1
|
Yu X, Cao S, Deng X, Chen Y, Sun M, Zhao P, Zhang Q, Chen J, Chen JX. Enhancing early breast cancer detection with APE1-triggered oligonucleotide probes and graphene oxide: The impact of variable AP site modification on sensitivity and specificity. Talanta 2025; 287:127505. [PMID: 39862516 DOI: 10.1016/j.talanta.2024.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge. In this study, we present an innovative detection platform triggered by endogenous DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1). This platform utilizes an oligonucleotide probe with variable modified AP sites (denoted as AOP) coupled with graphene oxide (GO) for quantifying miR-1246. Our in vitro experiments reveal that the proposed method employing the AOP2 probe with two AP sites exhibits exceptional selectivity and sensitivity. The method achieves a detection limit as low as 2.3 pM towards miR-1246, which is approximately 260-fold more sensitive than the enzyme-free system. RT-qPCR experiments further validate the accuracy and practicability of the AOP2-based platform. In clinical trials, our platform has successfully differentiated between BC patients and normal healthy controls. In conclusion, we have established an integrated biosensing technology for PCR-free, non-invasive liquid biopsies of miR-1246, offering a promising approach for BC diagnosis.
Collapse
Affiliation(s)
- Xuezhao Yu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China
| | - Sujian Cao
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Xuexian Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanyan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mengxu Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Pei Zhao
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China.
| | - Jun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Raghani NR, Chorawala MR, Parekh K, Sharma A, Alsaidan OA, Alam P, Fareed M, Prajapati B. Exosomal miRNA-based theranostics in cervical cancer: bridging diagnostics and therapy. Med Oncol 2025; 42:193. [PMID: 40320487 DOI: 10.1007/s12032-025-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025]
Abstract
Cervical cancer (CC) remains a significant global health burden, particularly in low- and middle-income countries, where access to effective screening and treatment is limited. Despite advancements in conventional therapies, such as surgery, chemotherapy, and radiotherapy, challenges related to late-stage diagnosis, treatment resistance, and disease recurrence persist. The emergence of microRNAs (miRNAs) as key regulators of gene expression has revolutionized cancer diagnostics and therapeutics. Exosomal miRNAs, in particular, have garnered attention due to their stability, detectability in bodily fluids, and pivotal roles in tumor progression, metastasis, and immune modulation. This review provides a comprehensive overview of the role of exosomal miRNAs in the theranostic landscape of CC. We explore their involvement in disease pathogenesis, highlighting their potential as minimally invasive diagnostic biomarkers for early detection and disease monitoring. Furthermore, we examine their utility in therapeutic strategies, including miRNA-mediated drug delivery systems and miRNA-targeted interventions to overcome chemoresistance. Integrating exosomal miRNA profiling with current diagnostic modalities could enhance screening sensitivity and specificity, while miRNA-based therapies offer novel avenues to improve treatment efficacy. This review discusses recent advancements in miRNA research, current challenges in clinical translation, and future perspectives on leveraging exosomal miRNAs for personalized CC care.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Kavya Parekh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anvesha Sharma
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 13713, Saudi Arabia
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Mahesana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Popa ML, Ichim C, Anderco P, Todor SB, Pop-Lodromanean D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J Clin Med 2025; 14:2054. [PMID: 40142862 PMCID: PMC11943142 DOI: 10.3390/jcm14062054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
MicroRNAs (miRNAs) have emerged as crucial regulators in digestive pathologies, including inflammatory bowel disease (miR-31, miR-155, and miR-21), colorectal cancer (miR-21, miR-598, and miR-494), and non-alcoholic fatty liver disease (miR-21, miR-192, and miR-122). Their capacity to modulate gene expression at the post-transcriptional level makes them highly promising candidates for biomarkers and therapeutic interventions. However, despite considerable progress, their clinical application remains challenging. Research has shown that miRNA expression is highly dynamic, varying across patients, disease stages, and different intestinal regions. Their dual function as both oncogenes and tumor suppressors further complicates their therapeutic use, as targeting miRNAs may yield unpredictable effects. Additionally, while miRNA-based therapies hold great potential, significant hurdles persist, including off-target effects, immune activation, and inefficiencies in delivery methods. The intricate interplay between miRNAs and gut microbiota adds another layer of complexity, influencing disease mechanisms and treatment responses. This review examined the role of miRNAs in digestive pathologies, emphasizing their diagnostic and therapeutic potential. While they offer new avenues for disease management, unresolved challenges underscore the need for further research to refine their clinical application.
Collapse
Affiliation(s)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | | | | |
Collapse
|
4
|
Lourenço P, Cruz C. G-Quadruplex Conformational Switching for miR-155-3p Detection Using a Ligand-Based Fluorescence Approach. Biomolecules 2025; 15:410. [PMID: 40149946 PMCID: PMC11940483 DOI: 10.3390/biom15030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
MicroRNA-155-3p (miR-155-3p) is an important biomarker in various pathological conditions, including cancer, making the development of sensitive and specific detection methods crucial. Here, we present a molecular beacon (MB-G4) that underwent a conformational switch upon hybridization with miR-155-3p, enabling the formation of a G-quadruplex (G4) structure. This G4 was recognized by the fluorogenic ligand N-methyl mesoporphyrin IX (NMM), producing a fluorescence signal proportional to the target concentration, making it a new detection method. The conformational dynamics of MB-G4 were characterized through circular dichroism (CD) spectroscopy and native polyacrylamide gel electrophoresis (PAGE), confirming the transition from a hairpin structure to an RNA-DNA hybrid duplex that facilitated G4 formation. The optimization of the experimental conditions, including the potassium chloride (KCl) and NMM concentrations, ensured selective detection with minimal background signal. The detection limit (LOD) was determined to be 10.85 nM, using a linear fluorescence response curve, and the specificity studies demonstrated a clear distinction between miR-155-3p and miR-155-5p. Furthermore, MB-G4 was studied with total RNA extracted from the lung cancer cell line A549 to evaluate its detection in a more complex environment and was able to detect its target, validating its potential for biological sample analysis.
Collapse
Affiliation(s)
- Pedro Lourenço
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Carla Cruz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Department of Chemistry, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
5
|
Ljungström M, Oltra E. Methods for Extracellular Vesicle Isolation: Relevance for Encapsulated miRNAs in Disease Diagnosis and Treatment. Genes (Basel) 2025; 16:330. [PMID: 40149481 PMCID: PMC11942051 DOI: 10.3390/genes16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles that facilitate intercellular communication by carrying essential biomolecules under physiological and pathological conditions including microRNAs (miRNAs). They are found in various body fluids, such as blood, urine, and saliva, and their levels fluctuate with disease progression, making them valuable diagnostic tools. However, isolating EVs is challenging due to their small size and biological complexity. Here, we summarize the principles behind the most common EV isolation methods including ultracentrifugation, precipitation, immunoaffinity, sorting, ultrafiltration, size exclusion chromatography, and microfluidics while highlighting protocol strengths and weaknesses. We also review the main strategies to identify and quantify circulating miRNAs with a particular focus on EV-encapsulated miRNAs. Since these miRNAs hold special clinical interest derived from their superior stability and therapeutic potential, the information provided here should provide valuable guidance for future research initiatives in the promising field of disease diagnostic and treatment based on EV-encapsulated miRNAs.
