1
|
Liu S, Lv Q, Mao X, Dong H, Xu W, Du X, Jia W, Feng K, Zhang J, Zhang Y. O-GlcNAcylated RALY Contributes to Hepatocellular Carcinoma Cells Proliferation by Regulating USP22 mRNA Nuclear Export. Int J Biol Sci 2024; 20:3675-3690. [PMID: 38993567 PMCID: PMC11234212 DOI: 10.7150/ijbs.97397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly tumors; however, its pathogenic mechanism remains largely elusive. In-depth researches are needed to reveal the expression regulatory mechanisms and functions of the RNA-binding protein RALY in HCC. Here, we identify RALY as a highly expressed oncogenic factor that affects HCC cells proliferation both in vitro and in vivo. O-GlcNAcylation of RALY at Ser176 enhances its stability by protecting RALY from TRIM27-mediated ubiquitination, thus maintaining hyper-expression of the RALY protein. Mechanistically, RALY interacts with USP22 messenger RNA, as revealed by RNA immunoprecipitation, to increase their cytoplasmic localization and protein expression, thereby promoting the proliferation of HCC cells. Furthermore, we develop a novel RALY protein degrader based on peptide proteolysis-targeting chimeras, named RALY-PROTAC, which we chemically synthesize by linking a RALY-targeting peptide with the E3 ubiquitin ligase recruitment ligand pomalidomide. In conclusion, our findings demonstrate a novel mechanism by which O-GlcNAcylation/RALY/USP22 mRNA axis aggravates HCC cells proliferation. RALY-PROTACs as degraders of the RALY protein exhibit potential as therapeutic drugs for RALY-overexpressing HCC.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Hui Dong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Xu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xuanlong Du
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Weilu Jia
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jiaqi Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Mihaylov SR, Castelli LM, Lin YH, Gül A, Soni N, Hastings C, Flynn HR, Păun O, Dickman MJ, Snijders AP, Goldstone R, Bandmann O, Shelkovnikova TA, Mortiboys H, Ultanir SK, Hautbergue GM. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun 2023; 14:5496. [PMID: 37679383 PMCID: PMC10485026 DOI: 10.1038/s41467-023-41304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.
Collapse
Affiliation(s)
- Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Aytac Gül
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Christopher Hastings
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oana Păun
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Life Science Mass Spectrometry, Bruker Daltonics, Banner Lane, Coventry, CV4 9GH, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
3
|
Pei J, Zhang J, Wang XD, Kim C, Yu Y, Cong Q. Impact of Asp/Glu-ADP-ribosylation on protein-protein interaction and protein function. Proteomics 2023; 23:e2200083. [PMID: 36453556 PMCID: PMC10362910 DOI: 10.1002/pmic.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
PARylation plays critical role in regulating multiple cellular processes such as DNA damage response and repair, transcription, RNA processing, and stress response. More than 300 human proteins have been found to be modified by PARylation on acidic residues, that is, Asp (D) and Glu (E). We used the deep-learning tool AlphaFold to predict protein-protein interactions (PPIs) and their interfaces for these proteins based on coevolution signals from joint multiple sequence alignments (MSAs). AlphaFold predicted 260 confident PPIs involving PARylated proteins, and about one quarter of these PPIs have D/E-PARylation sites in their predicted PPI interfaces. AlphaFold predictions offer novel insights into the mechanisms of PARylation regulations by providing structural details of the PPI interfaces. D/E-PARylation sites have a preference to occur in coil regions and disordered regions, and PPI interfaces containing D/E-PARylation sites tend to occur between short linear sequence motifs in disordered regions and globular domains. The hub protein PCNA is predicted to interact with more than 20 proteins via the common PIP box motif and the structurally variable flanking regions. D/E-PARylation sites were found in the interfaces of key components of the RNA transcription and export complex, the SF3a spliceosome complex, and H/ACA and C/D small nucleolar ribonucleoprotein complexes, suggesting that systematic PARylation have a profound effect in regulating multiple RNA-related processes such as RNA nuclear export, splicing, and modification. Finally, PARylation of SUMO2 could modulate its interaction with CHAF1A, thereby representing a potential mechanism for the cross-talk between PARylation and SUMOylation in regulation of chromatin remodeling.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xu-Dong Wang
