1
|
Sisila V, Indhu M, Radhakrishnan J, Ayyadurai N. Building biomaterials through genetic code expansion. Trends Biotechnol 2023; 41:165-183. [PMID: 35908989 DOI: 10.1016/j.tibtech.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023]
Abstract
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
Collapse
Affiliation(s)
- Valappil Sisila
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Janani Radhakrishnan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Thommen M, Draycheva A, Rodnina MV. Ribosome selectivity and nascent chain context in modulating the incorporation of fluorescent non-canonical amino acid into proteins. Sci Rep 2022; 12:12848. [PMID: 35896582 PMCID: PMC9329280 DOI: 10.1038/s41598-022-16932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fluorescence reporter groups are important tools to study the structure and dynamics of proteins. Genetic code reprogramming allows for cotranslational incorporation of non-canonical amino acids at any desired position. However, cotranslational incorporation of bulky fluorescence reporter groups is technically challenging and usually inefficient. Here we analyze the bottlenecks for the cotranslational incorporation of NBD-, BodipyFL- and Atto520-labeled Cys-tRNACys into a model protein using a reconstituted in-vitro translation system. We show that the modified Cys-tRNACys can be rejected during decoding due to the reduced ribosome selectivity for the modified aa-tRNA and the competition with native near-cognate aminoacyl-tRNAs. Accommodation of the modified Cys-tRNACys in the A site of the ribosome is also impaired, but can be rescued by one or several Gly residues at the positions −1 to −4 upstream of the incorporation site. The incorporation yield depends on the steric properties of the downstream residue and decreases with the distance from the protein N-terminus to the incorporation site. In addition to the full-length translation product, we find protein fragments corresponding to the truncated N-terminal peptide and the C-terminal fragment starting with a fluorescence-labeled Cys arising from a StopGo-like event due to a defect in peptide bond formation. The results are important for understanding the reasons for inefficient cotranslational protein labeling with bulky reporter groups and for designing new approaches to improve the yield of fluorescence-labeled protein.
Collapse
Affiliation(s)
- Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
4
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Efficient Amber Suppression via Ribosomal Skipping for In Situ Synthesis of Photoconditional Nanobodies. ACS Synth Biol 2022; 11:1466-1476. [PMID: 35060375 PMCID: PMC9157392 DOI: 10.1021/acssynbio.1c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic code expansion is a versatile method for in situ synthesis of modified proteins. During mRNA translation, amber stop codons are suppressed to site-specifically incorporate non-canonical amino acids. Thus, nanobodies can be equipped with photocaged amino acids to control target binding on demand. The efficiency of amber suppression and protein synthesis can vary with unpredictable background expression, and the reasons are hardly understood. Here, we identified a substantial limitation that prevented synthesis of nanobodies with N-terminal modifications for light control. After systematic analyses, we hypothesized that nanobody synthesis was severely affected by ribosomal inaccuracy during the early phases of translation. To circumvent a background-causing read-through of a premature stop codon, we designed a new suppression concept based on ribosomal skipping. As an example, we generated intrabodies with photoactivated target binding in mammalian cells. The findings provide valuable insights into the genetic code expansion and describe a versatile synthesis route for the generation of modified nanobodies that opens up new perspectives for efficient site-specific integration of chemical tools. In the area of photopharmacology, our flexible intrabody concept builds an ideal platform to modulate target protein function and interaction.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| |
Collapse
|
5
|
Shishido H, Yoon JS, Skach WR. A small molecule high throughput screening platform to profile conformational properties of nascent, ribosome-bound proteins. Sci Rep 2022; 12:2509. [PMID: 35169219 PMCID: PMC8847357 DOI: 10.1038/s41598-022-06456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic mutations cause a wide spectrum of human disease by disrupting protein folding, both during and after synthesis. Transient de-novo folding intermediates therefore represent potential drug targets for pharmacological correction of protein folding disorders. Here we develop a FRET-based high-throughput screening (HTS) assay in 1,536-well format capable of identifying small molecules that interact with nascent polypeptides and correct genetic, cotranslational folding defects. Ribosome nascent chain complexes (RNCs) containing donor and acceptor fluorophores were isolated from cell free translation reactions, immobilized on Nickel-NTA/IDA beads, and imaged by high-content microscopy. Quantitative FRET measurements obtained from as little as 0.4 attomole of protein/bead enabled rapid assessment of conformational changes with a high degree of reproducibility. Using this assay, we performed a pilot screen of ~ 50,000 small molecules to identify compounds that interact with RNCs containing the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) harboring a disease-causing mutation (A455E). Screen results yielded 133 primary hits and 1 validated hit that normalized FRET values of the mutant nascent peptide. This system provides a scalable, tractable, structure-based discovery platform for screening small molecules that bind to or impact the folding of protein substrates that are not amenable to traditional biochemical analyses.