Collapse
Affiliation(s)
- Maria Ljungström
- Escuela de Doctorado, School of Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain;
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
6
|
Huang S, He S, Xiao F, Zhou Y, Lyu S. Circular RNA encoded by PPARG in the peripheral blood and a lipopolysaccharide-induced cardiomyocyte inflammation model is identified as a marker of fulminant myocarditis. Eur J Med Res 2025; 30:72. [PMID: 39905475 PMCID: PMC11792597 DOI: 10.1186/s40001-025-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Fulminant myocarditis (FM), a critical cardiac disease, is characterised by atypical initial symptoms and rapid progression and tends to lead to cardiomyocyte degeneration or necrosis. Reliable biological markers for FM screening remain lacking. Circular RNAs (circRNAs) are highly stable in peripheral blood due to their special closed-loop structure, and reports have described their involvement in regulating inflammatory responses and cell injury in cardiomyocytes. This study attempted to identify the abnormal expression of circRNAs in the peripheral blood of patients with FM and to evaluate the potential diagnostic value. METHODS Peripheral blood was collected from 5 children with FM and 5 sex- and age-matched healthy controls; total RNA was extracted from each sample, and the extracted RNA from each group was pooled. After RNase R treatment, high-throughput sequencing was performed to screen for differentially expressed circRNAs in the peripheral blood of patients. Biological function classification and enrichment analysis were used to explore the main action pathways involving differentially expressed circRNAs. A lipopolysaccharide (LPS)-induced cardiomyocyte inflammation model was used to explore the effect of inflammation on the expression of these dysregulated circRNAs. Receiver operating characteristic (ROC) curves were used to evaluate the potential clinical value of FM-related circRNAs as biomarkers in a large sample of patients. RESULTS CircRNA expression profiling of peripheral blood samples from patients revealed 6,435 and 3,678 circRNAs with upregulated and downregulated expression, respectively, compared with healthy controls. The expression of 1,749 circRNAs did not significantly differ between the groups. GO and KEGG analysis revealed that the genes encoding the dysregulated circRNAs were associated with various biological functions related to the risk of FM development, including infectious diseases, the immune system, and signal transduction. The high expression of hsa_circ_0064338 (circ_PPARG) was confirmed in both the myocardial cell inflammation model and peripheral blood from a large sample of FM patients. ROC curve analysis showed that the level of circ_PPARG in peripheral blood had a good ability to distinguish patients with FM from healthy controls. CONCLUSIONS Large numbers of abnormally regulated circRNAs were identified in peripheral blood from patients with FM; among these, the highly expressed circ_PPARG could distinguish patients from healthy controls to a certain extent. It is expected to become a potential clinical biomarker of FM in the future.
Collapse
Affiliation(s)
- Shasha Huang
- Department of Cardiology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Shumin He
- Department of Infectious Diseases, Zibo Ninth People's Hospital, Zibo, 256400, Shangdong, China
| | - Fei Xiao
- Department of Cardiology, Zibo Central Hospital, Zibo, 255024, China
| | - Yang Zhou
- Department of Pain Management, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
- Department of Central Laboratory, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, No. 201-209, Hubinnan Road, Siming District, Xiamen, 361004, Fujian, China.
| | - Su Lyu
- Department of Critical Medicine, The Friendship Hospital of Ily Kazak Autonomous Prefecture, No. 92 Stalin Street, Ili Kazakh, 835000, Xinjiang, China.
| |
Collapse
|
7
|
Chico-Sordo L, García-Velasco JA. MicroRNAs as Biomarkers and Therapeutic Targets in Female Infertility. Int J Mol Sci 2024; 25:12979. [PMID: 39684688 PMCID: PMC11640832 DOI: 10.3390/ijms252312979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The study of microRNAs (miRNAs) has emerged in recent decades as a key approach to understanding the pathophysiology of many diseases, exploring their potential role as biomarkers, and testing their use as future treatments. Not only have neurological, cardiovascular diseases, or cancer benefited from this research but also infertility. Female infertility, as a disease, involves alterations at multiple levels, such as ovarian and uterine alterations. This review compiles the latest studies published in humans that link female disorders that affect fertility with altered miRNA profiles. Studies on ovarian alterations, including diminished ovarian reserve (DOR), poor ovarian response to stimulation (POR), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are summarized and classified based on the expression and type of sample analyzed. Regarding uterine disorders, this review highlights upregulated and downregulated miRNAs primarily identified as biomarkers for endometriosis, adenomyosis, decreased endometrial receptivity, and implantation failure. However, despite the large number of studies in this field, the same limitations that reduce reproducibility are often observed. Therefore, at the end of this review, the main limitations of this type of study are described, as well as specific precautions or safety measures that should be considered when handling miRNAs.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
- School of Health Sciences, Medical Specialties and Public Health, Obstetrics and Gynecology Area, Rey Juan Carlos University Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
8
|
Ma W, Xie T, Li J, Wang Z, Zhang P, Sui X, Chen J. Split G-Quadruplex Programmed Recyclable AIE-Biosensor for Label-Free Detection of miRNA in Acute Kidney Injury. Anal Chem 2024; 96:17814-17823. [PMID: 39453383 DOI: 10.1021/acs.analchem.4c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We herein rationally designed a target-recyclable AIE-biosensor based on a split G-quadruplex for label-free detection of miRNA in acute kidney injury. Initially, the PG was in an "OFF" state, and the two split segments (G4-a and G4-b) of G4 were tethered at the two terminals of P1 and far away from each other due to the rigid duplex structure formed by the partially complementary intermediate sequences of P2 and P1, bringing MG with quenched fluorescence. In the presence of target, the 5'-PO4 P2 was displaced from PG probe and competitively hybridized with target, which led to G4-a and G4-b tending to form an intact intermolecular G-quadruplex, providing sites for MG intercalation, thus generating an activated "ON" fluorescence signal due to the restriction of intermolecular motion. Successively, relying on the λ-exonuclease (λ-Exo) cleavage reaction-assisted target recycling, more amounts of targets will be liberated, accompanied by forming more G-quadruplex and binding more MG, resulting in a strong fluorescence signal, further realizing the sensitive detection of the targets. As a proof of concept, miRNA-21 was chosen as the model target. Endowing with the precise target recognition and efficient cleavage activity of λ-Exo, the AIE-biosensor exhibited excellent detection sensitivity and specificity, which could quantitatively detect miRNA-21 down to 10.36 fM with a single mismatch specificity. The results revealed that the distinctive attributes of noninvasive, simple, and efficient in this G-quadruplex-based AIE-biosensor offered promising prospects for extensive applications in AKI screening and early clinical diagnosis.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
| | - Tingfei Xie
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Jinyan Li
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
| | - Zhitao Wang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiaolu Sui
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Jihong Chen
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
9
|
Mack T, Gianferri T, Niedermayer A, Debatin KM, Meyer LH, Muench V. Benchmarking miRNA reference genes in B-cell precursor acute lymphoblastic leukemia. Sci Rep 2024; 14:26390. [PMID: 39488607 PMCID: PMC11531470 DOI: 10.1038/s41598-024-77733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
MicroRNAs (miRNAs) play dual roles in acute lymphoblastic leukemia (ALL) as both tumor suppressors and oncogenes, and miRNA expression profiles can be used for patient risk stratification. Precise assessment of miRNA levels is crucial for understanding their role and function in gene regulation. Quantitative real-time polymerase chain reaction (qPCR) is a reliable, rapid, and cost-effective method for analyzing miRNA expression, assuming that appropriate normalization to stable references is performed to ensure valid data. In this study, we evaluated the stability of six commonly used miRNA references (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) across nine B-cell precursor (BCP) ALL cell lines, 22 patient-derived xenograft (PDX) BCP ALL samples from different organ compartments of leukemia bearing mice, and peripheral blood mononuclear cells (PBMCs) from six healthy donors. We used four different algorithms (Normfinder, ∆CT, geNorm, and BestKeeper) to assess the most stably expressed reference across all samples. Moreover, we validated our data in an additional set of 13 PDX ALL samples and six healthy controls, identifying miR-103a-3p and miR-532-5p as the most stable references for miRNA normalization in BCP ALL studies. Additionally, we demonstrated the critical importance of using a stable reference to accurately interpret miRNA data.
