1
|
Huang S, Que H, Wang M, Wei X. mRNA vaccines as cancer therapies. Chin Med J (Engl) 2024; 137:2979-2995. [PMID: 39668413 PMCID: PMC11706586 DOI: 10.1097/cm9.0000000000003455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 12/14/2024] Open
Abstract
ABSTRACT Cancer remains a major global health challenge, with conventional treatments like chemotherapy and radiotherapy often hindered by significant side effects, lack of specificity, and limited efficacy in advanced cases. Among emerging therapeutic strategies, mRNA vaccines have shown remarkable potential due to their adaptability, rapid production, and capability for personalized cancer treatment. This review provides an in-depth analysis of messenger RNA (mRNA) vaccines as a therapeutic approach for cancer immunotherapy, focusing on their molecular biology, classification, mechanisms, and clinical studies. Derived from reported literature and data on clinicaltrials.gov, it examines studies on mRNA vaccines encoding tumor-specific antigens (TSAs), tumor-associated antigens (TAAs), immunomodulators, and chimeric antigen receptors (CARs) across various cancer types. The review highlights the ability of mRNA vaccines to encode TSAs and TAAs, enabling personalized cancer treatments, and classifies these vaccines into non-replicating and self-amplifying types. It further explores their mechanisms of action, including antigen presentation and immune activation, while emphasizing findings from clinical studies that demonstrate the potential of mRNA vaccines in cancer therapy. Despite their promise, challenges remain in enhancing delivery systems, improving immunogenicity, and addressing tumor heterogeneity. Overcoming these obstacles will require further investigation to fully harness the potential of mRNA vaccines in personalized cancer treatment.
Collapse
Affiliation(s)
- Shaoxiong Huang
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
3
|
Expression of selected mitochondrial genes during in vitro maturation of bovine oocytes related to their meiotic competence. Theriogenology 2019; 133:104-112. [PMID: 31078068 DOI: 10.1016/j.theriogenology.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022]
Abstract
The main goal of this study was to characterize the expression patterns of genes which play a role in mitochondrial DNA biogenesis and metabolism during the maturation of bovine oocytes with different meiotic competence and health. Meiotically more and less competent oocytes were obtained separately either from medium (MF) or small (SF) follicles and categorized according to oocyte morphology into healthy and light-atretic. The four oocyte categories were matured and collected after 0, 3, 7, 16 and 24 h of maturation. Either total RNA or poly(A) RNA were extracted from oocytes and the expression of selected mitochondrial translational factors (TFAM, TFB1M, and TFB2M), MATER, and Luciferase as external standard was assessed using a real-time RT-PCR. The level of TFAM, TFB1M and MATER poly(A) RNA transcripts significantly decreased during maturation in both healthy and light-atretic MF and SF oocytes. On the other hand, the level of TFB2M poly(A) increased during maturation in healthy and light-atretic SF oocytes, in contrast to MF oocytes. The abundance of TFAM total RNA was significantly higher after maturation than that before maturation in all oocyte categories. However, no differences in TFB1M and TFB2M total RNA were found in any oocyte categories. It can be concluded that the gene expression patterns differ in maturing bovine oocytes in dependence on their meiotic competence and health. The TFAM and TFB1M poly(A) RNAs are actively deadenylated at different meiotic stages but TFB2M poly(A) RNA remains elevated in light-atretic less competent oocytes until the completion of meiosis.
Collapse
|
4
|
Plahte E, Gjuvsland AB, Omholt SW. Propagation of genetic variation in gene regulatory networks. PHYSICA D. NONLINEAR PHENOMENA 2013; 256-257:7-20. [PMID: 23997378 PMCID: PMC3752980 DOI: 10.1016/j.physd.2013.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.