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA.,Generate Biomedicines, Inc., 26 Landsdowne St, Cambridge, MA, 02139, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Shishido H, Yoon JS, Yang Z, Skach WR. CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat Commun 2020; 11:4258. [PMID: 32848127 PMCID: PMC7450043 DOI: 10.1038/s41467-020-18101-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Leznicki P, High S. SGTA associates with nascent membrane protein precursors. EMBO Rep 2020; 21:e48835. [PMID: 32216016 PMCID: PMC7202230 DOI: 10.15252/embr.201948835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/15/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major site for membrane protein synthesis in eukaryotes. The majority of integral membrane proteins are delivered to the ER membrane via the co‐translational, signal recognition particle (SRP)‐dependent route. However, tail‐anchored proteins employ an alternative, post‐translational route(s) that relies on distinct factors such as a cytosolic protein quality control component, SGTA. We now show that SGTA is selectively recruited to ribosomes synthesising a diverse range of membrane proteins, suggesting that its biosynthetic client base also includes precursors on the co‐translational ER delivery pathway. Strikingly, SGTA is recruited to nascent membrane proteins before their transmembrane domain emerges from the ribosome. Hence, SGTA is ideally placed to capture these aggregation prone regions shortly after their synthesis. For nascent membrane proteins on the co‐translational pathway, SGTA complements the role of SRP by reducing the co‐translational ubiquitination of clients with multiple hydrophobic signal sequences. On this basis, we propose that SGTA acts to mask specific transmembrane domains located in complex membrane proteins until they can engage the ER translocon and become membrane inserted.
Collapse
Affiliation(s)
- Pawel Leznicki
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Cha J, Kwon I. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates. Biotechnol J 2018; 13:e1700739. [DOI: 10.1002/biot.201700739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jaehyun Cha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST); Gwangju 61005 Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST); Gwangju 61005 Republic of Korea
| |
Collapse
|
10
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Cui Z, Mureev S, Polinkovsky ME, Tnimov Z, Guo Z, Durek T, Jones A, Alexandrov K. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids. ACS Synth Biol 2017; 6:535-544. [PMID: 27966891 DOI: 10.1021/acssynbio.6b00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of unnatural amino acids (uAAs) via codon reassignment is a powerful approach for introducing novel chemical and biological properties to synthesized polypeptides. However, the site-selective incorporation of multiple uAAs into polypeptides is hampered by the limited number of reassignable nonsense codons. This challenge is addressed in the current work by developing Escherichia coli in vitro translation system depleted of specific endogenous tRNAs. The translational activity in this system is dependent on the addition of synthetic tRNAs for the chosen sense codon. This allows site-selective uAA incorporation via addition of tRNAs pre- or cotranslationally charged with uAA. We demonstrate the utility of this system by incorporating the BODIPY fluorophore into the unique AGG codon of the calmodulin(CaM) open reading frame using in vitro precharged BODIPY-tRNACysCCU. The deacylated tRNACysCCU is a poor substrate for Cysteinyl-tRNA synthetase, which ensures low background incorporation of Cys into the chosen codon. Simultaneously, p-azidophenylalanine mediated amber-codon suppression and its post-translational conjugation to tetramethylrhodamine dibenzocyclooctyne (TAMRA-DIBO) were performed on the same polypeptide. This simple and robust approach takes advantage of the compatibility of BODIPY fluorophore with the translational machinery and thus requires only one post-translational derivatization step to introduce two fluorescent labels. Using this approach, we obtained CaM nearly homogeneously labeled with two FRET-forming fluorophores. Single molecule FRET analysis revealed dramatic changes in the conformation of the CaM probe upon its exposure to Ca2+ or a chelating agent. The presented approach is applicable to other sense codons and can be directly transferred to eukaryotic cell-free systems.
Collapse
Affiliation(s)
- Zhenling Cui
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sergey Mureev
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark E. Polinkovsky
- StemProtein, 6350 Nancy
Ridge Drive, San Diego, California 92121, United States
| | - Zakir Tnimov
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Zhong Guo
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alun Jones
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol Cell 2016; 61:341-351. [PMID: 26849192 DOI: 10.1016/j.molcel.2016.01.008] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/24/2015] [Indexed: 11/26/2022]
Abstract
In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye-lens protein, modulate the rates of translation and cotranslational folding of protein domains monitored in real time by Förster resonance energy transfer and fluorescence-intensity changes. Gamma-B crystallins produced from mRNAs with changed codon bias have the same amino acid sequence but attain different conformations, as indicated by altered in vivo stability and in vitro protease resistance. 2D NMR spectroscopic data suggest that structural differences are associated with different cysteine oxidation states of the purified proteins, providing a link between translation, folding, and the structures of isolated proteins. Thus, synonymous codons provide a secondary code for protein folding in the cell.