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Chiho Kim
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Yonghao Yu
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Thomas A, Rehfeld F, Zhang H, Chang TC, Goodarzi M, Gillet F, Mendell JT. RBM33 directs the nuclear export of transcripts containing GC-rich elements. Genes Dev 2022; 36:550-565. [PMID: 35589130 PMCID: PMC9186391 DOI: 10.1101/gad.349456.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Although splicing is a major driver of RNA nuclear export, many intronless RNAs are efficiently exported to the cytoplasm through poorly characterized mechanisms. For example, GC-rich sequences promote nuclear export in a splicing-independent manner, but how GC content is recognized and coupled to nuclear export is unknown. Here, we developed a genome-wide screening strategy to investigate the mechanism of export of NORAD, an intronless cytoplasmic long noncoding RNA (lncRNA). This screen revealed an RNA binding protein, RBM33, that directs the nuclear export of NORAD and numerous other transcripts. RBM33 directly binds substrate transcripts and recruits components of the TREX-NXF1/NXT1 RNA export pathway. Interestingly, high GC content emerged as the feature that specifies RBM33-dependent nuclear export. Accordingly, RBM33 directly binds GC-rich elements in target transcripts. These results provide a broadly applicable strategy for the genetic dissection of nuclear export mechanisms and reveal a long-sought nuclear export pathway for transcripts with GC-rich sequences.
Collapse
Affiliation(s)
- Anu Thomas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mohammad Goodarzi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Frank Gillet
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
5
|
Li Y, Wang M, Yang M, Xiao Y, Jian Y, Shi D, Chen X, Ouyang Y, Kong L, Huang X, Bai J, Hu Y, Lin C, Song L. Nicotine-Induced ILF2 Facilitates Nuclear mRNA Export of Pluripotency Factors to Promote Stemness and Chemoresistance in Human Esophageal Cancer. Cancer Res 2021; 81:3525-3538. [PMID: 33975879 DOI: 10.1158/0008-5472.can-20-4160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Balancing mRNA nuclear export kinetics with its nuclear decay is critical for mRNA homeostasis control. How this equilibrium is aberrantly disrupted in esophageal cancer to acquire cancer stem cell properties remains unclear. Here we find that the RNA-binding protein interleukin enhancer binding factor 2 (ILF2) is robustly upregulated by nicotine, a major chemical component of tobacco smoke, via activation of JAK2/STAT3 signaling and significantly correlates with poor prognosis in heavy-smoking patients with esophageal cancer. ILF2 bound the THO complex protein THOC4 as a regulatory cofactor to induce selective interactions with pluripotency transcription factor mRNAs to promote their assembly into export-competent messenger ribonucleoprotein complexes. ILF2 facilitated nuclear mRNA export and inhibited hMTR4-mediated exosomal degradation to promote stabilization and expression of SOX2, NANOG, and SALL4, resulting in enhanced stemness and tumor-initiating capacity of esophageal cancer cells. Importantly, inducible depletion of ILF2 significantly increased the therapeutic efficiency of cisplatin and abrogated nicotine-induced chemoresistance in vitro and in vivo. These findings reveal a novel role of ILF2 in nuclear mRNA export and maintenance of cancer stem cells and open new avenues to overcome smoking-mediated chemoresistance in esophageal cancer. SIGNIFICANCE: This study defines a previously uncharacterized role of nicotine-regulated ILF2 in facilitating nuclear mRNA export to promote cancer stemness, suggesting a potential therapeutic strategy against nicotine-induced chemoresistance in esophageal cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meng Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunting Jian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiewen Bai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Pühringer T, Hohmann U, Fin L, Pacheco-Fiallos B, Schellhaas U, Brennecke J, Plaschka C. Structure of the human core transcription-export complex reveals a hub for multivalent interactions. eLife 2020; 9:e61503. [PMID: 33191911 PMCID: PMC7744094 DOI: 10.7554/elife.61503] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
