1
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Dysregulation of Small Nucleolar RNAs in B-Cell Malignancies. Biomedicines 2022; 10:biomedicines10061229. [PMID: 35740251 PMCID: PMC9219770 DOI: 10.3390/biomedicines10061229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are responsible for post-transcriptional modification of ribosomal RNAs, transfer RNAs and small nuclear RNAs, and thereby have important regulatory functions in mRNA splicing and protein translation. Several studies have shown that snoRNAs are dysregulated in human cancer and may play a role in cancer initiation and progression. In this review, we focus on the role of snoRNAs in normal and malignant B-cell development. SnoRNA activity appears to be essential for normal B-cell differentiation and dysregulated expression of sno-RNAs is determined in B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, B-cell non-Hodgkin’s lymphoma, and plasma cell neoplasms. SnoRNA expression is associated with cytogenetic/molecular subgroups and clinical outcome in patients with B-cell malignancies. Translocations involving snoRNAs have been described as well. Here, we discuss the different aspects of snoRNAs in B-cell malignancies and report on their role in oncogenic transformation, which may be useful for the development of novel diagnostic biomarkers or therapeutic targets.
Collapse
|
3
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Whelan TA, Lee NT, Lee RCH, Fast NM. Microsporidian Introns Retained against a Background of Genome Reduction: Characterization of an Unusual Set of Introns. Genome Biol Evol 2019; 11:263-269. [PMID: 30496512 PMCID: PMC6349667 DOI: 10.1093/gbe/evy260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2018] [Indexed: 01/22/2023] Open
Abstract
Spliceosomal introns are ubiquitous features of eukaryotic genomes, but the mechanisms responsible for their loss and gain are difficult to identify. Microsporidia are obligate intracellular parasites that have significantly reduced genomes and, as a result, have lost many if not all of their introns. In the microsporidian Encephalitozoon cuniculi, a relatively long intron was identified and was spliced at higher levels than the remaining introns. This long intron is part of a set of unique introns in two unrelated genes that show high levels of sequence conservation across diverse microsporidia. The introns possess a unique internal conserved region, which overlaps with a shared, predicted stem–loop structure. The unusual similarity and retention of these long introns in reduced microsporidian genomes could indicate that these introns function similarly, are homologous, or both. Regardless, the significant genome reduction in microsporidia provides a rare opportunity to understand intron evolution.
Collapse
Affiliation(s)
- Thomas A Whelan
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole T Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Renny C H Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Soeno Y, Fujita K, Kudo T, Asagiri M, Kakuta S, Taya Y, Shimazu Y, Sato K, Tanaka-Fujita R, Kubo S, Iwakura Y, Nakamura Y, Mori S, Aoba T. Generation of a mouse model with down-regulated U50 snoRNA (SNORD50) expression and its organ-specific phenotypic modulation. PLoS One 2013; 8:e72105. [PMID: 23991050 PMCID: PMC3753356 DOI: 10.1371/journal.pone.0072105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022] Open
Abstract
Box C/D-type small nucleolar RNAs (snoRNAs) are functional RNAs responsible for mediating 2'-O-ribose methylation of ribosomal RNAs (rRNAs) within the nucleolus. In the past years, evidence for the involvement of human U50 snoRNA in tumorigenesis has been accumulating. We previously identified U50HG, a non-protein-coding gene that hosted a box C/D-type U50 snoRNA, in a chromosomal breakpoint in a human B-cell lymphoma. Mouse genome analysis revealed four mouse U50 (mU50) host-genes: three mU50HG-a gene variants that were clustered in the genome and an mU50HG-b gene that we supposed to be the U50HG ortholog. In this study, to investigate the physiological importance of mU50 snoRNA and its involvement in tumorigenesis, we eliminated mU50 snoRNA sequences from the mU50HG-b gene. The established mouse line (ΔmU50(HG-b)) showed a significant reduction of mU50 snoRNA expression without alteration of the host-gene length and exon-intron structure, and the corresponding target rRNA methylation in various organs was reduced. Lifelong phenotypic monitoring showed that the ΔmU50(HG-b) mice looked almost normal without accelerated tumorigenicity; however, a notable difference was the propensity for anomalies in the lymphoid organs. Transcriptome analysis showed that dozens of genes, including heat shock proteins, were differentially expressed in ΔmU50(HG-b) mouse lymphocytes. This unique model of a single snoRNA knockdown with intact host-gene expression revealed further new insights into the discrete transcriptional regulation of multiple mU50 host-genes and the complicated dynamics involved in organ-specific processing and maintenance of snoRNAs.
