1
|
Kent A, Robins JG, Knudson IJ, Vance JT, Solivan AC, Hamlish NX, Fitzgerald KA, Schepartz A, Miller SJ, Cate JHD. Thioesters Support Efficient Protein Biosynthesis by the Ribosome. ACS CENTRAL SCIENCE 2025; 11:404-412. [PMID: 40161951 PMCID: PMC11950863 DOI: 10.1021/acscentsci.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 04/02/2025]
Abstract
Thioesters are critical chemical intermediates in numerous extant biochemical reactions and are invoked as key reagents during prebiotic peptide synthesis on an evolving Earth. Here we asked if a thioester could replace the native oxo-ester in acyl-tRNA substrates during protein biosynthesis by the ribosome. We prepared 3'-thio-3'-deoxyadenosine triphosphate in 10 steps from xylose and demonstrated that it is an effective substrate for the Escherichia coli CCA-adding enzyme, which appends 3'-thio-3'-deoxyadenosine to truncated tRNAs ending with 3'-CC. Using a variety of aminoacyl-tRNA synthetases, flexizymes, or a direct thioester exchange reaction, we prepared a suite of 3'-thio-tRNAs acylated with α- and non-α-amino acids. All were recognized and utilized by wild-type E. coli ribosomes during in vitro translation reactions to generate oligopeptides in yields commensurate with native oxo-ester tRNAs. These results indicate that thioester intermediates widely used in Nature can be co-opted to support the incorporation of natural α-amino acids as well as noncanonical monomers by the extant translational machinery for sequence-defined polymer synthesis.
Collapse
Affiliation(s)
- Alexandra
D. Kent
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jacob G. Robins
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Isaac J. Knudson
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jessica T. Vance
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Alexander C. Solivan
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Noah X. Hamlish
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Katelyn A. Fitzgerald
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jamie H. D. Cate
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Schwickert M, Fischer TR, Zimmermann RA, Hoba SN, Meidner JL, Weber M, Weber M, Stark MM, Koch J, Jung N, Kersten C, Windbergs M, Lyko F, Helm M, Schirmeister T. Discovery of Inhibitors of DNA Methyltransferase 2, an Epitranscriptomic Modulator and Potential Target for Cancer Treatment. J Med Chem 2022; 65:9750-9788. [PMID: 35849534 DOI: 10.1021/acs.jmedchem.2c00388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.
Collapse
Affiliation(s)
- Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - J Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Moritz Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Martin M Stark
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Jonas Koch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
3
|
Leibovitch M, Hanic-Joyce PJ, Joyce PBM. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:527-540. [PMID: 29454993 DOI: 10.1016/j.bbapap.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
4
|
Sakaguchi R, Giessing A, Dai Q, Lahoud G, Liutkeviciute Z, Klimasauskas S, Piccirilli J, Kirpekar F, Hou YM. Recognition of guanosine by dissimilar tRNA methyltransferases. RNA (NEW YORK, N.Y.) 2012; 18:1687-1701. [PMID: 22847817 PMCID: PMC3425783 DOI: 10.1261/rna.032029.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Anders Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Qing Dai
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Zita Liutkeviciute
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Saulius Klimasauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Joseph Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
5
|
Pyrophosphorolysis of CCA addition: implication for fidelity. J Mol Biol 2011; 414:28-43. [PMID: 22001019 DOI: 10.1016/j.jmb.2011.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
Abstract
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3' end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3' end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.
Collapse
|
6
|
Hernández AR, Kool ET. The components of xRNA: synthesis and fluorescence of a full genetic set of size-expanded ribonucleosides. Org Lett 2011; 13:676-9. [PMID: 21214222 PMCID: PMC3039074 DOI: 10.1021/ol102915f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and properties of a full set of four benzo-expanded ribonucleosides (xRNA), analogous to A, G, C, and U RNA monomers, are described. The nucleosides are efficient fluorophores with emission maxima of 369-411 nm. The compounds are expected to be useful as RNA pathway probes and as components of an unnatural ribopolymer.