The export of mRNA from nucleus to cytoplasm requires the conserved and essential transcription and export (TREX) complex (THO-UAP56/DDX39B-ALYREF). TREX selectively binds mRNA maturation marks and licenses mRNA for nuclear export by loading the export factor NXF1-NXT1. How TREX integrates these marks and achieves high selectivity for mature mRNA is poorly understood. Here, we report the cryo-electron microscopy structure of the human THO-UAP56/DDX39B complex at 3.3 Å resolution. The seven-subunit THO-UAP56/DDX39B complex multimerizes into a 28-subunit tetrameric assembly, suggesting that selective recognition of mature mRNA is facilitated by the simultaneous sensing of multiple, spatially distant mRNA regions and maturation marks. Two UAP56/DDX39B RNA helicases are juxtaposed at each end of the tetramer, which would allow one bivalent ALYREF protein to bridge adjacent helicases and regulate the TREX-mRNA interaction. Our structural and biochemical results suggest a conserved model for TREX complex function that depends on multivalent interactions between proteins and mRNA.
Collapse
Affiliation(s)
- Thomas Pühringer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Ulrich Hohmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Ulla Schellhaas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
7
|
Fujita KI, Yamazaki T, Harada K, Seno S, Matsuda H, Masuda S. URH49 exports mRNA by remodeling complex formation and mediating the NXF1-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194480. [PMID: 31917363 DOI: 10.1016/j.bbagrm.2020.194480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
The TREX complex integrates information from nuclear mRNA processing events to ensure the timely export of mRNA to the cytoplasm. In humans, UAP56 and its paralog URH49 form distinct complexes, the TREX complex and the AREX complex, respectively, which cooperatively regulate the expression of a specific set of mRNA species on a genome wide scale. The difference in the complex formation between UAP56 and URH49 are thought to play a critical role in the regulation of target mRNAs. To date, the underlying mechanism remains poorly understood. Here we characterize the formation of the TREX complex and the AREX complex. In the ATP depleted condition, UAP56 formed an Apo-TREX complex containing the THO subcomplex but not ALYREF and CIP29. URH49 formed an Apo-AREX complex containing CIP29 but not ALYREF and the THO subcomplex. However, with the addition of ATP, both the Apo-TREX complex and the Apo-AREX complex were remodeled to highly similar ATP-TREX complex containing the THO subcomplex, ALYREF and CIP29. The knockdown of URH49 caused a reduction in its target mRNAs and a cytokinesis failure. Similarly, cytokinesis abnormality was observed in CIP29 knockdown cells, suggesting that CIP29 belongs to the URH49 regulated mRNA export pathway. Lastly, we confirmed that the export of mRNA in URH49-dependent pathway is achieved by NXF1, which is also observed in UAP56-dependent pathway. Our studies propose an mRNA export model that the mRNA selectivity depends on the Apo-form TREX/AREX complex, which is remodeled to the highly similar ATP-form complex upon ATP loading, and integrated to NXF1.
Collapse
Affiliation(s)
- Ken-Ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomohiro Yamazaki
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kotaro Harada
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Overlapping motifs on the herpes viral proteins ICP27 and ORF57 mediate interactions with the mRNA export adaptors ALYREF and UIF. Sci Rep 2018; 8:15005. [PMID: 30301920 PMCID: PMC6177440 DOI: 10.1038/s41598-018-33379-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
The TREX complex mediates the passage of bulk cellular mRNA export to the nuclear export factor TAP/NXF1 via the export adaptors ALYREF or UIF, which appear to act in a redundant manner. TREX complex recruitment to nascent RNA is coupled with 5′ capping, splicing and polyadenylation. Therefore to facilitate expression from their intronless genes, herpes viruses have evolved a mechanism to circumvent these cellular controls. Central to this process is a protein from the conserved ICP27 family, which binds viral transcripts and cellular TREX complex components including ALYREF. Here we have identified a novel interaction between HSV-1 ICP27 and an N-terminal domain of UIF in vivo, and used NMR spectroscopy to locate the UIF binding site within an intrinsically disordered region of ICP27. We also characterized the interaction sites of the ICP27 homolog ORF57 from KSHV with UIF and ALYREF using NMR, revealing previously unidentified binding motifs. In both ORF57 and ICP27 the interaction sites for ALYREF and UIF partially overlap, suggestive of mutually exclusive binding. The data provide a map of the binding sites responsible for promoting herpes virus mRNA export, enabling future studies to accurately probe these interactions and reveal the functional consequences for UIF and ALYREF redundancy.
