP, Shi Y, Yao C. A snoRNA modulates mRNA 3' end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res 2017; 45:8647-8660. [PMID: 28911119 PMCID: PMC5587809 DOI: 10.1093/nar/gkx651] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
mRNA 3′ end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3′ processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mammalian mRNA 3′ processing complex. These snoRNAs primarily interact with Fip1, a component of cleavage and polyadenylation specificity factor (CPSF). We have functionally characterized one of these snoRNAs and our results demonstrated that the U/A-rich SNORD50A inhibits mRNA 3′ processing by blocking the Fip1-poly(A) site (PAS) interaction. Consistently, SNORD50A depletion altered the Fip1–RNA interaction landscape and changed the alternative polyadenylation (APA) profiles and/or transcript levels of a subset of genes. Taken together, our data revealed a novel function for snoRNAs and provided the first evidence that non-coding RNAs may play an important role in regulating mRNA 3′ processing.
Collapse
Affiliation(s)
- Chunliu Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Junjie Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Siqi Ming
- Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingui Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rui Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Jia
- Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Huang
- Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Abstract
Organelles without membranes are found in all types of cells and typically contain RNA and protein. RNA and protein are the constituents of ribosomes, one of the most ancient cellular structures. It is reasonable to propose that organelles without membranes preceded protocells and other membrane-bound structures at the origins of life. Such membraneless organelles would be well sheltered in the spaces between mica sheets, which have many advantages as a site for the origins of life.
Collapse
|
10
|
Jorjani H, Kehr S, Jedlinski DJ, Gumienny R, Hertel J, Stadler PF, Zavolan M, Gruber AR. An updated human snoRNAome. Nucleic Acids Res 2016; 44:5068-82. [PMID: 27174936 PMCID: PMC4914119 DOI: 10.1093/nar/gkw386] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the post-transcriptional processing of other non-coding RNAs (mostly ribosomal RNAs), but have also been implicated in processes ranging from microRNA-dependent gene silencing to alternative splicing. In order to construct an up-to-date catalog of human snoRNAs we have combined data from various databases, de novo prediction and extensive literature review. In total, we list more than 750 curated genomic loci that give rise to snoRNA and snoRNA-like genes. Utilizing small RNA-seq data from the ENCODE project, our study characterizes the plasticity of snoRNA expression identifying both constitutively as well as cell type specific expressed snoRNAs. Especially, the comparison of malignant to non-malignant tissues and cell types shows a dramatic perturbation of the snoRNA expression profile. Finally, we developed a high-throughput variant of the reverse-transcriptase-based method for identifying 2'-O-methyl modifications in RNAs termed RimSeq. Using the data from this and other high-throughput protocols together with previously reported modification sites and state-of-the-art target prediction methods we re-estimate the snoRNA target RNA interaction network. Our current results assign a reliable modification site to 83% of the canonical snoRNAs, leaving only 76 snoRNA sequences as orphan.
Collapse
Affiliation(s)
- Hadi Jorjani
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany
| | - Dominik J Jedlinski
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Rafal Gumienny
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology, D-04103 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria Santa Fe Institute, NM-87501Santa Fe, USA
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| |
Collapse
|
11
|
Abstract
We previously discovered that a set of 5 microRNAs are concentrated in the nucleolus of rat myoblasts. We now report that several mRNAs are also localized in the nucleoli of these cells as determined by microarray analysis of RNA from purified nucleoli. Among the most abundant of these nucleolus-localized mRNAs is that encoding insulin-like growth factor 2 (IGF2), a regulator of myoblast proliferation and differentiation. The presence of IGF2 mRNA in nucleoli was confirmed by fluorescence in situ hybridization, and RT-PCR experiments demonstrated that these nucleolar transcripts are spliced, thus arriving from the nucleoplasm. Bioinformatics analysis predicted canonically structured, highly thermodynamically stable interactions between IGF2 mRNA and all 5 of the nucleolus-localized microRNAs. These results raise the possibility that the nucleolus is a staging site for setting up particular mRNA-microRNA interactions prior to export to the cytoplasm.