Collapse
Affiliation(s)
- Yuuichi Soeno
- Department of Pathology, School of Life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Kazuya Fujita
- Department of Pathology, School of Life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Tomoo Kudo
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Masataka Asagiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuji Taya
- Department of Pathology, School of Life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Yoshihito Shimazu
- Department of Pathology, School of Life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Kaori Sato
- Department of Pathology, School of Life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Ritsuko Tanaka-Fujita
- Risk Assessment Division, Food Safety Commission Secretariat, Cabinet Office, Government of Japan, Tokyo, Japan
| | - Sachiko Kubo
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshikazu Nakamura
- Division of RNA Medical Science, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Ribomic Inc., Tokyo, Japan
| | - Shigeo Mori
- Kotobiken Medical Laboratories Inc., Tokyo, Japan
| | - Takaaki Aoba
- Department of Pathology, School of Life Dentistry, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Identification and Characterization of Human snoRNA Core Promoters. Genomics 2010; 96:50-6. [DOI: 10.1016/j.ygeno.2010.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 11/19/2022]
|
7
|
Zhang Y, Liu J, Jia C, Li T, Wu R, Wang J, Chen Y, Zou X, Chen R, Wang XJ, Zhu D. Systematic identification and evolutionary features of rhesus monkey small nucleolar RNAs. BMC Genomics 2010; 11:61. [PMID: 20100322 PMCID: PMC2832892 DOI: 10.1186/1471-2164-11-61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/25/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that non-protein-coding RNAs (npcRNAs/ncRNAs) play important roles during eukaryotic development, species evolution, and in the etiology of disease. Rhesus macaques are the most widely used primate model in both biomedical research and primate evolutionary studies. However, most reports on these animals focus on the functional roles of protein-coding sequences, whereas very little is known about macaque ncRNAs. RESULTS In the present study, we performed the first systematic profiling of intermediate-size ncRNAs (50 to 500 nt) from the rhesus monkey by constructing a cDNA library. We identified 117 rhesus monkey ncRNAs, including 80 small nucleolar RNAs (snoRNAs), 29 other types of known RNAs (snRNAs, Y RNA, and others), and eight unclassified ncRNAs. Comparative genomic analysis and northern blot hybridizations demonstrated that some snoRNAs were lineage- or species-specific. Paralogous sequences were found for most rhesus monkey snoRNAs, the expression of which might be attributable to extensive duplication within the rhesus monkey genome. Further investigation of snoRNA flanking sequences showed that some rhesus monkey snoRNAs are retrogenes derived from L1-mediated integration. Finally, phylogenetic analysis demonstrated that birds and primates share some snoRNAs and host genes thereof, suggesting that both the relevant host genes and the snoRNAs contained therein may be inherited from a common ancestor. However, some rhesus monkey snoRNAs hosted by non-ribosome-related genes appeared after the evolutionary divergence between birds and mammals. CONCLUSIONS We provide the first experimentally-derived catalog of rhesus monkey ncRNAs and uncover some interesting genomic and evolutionary features. These findings provide important information for future functional characterization of snoRNAs during primate evolution.
Collapse
Affiliation(s)
- Yong Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoeppner MP, White S, Jeffares DC, Poole AM. Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol 2009; 1:420-8. [PMID: 20333211 PMCID: PMC2817437 DOI: 10.1093/gbe/evp045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2009] [Indexed: 12/20/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) are integral to a range of processes, including ribosome biogenesis and gene regulation. Some are intron encoded, and this organization may facilitate coordinated coexpression of host gene and RNA. However, snoRNAs and miRNAs are known to be mobile, so intron-RNA associations may not be evolutionarily stable. We have used genome alignments across 11 mammals plus chicken to examine positional orthology of snoRNAs and miRNAs and report that 21% of annotated snoRNAs and 11% of miRNAs are positionally conserved across mammals. Among RNAs traceable to the bird–mammal common ancestor, 98% of snoRNAs and 76% of miRNAs are intronic. Comparison of the most evolutionarily stable mammalian intronic snoRNAs with those positionally conserved among primates reveals that the former are more overrepresented among host genes involved in translation or ribosome biogenesis and are more broadly and highly expressed. This stability is likely attributable to a requirement for overlap between host gene and intronic snoRNA expression profiles, consistent with an ancestral role in ribosome biogenesis. In contrast, whereas miRNA positional conservation is comparable to that observed for snoRNAs, intronic miRNAs show no obvious association with host genes of a particular functional category, and no statistically significant differences in host gene expression are found between those traceable to mammalian or primate ancestors. Our results indicate evolutionarily stable associations of numerous intronic snoRNAs and miRNAs and their host genes, with probable continued diversification of snoRNA function from an ancestral role in ribosome biogenesis.
Collapse
Affiliation(s)
- Marc P Hoeppner
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Makarova JA, Kramerov DA. Analysis of C/D box snoRNA genes in vertebrates: The number of copies decreases in placental mammals. Genomics 2009; 94:11-9. [PMID: 19272437 DOI: 10.1016/j.ygeno.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 12/31/2022]
Abstract
C/D box small nucleolar RNAs (snoRNAs) guide site-specific 2'-O-methylation of RNAs. Nearly all C/D box snoRNAs with known targets are involved in rRNA modification. In vertebrates, snoRNAs are encoded in introns of various genes and their processing is coupled with splicing of host gene pre-mRNA. Here, the genes encoding C/D box snoRNAs that guide 2'-O-methylation of rRNA were identified and analyzed in vertebrate genomes. The number of copies of most C/D box snoRNA genes proved to be lower in placental mammals compared to other vertebrates. This can be due to smaller oocytes and accordingly lower number of ribosomes in them in eutherians. The targets of snoRNAs encoded by single-copy and multiple-copy genes proved to have different distribution in rRNAs. The causes of this difference are discussed. In some cases, the transcripts of homologous C/D box RNA genes were shown to guide the modification of neighboring nucleotides in rRNA. C/D box snoRNA pseudogenes were found in all vertebrate classes. Three novel C/D box snoRNAs were found in Xenopus tropicalis that may guide 2'-O-methylation of Xenopus-specific rRNA sites. A list of 922 annotated C/D box snoRNA genes is presented.
Collapse
Affiliation(s)
- Julia A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | | |
Collapse
|