Collapse
|
9
|
DDX39 promotes hepatocellular carcinoma growth and metastasis through activating Wnt/β-catenin pathway. Cell Death Dis 2018; 9:675. [PMID: 29867138 PMCID: PMC5986742 DOI: 10.1038/s41419-018-0591-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer related death worldwide; however, the molecular mechanisms regulating HCC progression remain largely unknown. In this study, we determined the role of DDX39 which a DEAD-box RNA helicase in HCC progression, and found DDX39 was upregulated in HCC tissues and cells, DDX39 expression was positive correlated with advanced clinical stage, survival analysis showed patients with high-DDX39 levels had poor outcome, it was an independent prognostic factor. Functional analysis revealed that DDX39 overexpression promoted HCC cell migration, invasion, growth, and metastasis, DDX39 knockdown inhibited HCC cell migration, invasion, growth, and metastasis. Mechanism analysis suggested DDX39 overexpression increased β-catenin expression in nucleus and increased Wnt/β-catenin pathway target genes levels, while DDX39 knockdown reduced this effect. Knockdown of Wnt/β-catenin pathway co-activators TCF4 and LEF1 in DDX39 overexpressing HCC cells inhibited Wnt/β-catenin pathway target genes. The invasion ability was also reduced, confirming DDX39 regulates HCC progression by activating Wnt/β-catenin pathway. In conclusion, we found DDX39 is a target and prognostic factor for HCC, and promotes HCC migration, invasion, growth, and metastasis by activating Wnt/β-catenin pathway.
Collapse
|
10
|
Pfaff C, Ehrnsberger HF, Flores-Tornero M, Sørensen BB, Schubert T, Längst G, Griesenbeck J, Sprunck S, Grasser M, Grasser KD. ALY RNA-Binding Proteins Are Required for Nucleocytosolic mRNA Transport and Modulate Plant Growth and Development. PLANT PHYSIOLOGY 2018; 177:226-240. [PMID: 29540591 PMCID: PMC5933122 DOI: 10.1104/pp.18.00173] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 05/19/2023]
Abstract
The regulated transport of mRNAs from the cell nucleus to the cytosol is a critical step linking transcript synthesis and processing with translation. However, in plants, only a few of the factors that act in the mRNA export pathway have been functionally characterized. Flowering plant genomes encode several members of the ALY protein family, which function as mRNA export factors in other organisms. Arabidopsis (Arabidopsis thaliana) ALY1 to ALY4 are commonly detected in root and leaf cells, but they are differentially expressed in reproductive tissue. Moreover, the subnuclear distribution of ALY1/2 differs from that of ALY3/4. ALY1 binds with higher affinity to single-stranded RNA than double-stranded RNA and single-stranded DNA and interacts preferentially with 5-methylcytosine-modified single-stranded RNA. Compared with the full-length protein, the individual RNA recognition motif of ALY1 binds RNA only weakly. ALY proteins interact with the RNA helicase UAP56, indicating a link to the mRNA export machinery. Consistently, ALY1 complements the lethal phenotype of yeast cells lacking the ALY1 ortholog Yra1. Whereas individual aly mutants have a wild-type appearance, disruption of ALY1 to ALY4 in 4xaly plants causes vegetative and reproductive defects, including strongly reduced growth, altered flower morphology, as well as abnormal ovules and female gametophytes, causing reduced seed production. Moreover, polyadenylated mRNAs accumulate in the nuclei of 4xaly cells. Our results highlight the requirement of efficient mRNA nucleocytosolic transport for proper plant growth and development and indicate that ALY1 to ALY4 act partly redundantly in this process; however, differences in expression and subnuclear localization suggest distinct functions.