Collapse
Affiliation(s)
- Erik Plahte
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.O. Box 5003, N - 1432 Ås, Norway
- CIGENE (Centre for Integrative Genetics), Norwegian University of Life Sciences, N - 1432 Ås, Norway
| | - Arne B. Gjuvsland
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.O. Box 5003, N - 1432 Ås, Norway
- CIGENE (Centre for Integrative Genetics), Norwegian University of Life Sciences, N - 1432 Ås, Norway
| | - Stig W. Omholt
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N - 1432 Ås, Norway
- CIGENE (Centre for Integrative Genetics), Norwegian University of Life Sciences, N - 1432 Ås, Norway
- NTNU Norwegian University of Science and Technology, Department of Mathematical Sciences, N - 7491 Trondheim, Norway
| |
Collapse
|
5
|
Gjuvsland AB, Plahte E, Ådnøy T, Omholt SW. Allele interaction--single locus genetics meets regulatory biology. PLoS One 2010; 5:e9379. [PMID: 20186347 PMCID: PMC2826424 DOI: 10.1371/journal.pone.0009379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 01/07/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Since the dawn of genetics, additive and dominant gene action in diploids have been defined by comparison of heterozygote and homozygote phenotypes. However, these definitions provide little insight into the underlying intralocus allelic functional dependency and thus cannot serve directly as a mediator between genetics theory and regulatory biology, a link that is sorely needed. METHODOLOGY/PRINCIPAL FINDINGS We provide such a link by distinguishing between positive, negative and zero allele interaction at the genotype level. First, these distinctions disclose that a biallelic locus can display 18 qualitatively different allele interaction sign motifs (triplets of +, - and 0). Second, we show that for a single locus, Mendelian dominance is not related to heterozygote allele interaction alone, but is actually a function of the degrees of allele interaction in all the three genotypes. Third, we demonstrate how the allele interaction in each genotype is directly quantifiable in gene regulatory models, and that there is a unique, one-to-one correspondence between the sign of autoregulatory feedback loops and the sign of the allele interactions. CONCLUSION/SIGNIFICANCE The concept of allele interaction refines single locus genetics substantially, and it provides a direct link between classical models of gene action and gene regulatory biology. Together with available empirical data, our results indicate that allele interaction can be exploited experimentally to identify and explain intricate intra- and inter-locus feedback relationships in eukaryotes.
Collapse
Affiliation(s)
- Arne B. Gjuvsland
- Centre for Integrative Genetics (CIGENE), Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Erik Plahte
- Centre for Integrative Genetics (CIGENE), Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Tormod Ådnøy
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Stig W. Omholt
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
6
|
Wilusz JE, Freier SM, Spector DL. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008; 135:919-32. [PMID: 19041754 DOI: 10.1016/j.cell.2008.10.012] [Citation(s) in RCA: 566] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 07/25/2008] [Accepted: 10/07/2008] [Indexed: 02/06/2023]
Abstract
MALAT1 is a long noncoding RNA known to be misregulated in many human cancers. We have identified a highly conserved small RNA of 61 nucleotides originating from the MALAT1 locus that is broadly expressed in human tissues. Although the long MALAT1 transcript localizes to nuclear speckles, the small RNA is found exclusively in the cytoplasm. RNase P cleaves the nascent MALAT1 transcript downstream of a genomically encoded poly(A)-rich tract to simultaneously generate the 3' end of the mature MALAT1 transcript and the 5' end of the small RNA. Enzymes involved in tRNA biogenesis then further process the small RNA, consistent with its adoption of a tRNA-like structure. Our findings reveal a 3' end processing mechanism by which a single gene locus can yield both a stable nuclear-retained noncoding RNA with a short poly(A) tail-like moiety and a small tRNA-like cytoplasmic RNA.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
7
|
Gjuvsland AB, Hayes BJ, Meuwissen THE, Plahte E, Omholt SW. Nonlinear regulation enhances the phenotypic expression of trans-acting genetic polymorphisms. BMC SYSTEMS BIOLOGY 2007; 1:32. [PMID: 17651484 PMCID: PMC1994684 DOI: 10.1186/1752-0509-1-32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 07/25/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic variation explains a considerable part of observed phenotypic variation in gene expression networks. This variation has been shown to be located both locally (cis) and distally (trans) to the genes being measured. Here we explore to which degree the phenotypic manifestation of local and distant polymorphisms is a dynamic feature of regulatory design. RESULTS By combining mathematical models of gene expression networks with genetic maps and linkage analysis we find that very different network structures and regulatory motifs give similar cis/trans linkage patterns. However, when the shape of the cis-regulatory input functions is more nonlinear or threshold-like, we observe for all networks a dramatic increase in the phenotypic expression of distant compared to local polymorphisms under otherwise equal conditions. CONCLUSION Our findings indicate that genetic variation affecting the form of cis-regulatory input functions may reshape the genotype-phenotype map by changing the relative importance of cis and trans variation. Our approach combining nonlinear dynamic models with statistical genetics opens up for a systematic investigation of how functional genetic variation is translated into phenotypic variation under various systemic conditions.
Collapse
Affiliation(s)
- Arne B Gjuvsland
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ben J Hayes
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
- Animal Genetics and Genomics, Department of Primary Industries, Attwood, Victoria, Australia
| | - Theo HE Meuwissen
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Erik Plahte
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Stig W Omholt
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
8
|
Peng J, Schoenberg DR. mRNA with a <20-nt poly(A) tail imparted by the poly(A)-limiting element is translated as efficiently in vivo as long poly(A) mRNA. RNA (NEW YORK, N.Y.) 2005; 11:1131-40. [PMID: 15929942 PMCID: PMC1237109 DOI: 10.1261/rna.2470905] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.
Collapse
Affiliation(s)
- Jing Peng
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave., Columbus, OH 43210-1218, USA
| | | |
Collapse
|