Collapse
Affiliation(s)
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
7
|
Abstract
Transfer RNA (tRNA) molecules mediate translation of the nucleic acid genetic code into the amino acid building blocks of proteins, thus ensuring the survivability of cells. The dynamic properties of tRNA molecules are crucial to their functions in both activity and specificity. This chapter summarizes two methods that have been recently developed or improved upon previous protocols to introduce fluorophores to site-specific positions in tRNA. One method enables incorporation of fluorophores carrying a primary amine (such as proflavin or rhodamine) to dihydrouridine (D) residues in the tRNA tertiary core, and a second method enables incorporation of pyrroloC and 2-aminopurine to positions 75 and 76, respectively, of the CCA sequence at the 3' end. These site-specific fluorophore labeling methods utilize tRNA transcripts as the substrates to provide the versatility with both wild-type and mutant sequences for examining their motions in space and time during the process of decoding genetic information.
Collapse
Affiliation(s)
- Cuiping Liu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
8
|
Zhang CM, Liu C, Christian T, Gamper H, Rozenski J, Pan D, Randolph JB, Wickstrom E, Cooperman BS, Hou YM. Pyrrolo-C as a molecular probe for monitoring conformations of the tRNA 3' end. RNA (NEW YORK, N.Y.) 2008; 14:2245-2253. [PMID: 18755841 PMCID: PMC2553749 DOI: 10.1261/rna.1158508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Abstract
All mature tRNA molecules have the conserved CCA sequence at the 3' end with a range of dynamic conformations that are important for tRNA functions. We present here the details of a general approach to fluorescent labeling of the CCA sequence with the fluorescent base analog pyrrolo-C (PyC) at position 75 as a molecular probe for monitoring the dynamics of the tRNA 3' end. Using Escherichia coli tRNA(Cys) as an example, we achieve such labeling by first synthesizing the tRNA as a transcript up to C74 and then employing the tRNA CCA-adding enzyme to incorporate PyC75 and A76, using pyrrolo-CTP (PyCTP) and ATP as the respective substrates. PyC-labeled full-length tRNA(Cys), separated from the unlabeled precursor tRNA by reverse phase high-pressure liquid chromatography, is an efficient substrate for aminoacylation by E. coli cysteinyl-tRNA synthetase (CysRS). Fluorescence binding measurement of the PyC-labeled tRNA(Cys) with E. coli CysRS reveals an equilibrium K(d) closely similar to the value determined from the fluorescence of intrinsic enzyme tryptophans. Kinetic measurements of translocation of the PyC-labeled tRNA from the ribosomal A to P sites identify a kinetic intermediate with a rate of formation and decay similar to the values reported for tRNAs labeled with the fluorescent proflavin at the tertiary core. These results highlight the potential of PyC to probe the dynamics of the tRNA CCA end in reactions ranging from aminoacylation to those on the ribosome.
Collapse
Affiliation(s)
- Chun-Mei Zhang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brunelle JL, Shaw JJ, Youngman EM, Green R. Peptide release on the ribosome depends critically on the 2' OH of the peptidyl-tRNA substrate. RNA (NEW YORK, N.Y.) 2008; 14:1526-31. [PMID: 18567817 PMCID: PMC2491474 DOI: 10.1261/rna.1057908] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Peptide release on the ribosome is catalyzed by protein release factors (RFs) on recognition of stop codons positioned in the A site of the small ribosomal subunit. Here we show that the 2' OH of the peptidyl-tRNA substrate plays an essential role in catalysis of the peptide release reaction. These observations parallel earlier studies of the mechanism of the peptidyl transfer reaction and argue that related mechanisms are at the heart of catalysis for these reactions.
