1
|
Khadake RM, Arora V, Gupta P, Rode AB. Harnessing Synthetic Riboswitches for Tunable Gene Regulation in Mammalian Cells. Chembiochem 2025; 26:e202401015. [PMID: 39995098 DOI: 10.1002/cbic.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA switches regulated by specific inducer molecules have become a powerful synthetic biology tool for precise gene regulation in mammalian systems. The engineered RNA switches can be integrated with natural RNA-mediated gene regulatory functions as a modular and customizable approach to probe and control cellular behavior. RNA switches have been used to advance synthetic biology applications, including gene therapy, bio-production, and cellular reprogramming. This review explores recent progress in the design and functional implementation of synthetic riboswitches in mammalian cells based on diverse RNA regulation mechanisms by highlighting recent studies and emerging technologies. We also discuss challenges such as off-target effects, system stability, and ligand delivery in complex biological environments. In conclusion, this review emphasizes the potential of synthetic riboswitches as a platform for customizable gene regulation in diverse biomedical applications.
Collapse
Affiliation(s)
- Rushikesh M Khadake
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Vaani Arora
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Payal Gupta
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| |
Collapse
|
2
|
Hsu HT, Murata A, Dohno C, Nakatani K, Chang K. Premature translation termination mediated non-ER stress induced ATF6 activation by a ligand-dependent ribosomal frameshifting circuit. Nucleic Acids Res 2022; 50:5369-5383. [PMID: 35511080 PMCID: PMC9122530 DOI: 10.1093/nar/gkac257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
The −1 programmed ribosomal frameshifting (−1 PRF) has been explored as a gene regulatory circuit for synthetic biology applications. The −1 PRF usually uses an RNA pseudoknot structure as the frameshifting stimulator. Finding a ligand-responsive pseudoknot with efficient −1 PRF activity is time consuming and is becoming a bottleneck for its development. Inserting a guanine to guanine (GG)–mismatch pair in the 5′-stem of a small frameshifting pseudoknot could attenuate −1 PRF activity by reducing stem stability. Thus, a ligand-responsive frameshifting pseudoknot can be built using GG-mismatch–targeting small molecules to restore stem stability. Here, a pseudoknot requiring stem–loop tertiary interactions for potent frameshifting activity was used as the engineering template. This considerably amplified the effect of mismatch destabilization, and led to creation of a mammalian −1 PRF riboswitch module capable of mediating premature translation termination as a synthetic regulatory mode. Application of the synthetic circuit allowed ligand-dependent ATF6N mimic formation for the activation of protein folding–related genes involved in the unfolded protein response without an ER-stress inducing agent. With the availability of mismatch-targeting molecules, the tailored module thus paves the way for various mismatch plug-ins to streamline highly efficient orthogonal ligand-dependent −1 PRF stimulator development in the synthetic biology toolbox.
Collapse
Affiliation(s)
- Hsiu-Ting Hsu
- Graduate Institute of Biochemistry, National Chung-Hsing University, Taichung 402, Taiwan
| | - Asako Murata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Chikara Dohno
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - KungYao Chang
- Graduate Institute of Biochemistry, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
4
|
Abstract
Innovation follows discovery. If the 20th century was a golden age of discovery in the biomolecular biosciences, the current century may be remembered by the explosion of beneficial devices and therapies conceived by the bioengineers of the era. Much as the development of solid-state electronic components made possible the information revolution, the rational combining of millions of basic molecular control modules will enable the development of highly sophisticated biomachines that will make today's smartphones appear rudimentary. The molecular toolbox is already well-stocked, particularly in our ability to manipulate DNA, control transcription, generate functionally novel hybrid proteins, and expand the genetic code to include unnatural amino acids. This review focuses on how RNA-based regulatory modules that direct alternative readings of the genetic code can be employed as basic circuit components to expand our ability to control gene expression.
Collapse
Affiliation(s)
- Jonathan D Dinman
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
5
|
Puah RY, Jia H, Maraswami M, Toh DFK, Ero R, Yang L, Patil KM, Ong AAL, Krishna MS, Sun R, Tong C, Huang M, Chen X, Loh TP, Gao YG, Liu DX, Chen G. Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting. Biochemistry 2017; 57:149-159. [PMID: 29116759 DOI: 10.1021/acs.biochem.7b00744] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minus-one programmed ribosomal frameshifting (-1 PRF) allows the precise maintenance of the ratio between viral proteins and is involved in the regulation of the half-lives of cellular mRNAs. Minus-one ribosomal frameshifting is activated by several stimulatory elements such as a heptameric slippery sequence (X XXY YYZ) and an mRNA secondary structure (hairpin or pseudoknot) that is positioned 2-8 nucleotides downstream from the slippery site. Upon -1 RF, the ribosomal reading frame is shifted from the normal zero frame to the -1 frame with the heptameric slippery sequence decoded as XXX YYY Z instead of X XXY YYZ. Our research group has developed chemically modified peptide nucleic acid (PNA) L and Q monomers to recognize G-C and C-G Watson-Crick base pairs, respectively, through major-groove parallel PNA·RNA-RNA triplex formation. L- and Q-incorporated PNAs show selective binding to double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). The sequence specificity and structural selectivity of L- and Q-modified PNAs may allow the precise targeting of desired viral and cellular RNA structures, and thus may serve as valuable biological tools for mechanistic studies and potential therapeutics for fighting diseases. Here, for the first time, we demonstrate by cell-free in vitro translation assays using rabbit reticulocyte lysate that the dsRNA-specific chemically modified PNAs targeting model mRNA hairpins stimulate -1 RF (from 2% to 32%). An unmodified control PNA, however, shows nonspecific inhibition of translation. Our results suggest that the modified dsRNA-binding PNAs may be advantageous for targeting structured RNAs.