Collapse
Affiliation(s)
- Teresa Mack
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Tommaso Gianferri
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Vera Muench
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
10
|
Khoodoruth MAS, Khoodoruth WNCK, Uroos M, Al-Abdulla M, Khan YS, Mohammad F. Diagnostic and mechanistic roles of MicroRNAs in neurodevelopmental & neurodegenerative disorders. Neurobiol Dis 2024; 202:106717. [PMID: 39461569 DOI: 10.1016/j.nbd.2024.106717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
MicroRNAs (miRNAs) are emerging as crucial elements in the regulation of gene expression, playing a significant role in the underlying neurobiology of a wide range of neuropsychiatric disorders. This review examines the intricate involvement of miRNAs in neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Fragile X syndrome (FXS), autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), schizophrenia (SCZ), and mood disorders. This review highlights how miRNA dysregulation can illuminate the molecular pathways of these diseases and potentially serve as biomarkers for early diagnosis and prognosis. Specifically, miRNAs' ability to target genes critical to the pathology of neurodegenerative diseases, their role in the development of trinucleotide repeat and neurodevelopmental disorders, and their distinctive patterns in SCZ and mood disorders are discussed. The review also stresses the value of miRNAs in precision neuropsychiatry, where they could predict treatment outcomes and aid in disease management. Furthermore, the study of conserved miRNAs in model organisms like Drosophila underscores their broad utility and provides deeper mechanistic insights into their biological functions. This comprehensive examination of miRNAs across various conditions advocates for their integration into clinical practice, promising advancements in personalized healthcare for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | | | | | - Majid Al-Abdulla
- Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Yasser Saeed Khan
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar.
| |
Collapse
|
11
|
Romani C, Assoni C, Mattavelli D, Rampinelli V, Piazza C. The prognostic role of salivary miRNAs in oral squamous cell carcinoma: technical challenges and clinical perspectives. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2024; 44:279-284. [PMID: 39283255 PMCID: PMC11556778 DOI: 10.14639/0392-100x-n2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/06/2024] [Indexed: 11/12/2024]
Abstract
In management of oral squamous cell carcinoma (OSCC), only a few biomarkers, ranging from clinical and histopathological features to molecular alterations, have been demonstrated to have clinical and prognostic utility. The intent of this narrative review is to present current findings on the use of salivary microRNAs (miRNAs) as prognostic oncologic biomarkers in patients with OSCC. The ability to predict survival or recurrence during follow-up by quantification of specific miRNAs in saliva has been shown in a number of studies, and serves as a possible feature to address in future well-designed clinical studies to confirm their prognostic value. The non-invasiveness of liquid biopsy techniques, the ease of saliva collection, and the abundance and stability of miRNAs in such a biologic fluid make it an attractive combination to improve management of OSCC. For salivary miRNAs to be used in routine practice, however, methodological and sampling standardisation are still needed to increase the power and accuracy of the results obtained.
Collapse
Affiliation(s)
- Chiara Romani
- Angelo Nocivelli Institute of Molecular Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Claudia Assoni
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Medical Oncology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Davide Mattavelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vittorio Rampinelli
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Cesare Piazza
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
12
|
Manea M, Mărunțelu I, Constantinescu I. An In-Depth Approach to the Associations between MicroRNAs and Viral Load in Patients with Chronic Hepatitis B-A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:8410. [PMID: 39125978 PMCID: PMC11313658 DOI: 10.3390/ijms25158410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Scientists study the molecular activities of the hepatitis B virus (HBV). However, in vivo experiments are scarce. Some microRNAs are HBV-related, but their exact mechanisms are unknown. Our study provides an up-to-date view of the associations between microRNAs and HBV-DNA levels in chronically infected individuals. We conducted this large-scale research on five databases according to PRISMA guidance. Joanna Briggs Institute tools and Newcastle Ottawa Quality Assessment scores helped with quality evaluations. R 4.2.2 performed statistical computations for the meta-analysis. DIANA-microT 2023 and g:Profiler enriched the predictions of liver genes associated with miR-122 and miR-192-5p. From the 1313 records, we eliminated those irrelevant to our theme, non-article methodologies, non-English entries, and duplicates. We assessed associations between microRNAs and HBV-DNA levels. Overall, the pooled correlations favoured the general idea of the connection between non-coding molecules and viremia levels. MiR-122 and miR-192-5p were the most researched microRNAs, significantly associated with HBV-DNA levels. The connections between miR-122, miR-192-5p, let-7, miR-215, miR-320, and viral loads need further in vivo assessment. To conclude, this study evaluates systematically, for the first time, the correlations between non-coding molecules and viremia levels in patients. Our meta-analysis emphasizes potentially important pathways toward new inhibitors of the viral replication cycle.
Collapse
Affiliation(s)
- Marina Manea
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Ion Mărunțelu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
13
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
14
|
Fastner S, Rahman H, Gutierrez J, Shen N, Florell SR, Florell A, Stubben CJ, Boucher KM, Deacon DC, Judson-Torres RL, Grossman D. MicroRNA Signatures Associated with Basal Cell Carcinoma Subtypes. JID INNOVATIONS 2024; 4:100286. [PMID: 38994234 PMCID: PMC11238194 DOI: 10.1016/j.xjidi.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 07/13/2024] Open
Abstract
Basal cell carcinoma (BCC) is classified histologically into subtypes that determine treatment decisions. MicroRNAs (miRs) are short noncoding RNAs that may serve as diagnostic biomarkers. We investigated if particular miRs could distinguish BCC subtypes. We sequenced miRs from 55 archival BCC and 9 control skin specimens and then validated these miRs by qRT-PCR assay on a second BCC cohort (18 superficial, 16 nodular, 15 infiltrative) and control skin (n = 12). Expression values for individual miRs were normalized to miR-16-5p, which was the least variant among the control skin and BCC samples. We found that (i) miR-383-5p and miR-145-5p are downregulated in all BCC subtypes compared with control skin, (ii) miR-181c-5p is downregulated in superficial compared with invasive (nodular/infiltrative) BCC, and (iii) miR-22-5p and miR-708-5p are upregulated in infiltrative compared with superficial/nodular BCC and miR-30c-5p is downregulated in infiltrative compared with nodular BCC. Receiver operating characteristic analysis demonstrated excellent capacity of these miRs to discriminate between BCC and control skin (area under the curve, 0.94-0.98), whereas the capacity to discriminate between superficial and invasive subtypes was less robust (area under the curve, 0.7-0.8). Future prospective studies may determine the utility of these miRs as diagnostic biomarkers to guide biopsy and treatment of BCC.
Collapse
Affiliation(s)
- Suzanne Fastner
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Hafeez Rahman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jose Gutierrez
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nathan Shen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Scott R. Florell
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Abigail Florell
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Chris J. Stubben
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kenneth M. Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Dekker C. Deacon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Takemoto Y, Ito D, Komori S, Kishimoto Y, Yamada S, Hashizume A, Katsuno M, Nakatochi M. Comparing preprocessing strategies for 3D-Gene microarray data of extracellular vesicle-derived miRNAs. BMC Bioinformatics 2024; 25:221. [PMID: 38902629 PMCID: PMC11188187 DOI: 10.1186/s12859-024-05840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Extracellular vesicle-derived (EV)-miRNAs have potential to serve as biomarkers for the diagnosis of various diseases. miRNA microarrays are widely used to quantify circulating EV-miRNA levels, and the preprocessing of miRNA microarray data is critical for analytical accuracy and reliability. Thus, although microarray data have been used in various studies, the effects of preprocessing have not been studied for Toray's 3D-Gene chip, a widely used measurement method. We aimed to evaluate batch effect, missing value imputation accuracy, and the influence of preprocessing on measured values in 18 different preprocessing pipelines for EV-miRNA microarray data from two cohorts with amyotrophic lateral sclerosis using 3D-Gene technology. RESULTS Eighteen different pipelines with different types and orders of missing value completion and normalization were used to preprocess the 3D-Gene microarray EV-miRNA data. Notable results were suppressed in the batch effects in all pipelines using the batch effect correction method ComBat. Furthermore, pipelines utilizing missForest for missing value imputation showed high agreement with measured values. In contrast, imputation using constant values for missing data exhibited low agreement. CONCLUSIONS This study highlights the importance of selecting the appropriate preprocessing strategy for EV-miRNA microarray data when using 3D-Gene technology. These findings emphasize the importance of validating preprocessing approaches, particularly in the context of batch effect correction and missing value imputation, for reliably analyzing data in biomarker discovery and disease research.