Collapse
Affiliation(s)
- Florian Buhr
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sujata Jha
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Joerg Mittelstaet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Felicitas Kutz
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA.,Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
13
|
Ogawa A, Namba Y, Gakumasawa M. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract. Org Biomol Chem 2016; 14:2671-8. [DOI: 10.1039/c5ob02533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amber suppressor tRNAs (sup-tRNAs) were rationally optimized toward efficient incorporation of a non-natural amino acid (AcPhe) into protein in a eukaryotic wheat germ extract.
Collapse
Affiliation(s)
| | - Yuki Namba
- Proteo-Science Center
- Ehime University
- Matsuyama
- Japan
| | | |
Collapse
|
14
|
Koubek J, Chen YR, Cheng RP, Huang JJT. Nonorthogonal tRNA(cys)(Amber) for protein and nascent chain labeling. RNA (NEW YORK, N.Y.) 2015; 21:1672-82. [PMID: 26194135 PMCID: PMC4536326 DOI: 10.1261/rna.051805.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 05/14/2023]
Abstract
In vitro-transcribed suppressor tRNAs are commonly used in site-specific fluorescence labeling for protein and ribosome-bound nascent chains (RNCs) studies. Here, we describe the production of nonorthogonal Bacillus subtilis tRNA(cys)(Amber) from Escherichia coli, a process that is superior to in vitro transcription in terms of yield, ease of manipulation, and tRNA stability. As cysteinyl-tRNA synthetase was previously shown to aminoacylate tRNA(cys)(Amber) with lower efficiency, multiple tRNA synthetase mutants were designed to optimize aminoacylation. Aminoacylated tRNA was conjugated to a fluorophore to produce BODIPY FL-cysteinyl-tRNA(cys)(Amber), which was used to generate ribosome-bound nascent chains of different lengths with the fluorophore incorporated at various predetermined sites. This tRNA tool may be beneficial in the site-specific labeling of full-length proteins as well as RNCs for biophysical and biological research.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Bacillus subtilis/genetics
- Cell-Free System
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fluorescent Dyes/chemistry
- In Vitro Techniques
- Models, Molecular
- Protein Biosynthesis
- RNA Stability
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Jiří Koubek
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Nankang, Taipei 11529, Taiwan Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Richard Ping Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
15
|
Catherine C, Oh SJ, Lee KH, Min SE, Won JI, Yun H, Kim DM. Engineering thermal properties of elastin-like polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0190-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Kim H, Siu KH, Raeeszadeh-Sarmazdeh M, Sun Q, Chen Q, Chen W. Bioengineering strategies to generate artificial protein complexes. Biotechnol Bioeng 2015; 112:1495-505. [DOI: 10.1002/bit.25637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Heejae Kim
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | | | - Qing Sun
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| |
Collapse
|
17
|
Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, Barral JM, Skach WR. Translational tuning optimizes nascent protein folding in cells. Science 2015; 348:444-8. [DOI: 10.1126/science.aaa3974] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Ogawa A, Doi Y. Investigation of end processing and degradation of premature tRNAs and their application to stabilization of in vitro transcripts in wheat germ extract. Org Biomol Chem 2015; 13:1008-12. [DOI: 10.1039/c4ob02221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the end processing and degradation of premature tRNAs in wheat germ extract (left), which led to the findings of end protectors for efficiently stabilizing an in vitro transcript (purple, right).
Collapse
Affiliation(s)
| | - Yasunori Doi
- Proteo-Science Center
- Ehime University
- Matsuyama
- Japan
| |
Collapse
|
19
|
Huber T, Sakmar T. Chemical Biology Methods for Investigating G Protein-Coupled Receptor Signaling. ACTA ACUST UNITED AC 2014; 21:1224-37. [DOI: 10.1016/j.chembiol.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
|
20
|
Boland C, Li D, Shah STA, Haberstock S, Dötsch V, Bernhard F, Caffrey M. Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cell Mol Life Sci 2014; 71:4895-4910. [PMID: 25012698 DOI: 10.1007/s00018-014-1655-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/17/2022]
Abstract
Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a three-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high-quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipid mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28-Å resolution. The quality of cellular and cell-free-expressed kinase samples has been evaluated systematically by comparing (1) spectroscopic properties, (2) purity and oligomer formation, (3) lipid content and (4) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free-expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved.