Collapse
Affiliation(s)
- Julie L Brunelle
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
10
|
Cho HD, Sood VD, Baker D, Weiner AM. On the role of a conserved, potentially helix-breaking residue in the tRNA-binding alpha-helix of archaeal CCA-adding enzymes. RNA (NEW YORK, N.Y.) 2008; 14:1284-1289. [PMID: 18495940 PMCID: PMC2441987 DOI: 10.1261/rna.1060308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/18/2008] [Indexed: 05/26/2023]
Abstract
Archaeal class I CCA-adding enzymes use a ribonucleoprotein template to build and repair the universally conserved 3'-terminal CCA sequence of the acceptor stem of all tRNAs. A wealth of structural and biochemical data indicate that the Archaeoglobus fulgidus CCA-adding enzyme binds primarily to the tRNA acceptor stem through a long, highly conserved alpha-helix that lies nearly parallel to the acceptor stem and makes many contacts with its sugar-phosphate backbone. Although the geometry of this alpha-helix is nearly ideal in all available cocrystal structures, the helix contains a highly conserved, potentially helix-breaking proline or glycine near the N terminus. We performed a mutational analysis to dissect the role of this residue in CCA-addition activity. We found that the phylogenetically permissible P295G mutant and the phylogenetically absent P295T had little effect on CCA addition, whereas P295A and P295S progressively interfered with CCA addition (C74>C75>A76 addition). We also examined the effects of these mutations on tRNA binding and the kinetics of CCA addition, and performed a computational analysis using Rosetta Design to better understand the role of P295 in nucleotide transfer. Our data indicate that CCA-adding activity does not correlate with the stability of the pre-addition cocrystal structures visualized by X-ray crystallography. Rather, the data are consistent with a transient conformational change involving P295 of the tRNA-binding alpha-helix during or between one or more steps in CCA addition.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
11
|
Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008; 379:579-88. [PMID: 18466919 PMCID: PMC2430420 DOI: 10.1016/j.jmb.2008.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 03/22/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.
Collapse
Affiliation(s)
| | | | - Konstantine Halkidis
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, Philadelphia, PA 19107
| | - Howard Gamper
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, Philadelphia, PA 19107
| | - Ya-Ming Hou
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10 Street, Philadelphia, PA 19107
| |
Collapse
|
12
|
Ledoux S, Uhlenbeck OC. [3'-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. Methods 2008; 44:74-80. [PMID: 18241789 PMCID: PMC2275914 DOI: 10.1016/j.ymeth.2007.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology, and Cell Biology Northwestern University Evanston, Illinois 60208
| | - Olke C. Uhlenbeck
- Department of Biochemistry, Molecular Biology, and Cell Biology Northwestern University Evanston, Illinois 60208
| |
Collapse
|
13
|
Shan X, Russell TA, Paul SM, Kushner DB, Joyce PBM. Characterization of a temperature-sensitive mutation that impairs the function of yeast tRNA nucleotidyltransferase. Yeast 2008; 25:219-33. [DOI: 10.1002/yea.1582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Cho HD, Verlinde CLMJ, Weiner AM. Reengineering CCA-adding enzymes to function as (U,G)- or dCdCdA-adding enzymes or poly(C,A) and poly(U,G) polymerases. Proc Natl Acad Sci U S A 2006; 104:54-9. [PMID: 17179213 PMCID: PMC1765476 DOI: 10.1073/pnas.0606961104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCA-adding enzymes build and repair the 3'-terminal CCA sequence of tRNA. These unusual RNA polymerases use either a ribonucleoprotein template (class I) or pure protein template (class II) to form mock base pairs with the Watson-Crick edges of incoming CTP and ATP. Guided by the class II Bacillus stearothermophilus CCA-adding enzyme structure, we introduced mutations designed to reverse the polarity of hydrogen bonds between the nucleobases and protein template. We were able to transform the CCA-adding enzyme into a (U,G)-adding enzyme that incorporates UTP and GTP instead of CTP and ATP; we transformed the related Aquifex aeolicus CC- and A-adding enzymes into UU- and G-adding enzymes and Escherichia coli poly(A) polymerase into a poly(G) polymerase; and we transformed the B. stearothermophilus CCA-adding enzyme into a poly(C,A) polymerase by mutations in helix J that appear, based on the apoenzyme structure, to sterically limit addition to CCA. We also transformed the B. stearothermophilus CCA-adding enzyme into a dCdCdA-adding enzyme by mutating an arginine that interacts with the incoming ribose 2' hydroxyl. Most importantly, we found that mutations in helix J can affect the specificity of the nucleotide binding site some 20 A away, suggesting that the specificity of both class I and II enzymes may be dictated by an intricate network of hydrogen bonds involving the protein, incoming nucleotide, and 3' end of the tRNA. Collaboration between RNA and protein in the form of a ribonucleoprotein template may help to explain the evolutionary diversity of the nucleotidyltransferase family.