Collapse
Affiliation(s)
- Yuto Takemoto
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8673, Japan
| | - Daisuke Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shota Komori
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8673, Japan.
| |
Collapse
|
16
|
Zheng P, Raj P, Liang L, Wu L, Paidi SK, Kim JH, Barman I. Label-free plasmonic spectral profiling of serum DNA. Biosens Bioelectron 2024; 254:116199. [PMID: 38492362 PMCID: PMC11056035 DOI: 10.1016/j.bios.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Genetic and epigenetic modifications are linked to the activation of oncogenes and inactivation of tumor suppressor genes. Likewise, the associated molecular alternations can best inform precision medicine for personalized tumor treatment. Therefore, performing characterization of genetic and epigenetic alternations at the molecular level represents a crucial step in early diagnosis and/or therapeutics of cancer. However, the prevailing methods for DNA analysis involve a series of tedious and complicated steps, in which important genetic and epigenetic information could be lost or altered. To provide a potential approach for non-invasive, direct, and efficient DNA analysis, herein, we present a promising strategy for label-free molecular profiling of serum DNA in its pristine form by fusing surface-enhanced Raman spectroscopy with machine learning on a superior plasmonic nanostructured platform. Using DNA methylation and single-point mutation as two case studies, the presented strategy allows a well-balanced sensitive and specific detection of epigenetic and genetic changes at the single-nucleotide level in serum. We envision the presented label-free strategy could serve as a versatile tool for direct molecular profiling in pristine forms of a wide range of biological markers and aid biomedical diagnostics as well as therapeutics.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
17
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
18
|
Endale HT, Mariye YF, Negash HK, Hassen FS, Asrat WB, Mengstie TA, Tesfaye W. MiRNA in cervical cancer: Diagnosis to therapy: Systematic review. Heliyon 2024; 10:e24398. [PMID: 38317930 PMCID: PMC10839805 DOI: 10.1016/j.heliyon.2024.e24398] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Cancers are one of the most public health problems worldwide. Among them, cervical cancer (CC) is the fourth most prevalent cancer with 604 000 new cases and 342 000 deaths. Mostly, it is associated with Human papillomavirus (HPV). It has been caused by the aggregation of genetic and epigenetic modifications in cervical epithelial cells. Although genetic mutations are given great attention for the carcinogenesis of CC, epigenetic changes have emerged as a hotspot area for CC biomarkers research with great implications for early diagnosis, prognosis, and treatment response prediction of the disease. Recently, there are several studies focused on miRNAs as biomarkers of cervical cancer. However, the precise function of miRNAs in the development of cervical cancer is not still completely understood, particularly when it comes to unconventional sampling materials like cervical mucus and plasma serum. Hence, this review article will give a summary of the miRNAs profiles that emerge at different stages of cervical cancer progression and their downstream effects on target genes and associated signaling pathways. Finally, these results may provide insight into the use of miRNAs as biomarkers for the prediction or diagnosis of cervical cancer or the development of miRNA-based therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Yitbarek Fantahun Mariye
- Department of Obstetrics & Gynecology, School of Medicine, College of Medicine & Health Sciences, Addis Ababa University, Ethiopia
| | - Habtu Kifle Negash
- Department of Human Anatomy, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
19
|
He H, Wang Y, Zhang X, Li X, Liu C, Yan D, Deng H, Sun W, Yi C, Wang J. Age-related noncanonical TRMT6-TRMT61A signaling impairs hematopoietic stem cells. NATURE AGING 2024; 4:213-230. [PMID: 38233630 DOI: 10.1038/s43587-023-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Aged hematopoietic stem cells (HSCs) exhibit compromised reconstitution capacity and differentiation bias toward myeloid lineages. However, the molecular mechanism behind HSC aging remains largely unknown. In this study, we observed that RNA N1-methyladenosine-generating methyltransferase TRMT6-TRMT61A complex is increased in aged murine HSCs due to aging-declined CRL4DCAF1-mediated ubiquitination degradation signaling. Unexpectedly, no difference of tRNA N1-methyladenosine methylome is observed between young and aged hematopoietic stem and progenitor cells, suggesting a noncanonical role of the TRMT6-TRMT61A complex in the HSC aging process. Further investigation revealed that enforced TRMT6-TRMT61A impairs HSCs through 3'-tiRNA-Leu-CAG and subsequent RIPK1-RIPK3-MLKL-mediated necroptosis cascade. Deficiency of necroptosis ameliorates the self-renewal capacity of HSCs and counters the physiologically deleterious effect of enforced TRMT6-TRMT61A on HSCs. Together, our work uncovers a nonclassical role for the TRMT6-TRMT61A complex in HSC aging and highlights a therapeutic target.
Collapse
Affiliation(s)
- Hanqing He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yuqian Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chao Liu
- Department of Laboratory Animal Science, Hebei Key Lab of Hebei Laboratory Animal Science, Hebei Medical University, Shijiazhuang, P. R. China
| | - Dingfei Yan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
20
|
Giordano C, Accattatis FM, Gelsomino L, Del Console P, Győrffy B, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Pietroluongo E, Zinno F, Bonofiglio D, Andò S, Barone I, Catalano S. miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer. Int J Mol Sci 2023; 24:15695. [PMID: 37958677 PMCID: PMC10649351 DOI: 10.3390/ijms242115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Circulating extracellular vesicle (EV)-derived microRNAs (miRNAs) are now considered the next generation of cancer "theranostic" tools, with strong clinical relevance. Although their potential in breast cancer diagnosis has been widely reported, further studies are still required to address this challenging issue. The present study examined the expression profiles of EV-packaged miRNAs to identify novel miRNA signatures in breast cancer and verified their diagnostic accuracy. Circulating EVs were isolated from healthy controls and breast cancer patients and characterized following the MISEV 2018 guidelines. RNA-sequencing and real-time PCR showed that miRNA-27a and miRNA-128 were significantly down-regulated in patient-derived EVs compared to controls in screening and validation cohorts. Bioinformatics analyses of miRNA-target genes indicated several enriched biological processes/pathways related to breast cancer. Receiver operating characteristic (ROC) curves highlighted the ability of these EV-miRNAs to distinguish breast cancer patients from non-cancer controls. According to other reports, the levels of EV-miRNA-27a and EV-miRNA-128 are not associated with their circulating ones. Finally, evidence from the studies included in our systematic review underscores how the expression of these miRNAs in biofluids is still underinvestigated. Our findings unraveled the role of serum EV-derived miRNA-27a and miRNA-128 in breast cancer, encouraging further investigation of these two miRNAs within EVs towards improved breast cancer detection.
Collapse
Affiliation(s)
- Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Clinical Laboratory Unit, A.O. “Annunziata”, 87100 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Piercarlo Del Console
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Balázs Győrffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094 Budapest, Hungary;
- TTK Cancer Biomarker Research Group, 1117 Budapest, Hungary
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80133 Naples, Italy;
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Francesco Zinno
- Immunohaematology and Transfusion Medicine, A.O. “Annunziata”, 87100 Cosenza, Italy;
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Clinical Laboratory Unit, A.O. “Annunziata”, 87100 Cosenza, Italy
| |
Collapse
|
21
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Wang Y, Hu Y, Xie R, Zeng Q, Hong Y, Chen X, Zhang P, Zeng L, Zhang Y, Zeng S, Yang H. Ultrasensitive label-free miRNA-21 detection based on MXene-enhanced plasmonic lateral displacement measurement. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4055-4062. [PMID: 39635639 PMCID: PMC11501375 DOI: 10.1515/nanoph-2023-0432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 12/07/2024]
Abstract
miRNAs are small non-coding RNA molecules which serve as promising biomarkers due to their important roles in the development and progression of various cancer types. The detection of miRNAs is of vital importance to the early-stage diagnostics and prognostics of multiple diseases. However, traditional detection strategies have faced some challenges owing to the intrinsic characteristics of miRNAs including small size, short sequence length, low concentration level and high sequence homology in complex real samples. To overcome these challenges, we proposed a MXene-enhanced plasmonic biosensor for real-time and label-free detection of miRNA. By utilizing MXene nanomaterial which possesses unique characteristics including large surface area and strong carrier confinement abilities, we tuned the absorption of our plasmonic sensing substrate to reach a "zero-reflection" state and induced an extremely sharp phase change at the resonance angle. Combined with the sensing mechanism based on phase-induced lateral displacement measurement, this MXene-enhanced plasmonic biosensor can achieve a much superior sensing performance compared to traditional SPR devices. Based on this biosensing scheme, the ultrasensitive detection of target miRNA with a detection limit down to 10 fM has been successfully demonstrated. More importantly, single-base mismatched miRNA can be easily distinguished from the target miRNA according to the sensing signal. Furthermore, our plasmonic biosensor is capable of detecting miRNA in complex media such as 100 % human serum samples without compromising the detection sensitivity. This MXene-enhanced plasmonic sensing scheme has the ability of detecting miRNAs with extremely low concentration levels in complex surrounding media without the need of introducing extra labels or amplification tags, which holds great potential in various biological applications and clinical diagnostics.