Collapse
Affiliation(s)
| | | | | | | | - Rya Ero
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | | | | - Mei Huang
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.,Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou 510642, Guangdong, People's Republic of China
| | | |
Collapse
|
6
|
Lin YH, Chang KY. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator. Nucleic Acids Res 2016; 44:9005-9015. [PMID: 27521370 PMCID: PMC5062990 DOI: 10.1093/nar/gkw718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate −1 programmed ribosomal frameshifting (PRF), suggesting −1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has been hampered by difficulty in identifying a specific ligand-responsive pseudoknot that also functions as a ligand-dependent -1 PRF stimulator. We addressed this problem by using the −1 PRF stimulation pseudoknot of SARS-CoV (SARS-PK) to build a ligand-dependent −1 PRF stimulator. In particular, the extra stem of SARS-PK was replaced by an RNA aptamer of theophylline and designed to couple theophylline binding with the stimulation of −1 PRF. Conformational and functional analyses indicate that the engineered theophylline-responsive RNA functions as a mammalian riboswitch with robust theophylline-dependent −1 PRF stimulation activity in a stable human 293T cell-line. Thus, RNA–ligand interaction repertoire provided by in vitro selection becomes accessible to ligand-specific −1 PRF stimulator engineering using SARS-PK as the scaffold for synthetic biology application.
Collapse
Affiliation(s)
- Ya-Hui Lin
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| |
Collapse
|
7
|
Hsu HT, Lin YH, Chang KY. Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells. Nucleic Acids Res 2014; 42:14070-82. [PMID: 25414357 PMCID: PMC4267651 DOI: 10.1093/nar/gku1233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Distinct translational initiation mechanisms between prokaryotes and eukaryotes limit the exploitation of prokaryotic riboswitch repertoire for regulatory RNA circuit construction in mammalian application. Here, we explored programmed ribosomal frameshifting (PRF) as the regulatory gene expression platform for engineered ligand-responsive RNA devices in higher eukaryotes. Regulation was enabled by designed ligand-dependent conformational rearrangements of the two cis-acting RNA motifs of opposite activity in -1 PRF. Particularly, RNA elements responsive to trans-acting ligands can be tailored to modify co-translational RNA refolding dynamics of a hairpin upstream of frameshifting site to achieve reversible and adjustable -1 PRF attenuating activity. Combined with a ligand-responsive stimulator, synthetic RNA devices for synergetic translational-elongation control of gene expression can be constructed. Due to the similarity between co-transcriptional RNA hairpin folding and co-translational RNA hairpin refolding, the RNA-responsive ligand repertoire provided in prokaryotic systems thus becomes accessible to gene-regulatory circuit construction for synthetic biology application in mammalian cells.
Collapse
Affiliation(s)
- Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | - Ya-Hui Lin
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| |
Collapse
|
8
|
Yu CH, Luo J, Iwata-Reuyl D, Olsthoorn RCL. Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting. ACS Chem Biol 2013; 8:733-40. [PMID: 23327288 DOI: 10.1021/cb300629b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Knowing the molecular details of the interaction between riboswitch aptamers and their corresponding metabolites is important to understand gene expression. Here we report on a novel in vitro assay to study preQ(1) riboswitch aptamers upon binding of 7-aminomethyl-7-deazaguanine (preQ(1)). The assay is based on the ability of the preQ(1) aptamer to fold, upon ligand binding, into a pseudoknotted structure that is capable of stimulating -1 ribosomal frameshifting (-1 FS). Aptamers from three different species were found to induce between 7% and 20% of -1 FS in response to increasing preQ(1) levels, whereas preQ(1) analogues were 100-1000-fold less efficient. In depth mutational analysis of the Fusobacterium nucleatum aptamer recapitulates most of the structural details previously identified for preQ(1) aptamers from other bacteria by crystallography and/or NMR spectroscopy. In addition to providing insight into the role of individual nucleotides of the preQ(1) riboswitch aptamer in ligand binding, the presented system provides a valuable tool to screen small molecules against bacterial riboswitches in a eukaryotic background.
Collapse
Affiliation(s)
| | | | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon 97201,
United States
| | | |
Collapse
|
9
|
Belew AT, Advani VM, Dinman JD. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res 2010; 39:2799-808. [PMID: 21109528 PMCID: PMC3074144 DOI: 10.1093/nar/gkq1220] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although first discovered in viruses, previous studies have identified operational −1 ribosomal frameshifting (−1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast −1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five −1 RF signals. Ablation of the −1 RF signals or of NMD stabilizes this mRNA, and changes in −1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous −1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that −1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence −1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that −1 RF is a broadly used post-transcriptional regulator of gene expression.
Collapse
Affiliation(s)
- Ashton T Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
10
|
Edwards AL, Reyes FE, Héroux A, Batey RT. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA (NEW YORK, N.Y.) 2010; 16:2144-55. [PMID: 20864509 PMCID: PMC2957054 DOI: 10.1261/rna.2341610] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/16/2010] [Indexed: 05/25/2023]
Abstract
S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.
Collapse
Affiliation(s)
- Andrea L Edwards
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|