Collapse
Affiliation(s)
- Coilín Boland
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Dianfan Li
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Syed Tasadaque Ali Shah
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Stefan Haberstock
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Germany
| | - Martin Caffrey
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| |
Collapse
|
21
|
Samanfar B, Tan LH, Shostak K, Chalabian F, Wu Z, Alamgir M, Sunba N, Burnside D, Omidi K, Hooshyar M, Galván Márquez I, Jessulat M, Smith ML, Babu M, Azizi A, Golshani A. A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2014; 10:916-24. [PMID: 24535059 DOI: 10.1039/c3mb70501c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein biosynthesis is an orderly process that requires a balance between rate and accuracy. To produce a functional product, the fidelity of this process has to be maintained from start to finish. In order to systematically identify genes that affect stop codon bypass, three expression plasmids, pUKC817, pUKC818 and pUKC819, were integrated into the yeast non-essential loss-of-function gene array (5000 strains). These plasmids contain three different premature stop codons (UAA, UGA and UAG, respectively) within the LacZ expression cassette. A fourth plasmid, pUKC815 that carries the native LacZ gene was used as a control. Transformed strains were subjected to large-scale β-galactosidase lift assay analysis to evaluate production of β-galactosidase for each gene deletion strain. In this way 84 potential candidate genes that affect stop codon bypass were identified. Three candidate genes, OLA1, BSC2, and YNL040W, were further investigated, and were found to be important for cytoplasmic protein biosynthesis.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Koubek J, Lin KF, Chen YR, Cheng RP, Huang JJT. Strong anion-exchange fast performance liquid chromatography as a versatile tool for preparation and purification of RNA produced by in vitro transcription. RNA (NEW YORK, N.Y.) 2013; 19:1449-59. [PMID: 23929938 PMCID: PMC3854534 DOI: 10.1261/rna.038117.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here we demonstrate the use of strong anion-exchange fast performance liquid chromatography (FPLC) as a simple, fast, and robust method for RNA production by in vitro transcription. With this technique, we have purified different transcription templates from unreacted reagents in large quantities. The same buffer system could be used to readily remove nuclease contamination from the overexpressed pyrophosphatase, the important reagent for in vitro transcription. In addition, the method can be used to monitor in vitro transcription reactions to enable facile optimization of reaction conditions, and we have compared the separation performance between strong and weak anion-exchange FPLC for various transcribed RNAs, including the Diels-Alder ribozyme, the hammerhead ribozyme tRNA, and 4.5S RNA. The functionality of the purified tRNA(Cys) has been confirmed by the aminoacylation assay. Only the purification by strong anion-exchange FPLC has led to the enrichment of the functional tRNA from run-off transcripts as revealed by both enzymatic and electrophoretic analysis.
Collapse
|
23
|
Schwall CT, Alder NN. Site-specific fluorescent probe labeling of mitochondrial membrane proteins. Methods Mol Biol 2013; 1033:103-20. [PMID: 23996173 DOI: 10.1007/978-1-62703-487-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The complexity of biological membranes presents technical challenges for the analysis of membrane protein biogenesis and function. Here we describe an in vitro fluorescence-based experimental approach for studying the high-resolution structural features of membrane proteins within isolated mitochondria. By this strategy, membrane proteins are cotranslationally labeled with a fluorescent probe at a specific site by the inclusion of aminoacyl tRNA analogs in a cell-free translation system. Labeled proteins are then targeted to the correct subcompartment within active mitochondria by the endogenous import machinery. For each site-specifically labeled protein, a series of rigorous controls must be conducted to ensure the proper membrane integration, topology, and assembly of each labeled sample. The assays described herein serve as the basis for more sophisticated analyses by which multiple fluorescence-based measurements can render detailed information on the topology, microenvironment, and dynamic conformational changes as they occur in real time.
Collapse
Affiliation(s)
- Christine T Schwall
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
24
|
Bordeira-Carriço R, Pêgo AP, Santos M, Oliveira C. Cancer syndromes and therapy by stop-codon readthrough. Trends Mol Med 2012; 18:667-78. [PMID: 23044248 DOI: 10.1016/j.molmed.2012.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
Abstract
Several hereditary cancer syndromes are associated with nonsense mutations that create premature termination codons (PTC). Therapeutic strategies involving readthrough induction partially restore expression of proteins with normal function from nonsense-mutated genes, and small molecules such as aminoglycosides and PTC124 have exhibited promising results for treating patients with cystic fibrosis and Duchenne muscular dystrophy. Transgenic expression of suppressor-tRNAs and depleting translation termination factors are, among others, potential strategies for treating PTC-associated diseases. In this review, the potential of using readthrough strategies as a therapy for cancer syndromes is discussed, and we consider the effect of nonsense-mediated decay and other factors on readthrough efficiency.
Collapse
|
25
|
Ogawa A, Doi Y, Matsushita N. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract. Org Biomol Chem 2011; 9:8495-503. [DOI: 10.1039/c1ob06351k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|