Collapse
Affiliation(s)
- Yuye Wang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yurui Hu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Ruibin Xie
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Qi Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yanhang Hong
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xi Chen
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Pengcheng Zhang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Lin Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yi Zhang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000Troyes, France
| | - Hui Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
23
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Cai Y, Liu P, Xu Y, Xia Y, Peng X, Zhao H, Chen Q. Biomarkers of obesity-mediated insulin resistance: focus on microRNAs. Diabetol Metab Syndr 2023; 15:167. [PMID: 37537674 PMCID: PMC10401761 DOI: 10.1186/s13098-023-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Obesity and metabolic syndromes are becoming increasingly prevalent worldwide. Insulin resistance (IR) is a common complication of obesity. However, IR occurrence varies across individuals with obesity and may involve epigenetic factors. To rationalize the allocation of healthcare resources, biomarkers for the early risk stratification of individuals with obesity should be identified. MicroRNAs (miRNAs) are closely associated with metabolic diseases and involved in epigenetic regulation. In this review, we have summarized the changes in miRNA expression in the peripheral circulation and tissues of patients and animals with obesity-associated IR over the last 5 years and identified several candidate biomarkers that predict obesity-related IR. There are areas for improvement in existing studies. First, more than the predictive validity of a single biomarker is required, and a biomarker panel needs to be formed. Second, miRNAs are often studied in isolation and do not form a network of signaling pathways. We believe that early biomarkers can help clinicians accurately predict individuals prone to obesity-related IR at an early stage. Epigenetic regulation may be one of the underlying causes of different clinical outcomes in individuals with obesity. Future studies should focus on objectively reflecting the differences in miRNA profile expression in individuals with obesity-related IR, which may help identify more reliable biomarkers. Understanding the metabolic pathways of these miRNAs can help design new metabolic risk prevention and management strategies, and support the development of drugs to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuguo Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xiaowan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
25
|
Siu MC, Voisey J, Zang T, Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen 2023; 31:439-453. [PMID: 37268303 DOI: 10.1111/wrr.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
MicroRNAs are small, non-coding RNAs that regulate gene expression, and consequently protein synthesis. Downregulation and upregulation of miRNAs and their corresponding genes can alter cell apoptosis, proliferation, migration and fibroproliferative responses following a thermal injury. This review summarises the evidence for altered human miRNA expression post-burn, and during wound healing and scarring. In addition, the most relevant miRNA targets and their roles in potential pathways are described. Previous studies using molecular techniques have identified 197 miRNAs associated with human wound healing, burn wound healing and scarring. Five miRNAs alter the expression of fibroproliferative markers, proliferation and migration of fibroblasts and keratinocytes post-burn: hsa-miR-21 and hsa-miR-31 are increased after wounding, and hsa-miR-23b, hsa-miR-200b and hsa-let-7c are decreased. Four of these five miRNAs are associated with the TGF-β pathway. In the future, large scale, in vivo, longitudinal human studies utilising a range of cell types, ethnicity and clinical healing outcomes are fundamental to identify burn wound healing and scarring specific markers. A comprehensive understanding of the underlying pathways will facilitate the development of clinical diagnostic or prognostic tools for better scar management and the identification of novel treatment targets for improved healing outcomes in burn patients.
Collapse
Affiliation(s)
- Man Ching Siu
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Tuo Zang
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Norouzi S, Soltani S, Alipour E. Recent advancements in biosensor designs toward the detection of intestine cancer miRNA biomarkers. Int J Biol Macromol 2023:125509. [PMID: 37364808 DOI: 10.1016/j.ijbiomac.2023.125509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer diagnosis and treatment have been of broad interest among scientists in the last decades due to the high death rate, widespread occurrence, and recurrence after treatment. The survival rate of cancer patients depends greatly on early detection and appropriate treatments. Therefore developing new technologies applicable to sensitive and specific methods of cancer detection is an inevitable task for cancer researchers. Abnormal miRNA expression is contributed to severe diseases such as cancers and since their expression level and type differ strictly during carcinogenesis and later metastasis and treatments, the improved detection accuracy of these miRNAs would undoubtedly lead to early diagnosis, prognosis, and targeted therapy. Biosensors are accurate and straightforward analytical devices that have had practical applications especially in the last decade. Their domain is still growing through a combination of attractive nanomaterials and amplification methods, leading to innovative biosensing platforms for the efficient detection of miRNAs as diagnostic and prognostic biomarkers. In this review, we will provide the recent developments in biosensors to detect intestine cancer miRNA biomarkers and also discuss the challenges and outcomings of this field.
Collapse
Affiliation(s)
| | - Somaieh Soltani
- Pharmacy faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
27
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
28
|
Choi D, Kang W, Park S, Son B, Park T. Identification of Glucocorticoid Receptor Target Genes That Potentially Inhibit Collagen Synthesis in Human Dermal Fibroblasts. Biomolecules 2023; 13:978. [PMID: 37371558 DOI: 10.3390/biom13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.
Collapse
Affiliation(s)
- Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soyoon Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bomin Son
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
29
|
Zhao L, Li T, Xu X, Xu Y, Li D, Song W, Zhan T, He P, Zhou H, Xu JJ, Chen HY. Polyhedral Au Nanoparticle/MoO x Heterojunction-Enhanced Ultrasensitive Dual-Mode Biosensor for miRNA Detection Combined with a Nonenzymatic Cascade DNA Amplification Circuit. Anal Chem 2023. [PMID: 37279082 DOI: 10.1021/acs.analchem.3c01062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel homologous surface-enhanced Raman scattering (SERS)-electrochemical (EC) dual-mode biosensor based on a 3D/2D polyhedral Au nanoparticle/MoOx nanosheet heterojunction (PAMS HJ) and target-triggered nonenzyme cascade autocatalytic DNA amplification (CADA) circuit was constructed for highly sensitive detection of microRNA (miRNA). Mixed-dimensional heterostructures were prepared by in situ growth of polyhedral Au nanoparticles (PANPs) on the surface of MoOx nanosheets (MoOx NSs) via a seed-mediated growth method. As a detection substrate, the resulting PAMS HJ shows the synergistic effects of both electromagnetic and chemical enhancements, efficient charge transfer, and robust stability, thus achieving a high SERS enhancement factor (EF) of 4.2 × 109 and strong EC sensing performance. Furthermore, the highly efficient molecular recognition between the target and smart lock probe and the gradually accelerated cascade amplification reaction further improved the selectivity and sensitivity of our sensing platform. The detection limits of miRNA-21 in SERS mode and EC mode were 0.22 and 2.69 aM, respectively. More importantly, the proposed dual-mode detection platform displayed excellent anti-interference and accuracy in the analysis of miRNA-21 in human serum and cell lysates, indicating its potential as a reliable tool in the field of biosensing and clinical analysis.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tiantian Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinlin Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yang Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Dongxiang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Weiling Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tianrong Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Peng He
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Yoshida K, Yokoi A, Kitagawa M, Sugiyama M, Yamamoto T, Nakayama J, Yoshida H, Kato T, Kajiyama H, Yamamoto Y. Downregulation of miR‑10b‑5p facilitates the proliferation of uterine leiomyosarcoma cells: A microRNA sequencing‑based approach. Oncol Rep 2023; 49:86. [PMID: 36929268 PMCID: PMC10073409 DOI: 10.3892/or.2023.8523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
Uterine leiomyosarcoma (ULMS) is one of the most aggressive gynecological malignancies. In addition, the molecular background of ULMS has not been fully elucidated due to its low incidence. Therefore, no effective treatment strategies have been established based on its molecular background. The present study aimed to investigate the roles of microRNAs (miRNAs/miRs) in the development of ULMS. Comprehensive miRNA sequencing was performed using six ULMS and three myoma samples, and revealed 53 and 11 significantly upregulated and downregulated miRNAs, respectively. One of the most abundant miRNAs in myoma samples was miR‑10b‑5p. The mean normalized read count of miR‑10b‑5p was 93,650 reads in myoma, but only 27,903 reads in ULMS. Subsequently, to investigate the roles of miR‑10b‑5p, gain‑of‑function analysis was performed using SK‑UT‑1 and SK‑LMS‑1 cell lines. The overexpression of miR‑10b‑5p suppressed cell proliferation and reduced the number of colonies. Moreover, miR‑10b‑5p increased the number of cells in the G1 phase. In conclusion, tumor‑suppressive miR‑10b‑5p was significantly downregulated in ULMS compared with in myoma; thus, miR‑10b‑5p may serve a specific role in sarcoma progression.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 466-8550, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Masami Kitagawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomofumi Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
31
|
Yu S, Sun Y, Cai J, Zhou Y, Zhu JJ. A separable nanodevice enables multilayer imaging of diverse biomarkers for precise diagnosis. Chem Commun (Camb) 2023; 59:3419-3422. [PMID: 36853267 DOI: 10.1039/d2cc05825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An acid-driven separable nanodevice was designed for multilayer imaging of diverse biomarkers with different spatial distributions in living cells. The proposed nanodevice can simultaneously perform in situ imaging of the intracellular microRNAs and extracellular pH, affording a new approach to develop a precise imaging system for disease diagnosis.