Collapse
Affiliation(s)
- HyunDae D. Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350
| | | | - Alan M. Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350
- *To whom correspondence should be addressed at:
Department of Biochemistry, University of Washington, J417 Health Sciences Building, Box 357350, Seattle, WA 98195-7350. E-mail:
| |
Collapse
|
15
|
Cho HD, Chen Y, Varani G, Weiner AM. A model for C74 addition by CCA-adding enzymes: C74 addition, like C75 and A76 addition, does not involve tRNA translocation. J Biol Chem 2006; 281:9801-11. [PMID: 16455665 DOI: 10.1074/jbc.m512603200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCA-adding enzyme adds CCA to the 3'-end of tRNA one nucleotide at a time, using CTP and ATP as substrates. We found previously that tRNA does not rotate or translocate on the enzyme during the addition of C75 and A76. We therefore predicted that the growing 3'-end of tRNA must, upon addition of each nucleotide, refold to reposition the new 3'-hydroxyl equivalently relative to the solitary nucleotidyltransferase motif. Cocrystal structures of the class I archaeal Archaeoglobus fulgidus enzyme, poised for addition of C75 and A76, confirmed this prediction. We have also demonstrated that an evolutionarily flexible beta-turn facilitates progressive refolding of the 3'-terminal C74 and C75 residues during C75 and A76 addition. Although useful cocrystals corresponding to C74 addition have not yet been obtained, we now show experimentally that tRNA does not rotate or translocate during C74 addition. We therefore propose, based on the existing A. fulgidus cocrystal structures, that the same flexible beta-turn functions as a wedge between the discriminator base (N73) and the terminal base pair of the acceptor stem, unstacking and repositioning N73 to attack the incoming CTP. Thus a single flexible beta-turn would orchestrate consecutive addition of all three nucleotides without significant movement of the tRNA on the enzyme surface.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The CCA-adding enzyme (tRNA nucleotidyltransferase) builds and repairs the 3' end of tRNA. A single active site adds both CTP and ATP, but the enzyme has no nucleic acid template, and tRNA does not translocate or rotate during C75 and A76 addition. We modeled the structure of the class I archaeal Sulfolobus shibatae CCA-adding enzyme on eukaryotic poly(A) polymerase and mutated residues in the vicinity of the active site. We found mutations that specifically affected C74, C75, or A76 addition, as well as mutations that progressively impaired addition of CCA. Many of these mutations clustered in an evolutionarily versatile beta-turn located between strands 3 and 4 of the nucleotidyltransferase domain. Our mutational analysis confirms and extends recent crystallographic studies of the highly homologous Archaeoglobus fulgidus enzyme. We suggest that the unusual phenotypes of the beta-turn mutants reflect the consecutive conformations assumed by the beta-turn as it presents the discriminator base N73, then C74, and finally C75 to the active site without translocation or rotation of the tRNA acceptor stem. We also suggest that beta-turn mutants can affect nucleotide selection because the growing 3' end of tRNA must be properly positioned to serve as part of the ribonucleoprotein template that selects the incoming nucleotide.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
17
|
Abstract
The CCA-adding enzyme, which builds and repairs the 3' terminal CCA sequence of tRNA, is the only RNA polymerase that can synthesize a defined nucleotide sequence without using a nucleic acid template. New cocrystal structures tell us how this remarkable enzyme works.
Collapse
Affiliation(s)
- Alan M Weiner
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA.