Collapse
Affiliation(s)
- Christina Pfaff
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Hans F Ehrnsberger
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - María Flores-Tornero
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Brian B Sørensen
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Thomas Schubert
- Department for Biochemistry III, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Gernot Längst
- Department for Biochemistry III, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Department for Biochemistry III, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Stefanie Sprunck
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Shi M, Zhang H, Wu X, He Z, Wang L, Yin S, Tian B, Li G, Cheng H. ALYREF mainly binds to the 5' and the 3' regions of the mRNA in vivo. Nucleic Acids Res 2017; 45:9640-9653. [PMID: 28934468 PMCID: PMC5766156 DOI: 10.1093/nar/gkx597] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5′ end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3′ end of the mRNA. Furthermore, the 3′ processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5′ and the 3′ regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3′ processing.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhisong He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Tian
- Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez-Martinez A, Cooper-Knock J, Higginbottom A, Lin YH, Bauer CS, Dodd JE, Myszczynska MA, Alam SM, Garneret P, Chandran JS, Karyka E, Stopford MJ, Smith EF, Kirby J, Meyer K, Kaspar BK, Isaacs AM, El-Khamisy SF, De Vos KJ, Ning K, Azzouz M, Whitworth AJ, Shaw PJ. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun 2017; 8:16063. [PMID: 28677678 PMCID: PMC5504286 DOI: 10.1038/ncomms16063] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Lydia M. Castelli
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S. Bauer
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jennifer E. Dodd
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Monika A. Myszczynska
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Sarah M. Alam
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pierre Garneret
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jayanth S. Chandran
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew J. Stopford
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Emma F. Smith
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Kathrin Meyer
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Brian K. Kaspar
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Adrian M. Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Sherif F. El-Khamisy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Kurt J. De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J. Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
13
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
14
|
Müller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 2016; 30:553-66. [PMID: 26944680 PMCID: PMC4782049 DOI: 10.1101/gad.276477.115] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, Müller-McNicoll et al. investigate how export machinery assembles on mRNA and how it senses mRNA maturity before exporting mRNAs from the nucleus. They show that SR proteins act as NXF1 adaptors by connecting alternative splicing and 3′ end formation to mRNA export in vivo and propose that SR proteins and NXF1 form a ternary complex on mRNAs, particularly in last exons, and shuttle together to the cytoplasm. Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends.
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Oliver D Schwich
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany; Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Michaela C Steiner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kathi Zarnack
- Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
15
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
16
|
Gromadzka AM, Steckelberg AL, Singh KK, Hofmann K, Gehring NH. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Res 2016; 44:2348-61. [PMID: 26773052 PMCID: PMC4797287 DOI: 10.1093/nar/gkw009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs.