Collapse
Affiliation(s)
- Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jingyi Cai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
32
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
33
|
Yang X, Zhao J, Hou L, Sakharov IY, Tian J, Zhao S. A microchip electrophoresis-assisted triple-cycle cascade chemiluminescence signal amplification strategy for the ultrasensitive detection of microRNA-141 in cells. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
35
|
Chen Y, Ye L, Chen H, Fan T, Qiu C, Chen Y, Jiang Y. Simple Isothermal and Label-Free Strategy for Colorectal Cancer Potential Biomarker miR-625-5p Detection. BIOSENSORS 2023; 13:78. [PMID: 36671913 PMCID: PMC9855811 DOI: 10.3390/bios13010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
miRNA is considered a novel biomarker for cancer diagnosis and due to its low level in vivo, the development of new detection methods for it has become a research hotspot in recent years. Here, we firstly found that miR-625-5p was significantly upregulated in colorectal cancer tissues by means of differential expression analysis of the dbDEMC database and clinical validation. Subsequently, it was found that miR-625-5p promoted cell proliferation and migration but inhibited apoptosis through phenotypic experiments; thus, we initially identified miR-625-5p as a potential biomarker for colorectal cancer. Moreover, in order to monitor slight changes in the miR-625-5p level, we developed a novel detection method for it based on strand displacement amplification (SDA). In this system, a hairpin was designed to recognize and pair with miR-625-5p, which was used as a primer to initiate SDA, and a large number of complementary DNAs were generated via cyclic amplification, followed by the addition of SYBR Gold to achieve quantitative analysis of miR-625-5p. Moreover, this method showed a good response to miR-625-5p with a detection limit of 8.6 pM and a dynamic range of 0.01 to 200 nM, and the specificity of it was verified using a set of other miRNAs as an interference. Finally, we set up different concentrations of biologic samples for detection to verify the practicability of the method. The results of this study indicate that this detection method has great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Lizhen Ye
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Cheng Qiu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Thomas KT, Vermare A, Egleston SO, Wang YD, Mishra A, Lin T, Peng J, Zakharenko SS. MicroRNA 3' ends shorten during adolescent brain maturation. Front Mol Neurosci 2023; 16:1168695. [PMID: 37122627 PMCID: PMC10140418 DOI: 10.3389/fnmol.2023.1168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics remain poorly understood during adolescent and early adult brain maturation, when symptoms often first appear. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early-, mid-, and late-adolescent and adult mice. Furthermore, we use quantitative proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects. We found that ~25% of miRNAs' 3' ends shorten with age due to increased 3' trimming and decreased U tailing. Particularly, shorter but functionally competent isoforms (isomiRs) of miR-338-3p increase up to 10-fold during adolescence and only in brain. MiRNAs that undergo 3' shortening exhibit stronger negative correlations with targets that decrease with age and stronger positive correlations with targets that increase with age, than miRNAs with stable 3' ends. Increased 3' shortening with age was also observed in available mouse and human miRNA-seq data sets, and stronger correlations between miRNAs that undergo shortening and their mRNA targets were observed in two of the three available data sets. We conclude that age-associated miRNA 3' shortening is a well-conserved feature of postnatal brain maturation.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anaïs Vermare
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Suzannah O. Egleston
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Stanislav S. Zakharenko,
| |
Collapse
|
37
|
Khan QH. Identification of Conserved and Novel MicroRNAs with their Targets in Garden Pea ( Pisum Sativum L.) Leaves by High-Throughput Sequencing. Bioinform Biol Insights 2023; 17:11779322231162777. [PMID: 37020501 PMCID: PMC10068972 DOI: 10.1177/11779322231162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, endogenous, non-coding RNAs of 20–24 nucleotides that play a significant role in post-transcriptional gene regulation. Various conserved and novel miRNAs have been characterized, especially from the plant species whose genomes were well-characterized; however, information on miRNA in economically important plants such as pea ( Pisum sativum L.) is limited. In this study, I have identified conserved and novel miRNA in garden pea plant leaves samples along with their targets by analyzing the next generation sequencing (NGS) data. The raw data obtained from NGS were processed and 1.38 million high-quality non-redundant reads were retained for analysis, this tremendous quantity of reads indicates a large and diverse small RNA population in pea leaves. After analyzing the deep sequencing data, 255 conserved and 11 novel miRNAs were identified in the garden pea leaves sample. Utilizing psRNATarget tool, the miRNA targets of conserved and novel miRNA were predicted. Further, the functional annotation of the miRNA targets were performed using blast2Go software and the target gene products were predicted. The miRNA target gene products along with GO_ID (Gene Ontology Identifier) were categorized into biological processes, cellular components, and molecular functions. The information obtained from this study will provide genomic resources that will help in understanding miRNA-mediated post-transcriptional gene regulation in garden peas.
Collapse
Affiliation(s)
- Qurshid Hasan Khan
- Qurshid Hasan Khan, Department of Plant
Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana,
India.
| |
Collapse
|
38
|
Lee JI, Kim SS, Kang DH. Stress response of Salmonella Montevideo adapted to red pepper powders at various humidities and resistance to near-infrared heating. Food Res Int 2022; 162:111972. [DOI: 10.1016/j.foodres.2022.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
39
|
Wang J, Wen L, Cao R, Gao X, Li X, Xu E, Zhang Q, Xu S, Dai C, Xue Q. Metal sulfide nanoparticle-based dual barcode-triggered DNAzyme cascade for multiplex miRNA detection in a single assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4523-4530. [PMID: 36318214 DOI: 10.1039/d2ay01367c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single miRNAs are not specific and accurate enough to meet the strict diagnosis requirements in practice. Therefore, simultaneous monitoring of multiplexed miRNA in biological samples can not only improve the accuracy and specificity of bioassays but also avoid the squandering of valuable biological specimens. Herein, we designed a metal sulfide nanoparticle-based dual barcode-triggered DNAzyme cascade strategy for the sensitive and simultaneous multiplex miRNA detection in a single assay. Firstly, the capture probes (H1, H2) specifically recognize targets (miRNA-21, miRNA-141), exposing the stem of H1 and H2. Then, with the introduction of a detection probe (CuS-H3, ZnS-H4), the exposed H1 and H2 catalyze the hairpin assembly (CHA) reaction, realizing target miRNA recycling, and forming H1/H3-CuS and H2/H4-ZnS complexes. Subsequently, the formed H1/H3-CuS and H2/H4-ZnS complexes are encoded on magnetic beads through the biotin/streptavidin interaction. The CuS and ZnS nanoparticles captured by magnetic beads release thousands of Cu2+ and Zn2+via the cation exchange reaction. Finally, the released Cu2+ and Zn2+ specially activate the DNAzyme of the catalytic and molecular beacon (CAMB) system. The CAMB system affords an amplified fluorescence signal output by cycling and regenerating the metal ion-dependent DNAzyme to realize multiple enzymatic turnovers. Benefiting from target recycling, nanoparticle amplification, and catalytic and molecular beacon amplification, there is substantial amplification and the target miRNAs can be detected at 0.06 fM (miRNA-21) and 0.048 fM (miRNA-141) in a single assay. Furthermore, the high selectivity and accuracy of the assay were proved by practical analysis of different cancer cells, which exhibited good practicability in multiplex miRNA detection in clinical sera. The results indicate that the proposed strategy holds great potential for the sensitive detection of multiplex cancer biomarkers and offers the opportunity for future applications in clinical diagnosis.