| |
Collapse
|
18
|
Martin G, Möglich A, Keller W, Doublié S. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. J Mol Biol 2004; 341:911-25. [PMID: 15328606 DOI: 10.1016/j.jmb.2004.06.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 11/27/2022]
Abstract
Polyadenylation of messenger RNA precursors is an essential process in eukaryotes. Poly(A) polymerase (PAP), a member of the nucleotidyltransferase family that includes DNA polymerase beta, incorporates ATP at the 3' end of mRNAs in a template-independent manner. Although the structures of mammalian and yeast PAPs are known, their mechanism of ATP selection has remained elusive. In a recent bovine PAP structure complexed with an analog of ATP and Mn2+, strictly conserved residues interact selectively with the adenine base, but the nucleotide was found in a "non-productive" conformation. Here we report a second bovine crystal structure, obtained in the presence of Mg2+, where 3'-dATP adopts a "productive" conformation similar to that seen in yeast PAP or DNA polymerase beta. Mutational analysis and activity assays with ATP analogs suggest a role in catalysis for one of the two adenine-binding sites revealed by our structural data. The other site might function to prevent futile hydrolysis of ATP. In order to investigate the role of metals in catalysis we performed steady state kinetics experiments under distributive polymerization conditions. These tests suggest a sequential random mechanism in vitro in the presence of ATP and RNA, without preference for a particular order of binding of the two substrates. In vivo, however, where polyadenylation is processive and the primer does not dissociate from the enzyme, an ordered mechanism with the primer as the leading substrate is more likely.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
19
|
Betat H, Rammelt C, Martin G, Mörl M. Exchange of regions between bacterial poly(A) polymerase and the CCA-adding enzyme generates altered specificities. Mol Cell 2004; 15:389-98. [PMID: 15304219 DOI: 10.1016/j.molcel.2004.06.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/21/2004] [Accepted: 05/26/2004] [Indexed: 11/16/2022]
Abstract
Bacterial poly(A) polymerases (PAP) and tRNA nucleotidyltransferases are highly similar in sequence but display different activities: whereas tRNA nucleotidyltransferase catalyzes the addition of CCA to 3' ends of tRNAs, PAP adds poly(A) tails to a variety of transcripts. Using domain substitution experiments, we show that these enzymes follow a modular concept: exchange of N- and C-terminal regions leads to chimeric enzymes with unexpected activities, indicating that tRNA nucleotidyltransferase carries an "anchor domain" in the C-terminal section that restricts polymerization to three nucleotides. A 27 amino acid region was identified that determines whether poly(A) or CCA is synthesized by the enzyme chimeras. Sequence alignments suggest that the catalytic cores of both enzymes carry identical components involved in nucleotide recognition and incorporation. This seems to be the prerequisite for the observed reprogramming of the catalytic center of PAP to incorporate a sequence of defined length and composition instead of long stretches of A residues.
Collapse
Affiliation(s)
- Heike Betat
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
20
|
Cho HD, Weiner AM. A single catalytically active subunit in the multimeric Sulfolobus shibatae CCA-adding enzyme can carry out all three steps of CCA addition. J Biol Chem 2004; 279:40130-6. [PMID: 15265870 DOI: 10.1074/jbc.m405518200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCA-adding enzyme ATP(CTP):tRNA nucleotidyltransferase builds and repairs the 3'-terminal CCA sequence of tRNA. Although this unusual RNA polymerase has no nucleic acid template, it can construct the CCA sequence one nucleotide at a time using CTP and ATP as substrates. We found previously that tRNA does not translocate along the enzyme during CCA addition (Yue, D., Weiner, A. M., and Maizels, N. (1998) J. Biol. Chem. 273, 29693-29700) and that a single nucleotidyltransferase motif adds all three nucleotides (Shi, P.-Y., Maizels, N., and Weiner, A. M. (1998) EMBO J. 17, 3197-3206). Intriguingly, the CCA-adding enzyme from the archaeon Sulfolobus shibatae is a homodimer that forms a tetramer upon binding two tRNAs. We therefore asked whether the active form of the S. shibatae enzyme might have two quasi-equivalent active sites, one adding CTP and the other ATP. Using an intersubunit complementation approach, we demonstrate that the dimer is active and that a single catalytically active subunit can carry out all three steps of CCA addition. We also locate one UV light-induced tRNA cross-link on the enzyme structure and provide evidence suggesting the location of another. Our data rule out shuttling models in which the 3'-end of the tRNA shuttles from one quasi-equivalent active site to another, demonstrate that tRNA-induced tetramerization is not required for CCA addition, and support a role for the tail domain of the enzyme in tRNA binding.
Collapse
Affiliation(s)
- HyunDae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | |
Collapse
|