Collapse
Affiliation(s)
- Pablo Reyes-Gutierrez
- a Program in Cell and Developmental Dynamics; Department of Biochemistry and Molecular Pharmacology; University of Massachusetts Medical School ; Worcester , MA USA
| | | | | |
Collapse
|
12
|
van Balkom BWM, Eisele AS, Pegtel DM, Bervoets S, Verhaar MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles 2015; 4:26760. [PMID: 26027894 PMCID: PMC4450249 DOI: 10.3402/jev.v4.26760] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/25/2015] [Accepted: 05/03/2015] [Indexed: 01/08/2023] Open
Abstract
Exosomes are small vesicles that mediate cell-cell communication. They contain proteins, lipids and RNA, and evidence is accumulating that these molecules are specifically sorted for release via exosomes. We recently showed that endothelial-cell-produced exosomes promote angiogenesis in vivo in a small RNA-dependent manner. Recent deep sequencing studies in exosomes from lymphocytic origin revealed a broad spectrum of small RNAs. However, selective depletion or incorporation of small RNA species into endothelial exosomes has not been studied extensively. With next generation sequencing, we identified all known non-coding RNA classes, including microRNAs (miRNAs), small nucleolar RNAs, yRNAs, vault RNAs, 5p and 3p fragments of miRNAs and miRNA-like fragments. In addition, we mapped many fragments of messenger RNAs (mRNAs) and mitochondrial RNAs (mtRNAs). The distribution of small RNAs in exosomes revealed a considerable overlap with the distribution in the producing cells. However, we identified a remarkable enrichment of yRNA fragments and mRNA degradation products in exosomes consistent with yRNAs having a role in degradation of structured and misfolded RNAs in close proximity to endosomes. We propose that endothelial endosomes selectively sequester cytoplasmic RNA-degrading machineries taking part in gene regulation. The release of these regulatory RNAs via exosomes may have implications for endothelial cell-cell communication.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands;
| | - Almut S Eisele
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Exosomes Research Group, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 2014; 114:3224-65. [PMID: 24417544 PMCID: PMC3968247 DOI: 10.1021/cr400496q] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A. Heinicke
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan,
Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
14
|
Burgess D, Freeling M. The most deeply conserved noncoding sequences in plants serve similar functions to those in vertebrates despite large differences in evolutionary rates. THE PLANT CELL 2014; 26:946-61. [PMID: 24681619 PMCID: PMC4001403 DOI: 10.1105/tpc.113.121905] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In vertebrates, conserved noncoding elements (CNEs) are functionally constrained sequences that can show striking conservation over >400 million years of evolutionary distance and frequently are located megabases away from target developmental genes. Conserved noncoding sequences (CNSs) in plants are much shorter, and it has been difficult to detect conservation among distantly related genomes. In this article, we show not only that CNS sequences can be detected throughout the eudicot clade of flowering plants, but also that a subset of 37 CNSs can be found in all flowering plants (diverging ∼170 million years ago). These CNSs are functionally similar to vertebrate CNEs, being highly associated with transcription factor and development genes and enriched in transcription factor binding sites. Some of the most highly conserved sequences occur in genes encoding RNA binding proteins, particularly the RNA splicing-associated SR genes. Differences in sequence conservation between plants and animals are likely to reflect differences in the biology of the organisms, with plants being much more able to tolerate genomic deletions and whole-genome duplication events due, in part, to their far greater fecundity compared with vertebrates.
Collapse
|
15
|
Bhartiya D, Pal K, Ghosh S, Kapoor S, Jalali S, Panwar B, Jain S, Sati S, Sengupta S, Sachidanandan C, Raghava GPS, Sivasubbu S, Scaria V. lncRNome: a comprehensive knowledgebase of human long noncoding RNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat034. [PMID: 23846593 PMCID: PMC3708617 DOI: 10.1093/database/bat034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The advent of high-throughput genome scale technologies has enabled us to unravel a large amount of the previously unknown transcriptionally active regions of the genome. Recent genome-wide studies have provided annotations of a large repertoire of various classes of noncoding transcripts. Long noncoding RNAs (lncRNAs) form a major proportion of these novel annotated noncoding transcripts, and presently known to be involved in a number of functionally distinct biological processes. Over 18 000 transcripts are presently annotated as lncRNA, and encompass previously annotated classes of noncoding transcripts including large intergenic noncoding RNA, antisense RNA and processed pseudogenes. There is a significant gap in the resources providing a stable annotation, cross-referencing and biologically relevant information. lncRNome has been envisioned with the aim of filling this gap by integrating annotations on a wide variety of biologically significant information into a comprehensive knowledgebase. To the best of our knowledge, lncRNome is one of the largest and most comprehensive resources for lncRNAs. Database URL:http://genome.igib.res.in/lncRNome
Collapse
Affiliation(s)
- Deeksha Bhartiya
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|