Collapse
Affiliation(s)
- Jiao Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Liyuan Wen
- Earthquake Monitoring Center Station of Liaocheng, Earthquake Administration of Shandong Province, China
| | - Ruyuan Cao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xiaorong Gao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ensheng Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Shuling Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan 250012, Shandong, P. R. China.
| | - Qingwang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
40
|
Kogut S, Paculova H, Rodriguez P, Boyd J, Richman A, Palaria A, Schjerven H, Frietze S. Ikaros Regulates microRNA Networks in Acute Lymphoblastic Leukemia. EPIGENOMES 2022; 6:37. [PMID: 36278683 PMCID: PMC9624360 DOI: 10.3390/epigenomes6040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
The hematopoietic transcription factor Ikaros (IKZF1) regulates normal B cell development and functions as a tumor suppressor in precursor B cell acute lymphoblastic leukemia (B-ALL). MicroRNAs (miRNAs) are small regulatory RNAs that through post-transcriptional gene regulation play critical roles in intracellular processes including cell growth in cancer. However, the role of Ikaros in the regulation of miRNA expression in developing B cells is unknown. In this study, we examined the Ikaros-regulated miRNA targets using human IKZF1-mutated Ph+ B-ALL cell lines. Inducible expression of wild-type Ikaros (the Ik1 isoform) caused B-ALL growth arrest and exit from the cell cycle. Global miRNA expression analysis revealed a total of 31 miRNAs regulated by IK1, and ChIP-seq analysis showed that Ikaros bound to several Ik1-responsive miRNA genes. Examination of the prognostic significance of miRNA expression in B-ALL indicate that the IK1-regulated miRNAs hsa-miR-26b, hsa-miR-130b and hsa-miR-4649 are significantly associated with outcome in B-ALL. Our findings establish a potential regulatory circuit between the tumor-suppressor Ikaros and the oncogenic miRNA networks in IKZF1-mutated B-ALL. These results indicate that Ikaros regulates the expression of a subset of miRNAs, of which several may contribute to B-ALL growth.
Collapse
Affiliation(s)
- Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Princess Rodriguez
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Alyssa Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Amrita Palaria
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- The University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
41
|
Pervez MT, Hasnain MJU, Abbas SH, Moustafa MF, Aslam N, Shah SSM. A Comprehensive Review of Performance of Next-Generation Sequencing Platforms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3457806. [PMID: 36212714 PMCID: PMC9537002 DOI: 10.1155/2022/3457806] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Background Next-generation sequencing methods have been developed and proposed to investigate any query in genomics or clinical activity involving DNA. Technical advancement in these sequencing methods has enhanced sequencing volume to several billion nucleotides within a very short time and low cost. During the last few years, the usage of the latest DNA sequencing platforms in a large number of research projects helped to improve the sequencing methods and technologies, thus enabling a wide variety of research/review publications and applications of sequencing technologies. Objective The proposed study is aimed at highlighting the most fast and accurate NGS instruments developed by various companies by comparing output per hour, quality of the reads, maximum read length, reads per run, and their applications in various domains. This will help research institutions and biological/clinical laboratories to choose the sequencing instrument best suited to their environment. The end users will have a general overview about the history of the sequencing technologies, latest developments, and improvements made in the sequencing technologies till now. Results The proposed study, based on previous studies and manufacturers' descriptions, highlighted that in terms of output per hour, Nanopore PromethION outperformed all sequencers. BGI was on the second position, and Illumina was on the third position. Conclusion The proposed study investigated various sequencing instruments and highlighted that, overall, Nanopore PromethION is the fastest sequencing approach. BGI and Nanopore can beat Illumina, which is currently the most popular sequencing company. With respect to quality, Ion Torrent NGS instruments are on the top of the list, Illumina is on the second position, and BGI DNB is on the third position. Secondly, memory- and time-saving algorithms and databases need to be developed to analyze data produced by the 3rd- and 4th-generation sequencing methods. This study will help people to adopt the best suited sequencing platform for their research work, clinical or diagnostic activities.
Collapse
Affiliation(s)
- Muhammad Tariq Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Mirza Jawad ul Hasnain
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Syed Hassan Abbas
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Mahmoud F. Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Naeem Aslam
- Department of Computer Science, NFCIET, Khanewal Road, Multan, Pakistan
| | | |
Collapse
|
42
|
Karabegović I, Abozaid Y, Maas SCE, Labrecque J, Bos D, De Knegt RJ, Ikram MA, Voortman T, Ghanbari M. Plasma MicroRNA Signature of Alcohol Consumption: The Rotterdam Study. J Nutr 2022; 152:2677-2688. [PMID: 36130258 PMCID: PMC9839997 DOI: 10.1093/jn/nxac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent a class of noncoding RNAs that regulate gene expression and are implicated in the pathogenesis of different diseases. Alcohol consumption might affect the expression of miRNAs, which in turn could play a role in risk of diseases. OBJECTIVES We investigated whether plasma concentrations of miRNAs are altered by alcohol consumption. Given the existing evidence showing the link between alcohol and liver diseases, we further explored the extent to which these associations are mediated by miRNAs. METHODS Profiling of plasma miRNAs was conducted using the HTG EdgeSeq miRNA Whole Transcriptome Assay in 1933 participants of the Rotterdam Study. Linear regression was implemented to explore the link between alcohol consumption (glasses/d) and miRNA concentrations, adjusted for age, sex, cohort, BMI, and smoking. Sensitivity analysis for alcohol categories (nondrinkers, light drinkers, and heavy drinkers) was performed, where light drinkers corresponded to 0-2 glasses/d in men and 0-1 glasses/d in women, and heavy drinkers to >2 glasses/d in men and >1 glass/d in women. Moreover, we utilized the alcohol-associated miRNAs to explore their potential mediatory role between alcohol consumption and liver-related traits. Finally, we retrieved putative target genes of identified miRNAs to gain an understanding of the molecular pathways concerning alcohol consumption. RESULTS Plasma concentrations of miR-193b-3p, miR-122-5p, miR-3937, and miR-4507 were significantly associated with alcohol consumption surpassing the Bonferroni-corrected P < 8.46 × 10-5. The top significant association was observed for miR-193b-3p (β = 0.087, P = 2.90 × 10-5). Furthermore, a potential mediatory role of miR-3937 and miR-122-5p was observed between alcohol consumption and liver traits. Pathway analysis of putative target genes revealed involvement in biological regulation and cellular processes. CONCLUSIONS This study indicates that alcohol consumption is associated with plasma concentrations of 4 miRNAs. We outline a potential mediatory role of 2 alcohol-associated miRNAs (miR-3937 and miR-122-5p), laying the groundwork for further exploration of miRNAs as potential mediators between lifestyle factors and disease development.
Collapse
Affiliation(s)
- Irma Karabegović
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yasir Abozaid
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jeremy Labrecque
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert J De Knegt
- Department of Gastroenterology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
43
|
Rahimpour A, Heidarzadehpilehrood R, Abdollahi S, Ranjbari H, Shams Z, Ghasemi SA, Najmaei S, Pirhoushiaran M. A comprehensive bioinformatic analysis revealed novel MicroRNA biomarkers of Parkinson's disease. Cell Biol Int 2022; 46:1841-1851. [PMID: 36098337 DOI: 10.1002/cbin.11869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is categorized as a neurodegenerative disorder. Different studies have focused on the role of microRNAs (miRNAs) on PD progression. Due to its complexity in initiation and progression, a considerable requirement has arisen to identify novel miRNA biomarkers in a noninvasive manner. In silico analysis has been used to select differentially expressed miRNAs (DE-miRNAs) and key pathways in this disease. In this manner, several data sets of different neurodegenerative diseases have been analyzed to purify the findings of the present study. Totally, 15 DE miRNAs showed significant changes compared to healthy controls and other neurodegenerative diseases. Then, the targets of the miRNAs were predicted through miRTarBase and TargetScan databases. Besides, enrichment analysis was implemented for predicted target genes. Most of the target genes were enriched in the TRAIL signaling pathway, Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, protein serine/threonine kinase activity, and Cytoplasm. Moreover, a protein-protein interaction network was constructed to find the most key DE miRNAs and targets in this disease. The results of the present study may help researchers shed light on the discovery of novel biomarkers for PD.