Collapse
Affiliation(s)
| | | | - Kusum K Singh
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
17
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
18
|
Cooper-Knock J, Higginbottom A, Stopford MJ, Highley JR, Ince PG, Wharton SB, Pickering-Brown S, Kirby J, Hautbergue GM, Shaw PJ. Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol 2015; 130:63-75. [PMID: 25943887 PMCID: PMC4468790 DOI: 10.1007/s00401-015-1429-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
GGGGCC repeat expansions of C9ORF72 represent the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We and others have proposed that RNA transcribed from the repeat sequence is toxic via sequestration of RNA-binding factors. Both GGGGCC-repeat (sense) and CCCCGG-repeat (antisense) molecules are detectable by fluorescence in situ hybridisation as RNA foci, but their relative expression pattern within the CNS and contribution to disease has not been determined. Blinded examination of CNS biosamples from ALS patients with a repeat expansion of C9ORF72 showed that antisense foci are present at a significantly higher frequency in cerebellar Purkinje neurons and motor neurons, whereas sense foci are present at a significantly higher frequency in cerebellar granule neurons. Consistent with this, inclusions containing sense or antisense derived dipeptide repeat proteins were present at significantly higher frequency in cerebellar granule neurons or motor neurons, respectively. Immunohistochemistry and UV-crosslinking studies showed that sense and antisense RNA molecules share similar interactions with SRSF2, hnRNP K, hnRNP A1, ALYREF, and hnRNP H/F. Together these data suggest that, although sense and antisense RNA molecules might be expected to be equally toxic via their shared protein binding partners, distinct patterns of expression in various CNS neuronal populations could lead to relative differences in their contribution to the pathogenesis of neuronal injury. Moreover in motor neurons, which are the primary target of pathology in ALS, the presence of antisense foci (χ (2), p < 0.00001) but not sense foci (χ (2), p = 0.75) correlated with mislocalisation of TDP-43, which is the hallmark of ALS neurodegeneration. This has implications for translational approaches to C9ORF72 disease, and furthermore interacting RNA-processing factors and transcriptional activators responsible for antisense versus sense transcription might represent novel therapeutic targets.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Adrian Higginbottom
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Matthew J. Stopford
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - J. Robin Highley
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul G. Ince
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Stephen B. Wharton
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Stuart Pickering-Brown
- />Institute of Brain, Behaviour and Mental Health, 2.014 AV Hill Building, University of Manchester, Manchester, M13 9PT UK
| | - Janine Kirby
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Guillaume M. Hautbergue
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- />Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
19
|
Viphakone N, Cumberbatch MG, Livingstone MJ, Heath PR, Dickman MJ, Catto JW, Wilson SA. Luzp4 defines a new mRNA export pathway in cancer cells. Nucleic Acids Res 2015; 43:2353-66. [PMID: 25662211 PMCID: PMC4344508 DOI: 10.1093/nar/gkv070] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth.
Collapse
Affiliation(s)
- Nicolas Viphakone
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Marcus G Cumberbatch
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK Academic Urology Unit, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michaela J Livingstone
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, UK
| | - James W Catto
- Academic Urology Unit, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| |
Collapse
|
20
|
Wysoczański P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014; 21:911-8. [PMID: 25218446 DOI: 10.1038/nsmb.2889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components-Snu17p, Bud13p and Pml1p-that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczański
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cornelius Schneider
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - ShengQi Xiang
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Simon Trowitzsch
- 1] Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, Göttingen, Germany
| |
Collapse
|
21
|
Competitive and cooperative interactions mediate RNA transfer from herpesvirus saimiri ORF57 to the mammalian export adaptor ALYREF. PLoS Pathog 2014; 10:e1003907. [PMID: 24550725 PMCID: PMC3923783 DOI: 10.1371/journal.ppat.1003907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/16/2013] [Indexed: 01/08/2023] Open
Abstract
The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions.
Collapse
|
22
|
Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 2013; 5:1901-23. [PMID: 23896747 PMCID: PMC3761232 DOI: 10.3390/v5081901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022] Open
Abstract
Nuclear mRNA export is a highly complex and regulated process in cells. Cellular transcripts must undergo successful maturation processes, including splicing, 5'-, and 3'-end processing, which are essential for assembly of an export competent ribonucleoprotein particle. Many viruses replicate in the nucleus of the host cell and require cellular mRNA export factors to efficiently export viral transcripts. However, some viral mRNAs undergo aberrant mRNA processing, thus prompting the viruses to express their own specific mRNA export proteins to facilitate efficient export of viral transcripts and allowing translation in the cytoplasm. This review will focus on the Kaposi's sarcoma-associated herpesvirus ORF57 protein, a multifunctional protein involved in all stages of viral mRNA processing and that is essential for virus replication. Using the example of ORF57, we will describe cellular bulk mRNA export pathways and highlight their distinct features, before exploring how the virus has evolved to exploit these mechanisms.