Collapse
Affiliation(s)
- Alireza Rahimpour
- Islamic Azad University of science and research branch Tehran, Tehran, Iran
| | - Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haidar Ranjbari
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zinat Shams
- Department of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seyed Abbas Ghasemi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Shima Najmaei
- University of Rostock, Institute of Biological Sciences, Division of Microbiology, A.-Einstein-Str. 3, Rostock, Germany
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
45
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
46
|
Kochhar P, Vukku M, Rajashekhar R, Mukhopadhyay A. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr 2022; 76:1088-1102. [PMID: 34741137 DOI: 10.1038/s41430-021-01041-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Placental-origin microRNA (miRNA) profiles can be useful toward early diagnosis and management of fetal growth restriction (FGR) and associated complications. We conducted a systematic review to identify case-control studies that have examined miRNA signatures associated with human FGR. We systematically searched PubMed and ScienceDirect databases for relevant articles and manually searched reference lists of the relevant articles till May 18th, 2021. Of the 2133 studies identified, 21 were included. FGR-associated upregulation of miR-210 and miR-424 and downregulation of a placenta-specific miRNA cluster miRNA located on C19MC (miR-518b, miR-519d) and miR-221-3p was reported by >1 included studies. Analysis of the target genes of these miRNA as well as pathway analysis pointed to the involvement of angiogenesis and growth signaling pathways, such as the phosphatidylinositol 3-kinase- protein kinase B (PI3K-Akt) pathway. Only 3 out of the 21 included studies reported FGR-associated miRNAs in matched placental and maternal blood samples. We conclude that FGR-associated placental miRNAs could be utilized to inform clinical practice towards early diagnosis of FGR, provided enough evidence from studies on matched placental and maternal blood samples become available.Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42019136762.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - M Vukku
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - R Rajashekhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.
| |
Collapse
|
47
|
Target-Responsive Template Structure Switching-Mediated Exponential Rolling Circle Amplification for the Direct and Sensitive Detection of MicroRNA. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Askari Z, Ruehli F, Bouwman A, Shariati V, Naddaf SR, Otranto D, Mas-Coma S, Rezaeian M, Boenke N, Stöllner T, Aali A, Mobedi I, Mowlavi G. Genomic palaeoparasitology traced the occurrence of Taenia asiatica in ancient Iran (Sassanid Empire, 2th cent. CE-6th cent. CE). Sci Rep 2022; 12:12045. [PMID: 35835776 PMCID: PMC9283436 DOI: 10.1038/s41598-022-10690-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
Palaeoparasitology investigates parasitological infections in animals and humans of past distance by examining biological remains. Palaeofaeces (or coprolites) are biological remains that provide valuable information on the disease, diet, and population movements in ancient times. Today, advances in detecting ancient DNA have cast light on dark corners that microscopy could never reach. The archaeological site of the Chehrabad salt mine of Achaemenid (550–330 BC) and Sassanid (third–seventh century AD) provides remains of various biotic and abiotic samples, including animal coprolites, for multidisciplinary studies. In the present work, we investigated coprolites for helminth eggs and larvae by microscopy and traced their biological agents’ DNA by Next Generation Sequencing. Our results revealed various helminths, including Taenia asiatica, the species introduced in the 1990s. Implementing advanced modern molecular techniques like NGS gives a paramount view of pathogenic agents in space and time.
Collapse
Affiliation(s)
- Zeynab Askari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Frank Ruehli
- Institute of Evolutionary Medicine, Zurich University, Zürich, Switzerland
| | - Abigail Bouwman
- Institute of Evolutionary Medicine, Zurich University, Zürich, Switzerland
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.,Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Mostafa Rezaeian
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nicole Boenke
- Institute for Archaeological Science, Ruhr-University Bochum, Bochum, Germany.,German Mining-Museum, Bochum, Germany
| | - Thomas Stöllner
- Institute for Archaeological Science, Ruhr-University Bochum, Bochum, Germany.,German Mining-Museum, Bochum, Germany
| | | | - Iraj Mobedi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mowlavi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Hailu FT, Karimpour-Fard A, Toni LS, Bristow MR, Miyamoto SD, Stauffer BL, Sucharov CC. Integrated analysis of miRNA-mRNA interaction in pediatric dilated cardiomyopathy. Pediatr Res 2022; 92:98-108. [PMID: 34012027 PMCID: PMC8602449 DOI: 10.1038/s41390-021-01548-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are short single-stranded nucleotides that can regulate gene expression. Although we previously evaluated the expression of miRNAs in pediatric dilated cardiomyopathy (DCM) by miRNA array, pathway prediction based on changes in mRNA expression has not been previously analyzed in this population. The current study aimed to determine the regulation of miRNA expression by miRNA-sequencing (miRNA-seq) and, through miRNA-sequencing (mRNA-seq), analyze their putative target genes and altered pathways in pediatric DCM hearts. METHODS miRNA expression was determined by miRNA-seq [n = 10 non-failing (NF), n = 20 DCM]. Expression of a subset of miRNAs was evaluated in adult DCM patients (n = 11 NF, n = 13 DCM). miRNA-mRNA prediction analysis was performed using mRNA-seq data (n = 7 NF, n = 7 DCM) from matched samples. RESULTS Expression of 393 miRNAs was significantly different (p < 0.05) in pediatric DCM patients compared to NF controls. TargetScan-based miRNA-mRNA analysis revealed 808 significantly inversely expressed genes. Functional analysis suggests upregulated pathways related to the regulation of stem cell differentiation and cardiac muscle contraction, and downregulated pathways related to the regulation of protein phosphorylation, signal transduction, and cell communication. CONCLUSIONS Our results demonstrated a unique age-dependent regulation of miRNAs and their putative target genes, which may contribute to distinctive phenotypic characteristics of DCM in children. IMPACT This is the first study to compare miRNA expression in the heart of pediatric DCM patients to age-matched healthy controls by RNA sequencing. Expression of a subset of miRNAs is uniquely dysregulated in children. Using mRNA-seq and miRNA-seq from matched samples, target prediction was performed. This study underscores the importance of pediatric-focused studies.
Collapse
Affiliation(s)
- Frehiwet T Hailu
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Lee S Toni
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael R Bristow
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Brian L Stauffer
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA.
- Division of Cardiology, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Carmen C Sucharov
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
50
|
Huang W, Yuan Z, Gu H. Exploring epigenomic mechanisms of neural tube defects using multi-omics methods and data. Ann N Y Acad Sci 2022; 1515:50-60. [PMID: 35666948 DOI: 10.1111/nyas.14802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neural tube defects (NTDs) are a heterogeneous set of malformations attributed to disruption in normal neural tube closure during early embryogenesis. An in-depth understanding of NTD etiology and mechanisms remains elusive, however. Among the proposed mechanisms, epigenetic changes are thought to play an important role in the formation of NTDs. Epigenomics covers a wide spectrum of genomic DNA sequence modifications that can be investigated via high-throughput techniques. Recent advances in epigenomic technologies have enabled epigenetic studies of congenital malformations and facilitated the integration of big data into the understanding of NTDs. Herein, we review clinical epigenomic data that focuses on DNA methylation, histone modification, and miRNA alterations in human neural tissues, placental tissues, and leukocytes to explore potential mechanisms by which candidate genes affect human NTD pathogenesis. We discuss the links between epigenomics and gene regulatory mechanisms, and the effects of epigenetic alterations in human tissues on neural tube closure.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|