Collapse
Affiliation(s)
| | | | | | - Adrian Whitehouse
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
23
|
The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export. J Virol 2013; 87:7210-7. [PMID: 23637401 DOI: 10.1128/jvi.00738-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.
Collapse
|
24
|
TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun 2013; 3:1006. [PMID: 22893130 PMCID: PMC3654228 DOI: 10.1038/ncomms2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/11/2012] [Indexed: 12/03/2022] Open
Abstract
The metazoan TREX complex is recruited to mRNA during nuclear RNA processing and functions in exporting mRNA to the cytoplasm. Nxf1 is an mRNA export receptor, which binds processed mRNA and transports it through the nuclear pore complex. At present, the relationship between TREX and Nxf1 is not understood. Here we show that Nxf1 uses an intramolecular interaction to inhibit its own RNA binding activity. When the TREX subunits Aly and Thoc5 make contact with Nxf1, Nxf1 is driven into an open conformation, exposing its RNA binding domain, allowing RNA binding. Moreover, the combined knockdown of Aly and Thoc5 drastically reduces the amount of Nxf1 bound to mRNA in vivo and also causes a severe mRNA export block. Together, our data indicate that TREX provides a license for mRNA export by driving Nxf1 into a conformation capable of binding mRNA.
Collapse
|
25
|
Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 2013; 32:473-86. [PMID: 23299939 PMCID: PMC3567497 DOI: 10.1038/emboj.2012.342] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022] Open
Abstract
The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.
Collapse
|
26
|
Enriquez-Algeciras M, Ding D, Mastronardi FG, Marc RE, Porciatti V, Bhattacharya SK. Deimination restores inner retinal visual function in murine demyelinating disease. J Clin Invest 2013; 123:646-56. [PMID: 23281397 DOI: 10.1172/jci64811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022] Open
Abstract
Progressive loss of visual function frequently accompanies demyelinating diseases such as multiple sclerosis (MS) and is hypothesized to be the result of damage to the axons and soma of neurons. Here, we show that dendritic impairment is also involved in these diseases. Deimination, a posttranslational modification, was reduced in the retinal ganglion cell layer of MS patients and in a transgenic mouse model of MS (ND4 mice). Reduced deimination accompanied a decrease in inner retinal function in ND4 mice, indicating loss of vision. Local restoration of deimination dramatically improved retinal function and elongation of neurites in isolated neurons. Further, neurite length was decreased by downregulation of deimination or siRNA knockdown of the export-binding protein REF, a primary target for deimination in these cells. REF localized to dendrites and bound selective mRNAs and translation machinery to promote protein synthesis. Thus, protein deimination and dendritic outgrowth play key roles in visual function and may be a general feature of demyelinating diseases.
Collapse
|
27
|
Valkov E, Dean JC, Jani D, Kuhlmann SI, Stewart M. Structural basis for the assembly and disassembly of mRNA nuclear export complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:578-92. [PMID: 22406340 DOI: 10.1016/j.bbagrm.2012.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/26/2012] [Accepted: 02/17/2012] [Indexed: 12/17/2022]
Abstract
Most of the individual components of the nuclear elements of the gene expression pathway have been identified and high-resolution structural information is becoming available for many of them. Information is also starting to become available on the larger complexes they form and is beginning to give clues about how the dynamics of their interactions generate function. Although the translocation of export-competent messenger ribonucleoprotein particles (mRNPs) through the nuclear pore transport channel that is mediated by interactions with nuclear pore proteins (nucleoporins) is relatively well understood, the precise molecular mechanisms underlying the assembly of export-competent mRNPs in the nucleus and their Dbp5-mediated disassembly in the cytoplasm is less well defined. Considerable information has been obtained on the structure of Dbp5 in its different nucleotide-bound states and in complex with Gle1 or Nup159/NUP214. Although the precise manner by which the Dbp5 ATPase cycle is coupled to mRNP remodelling remains to be established, current models capture many key details of this process. The formation of export-competent mRNPs in the nucleus remains an elusive component of this pathway and the precise nature of the remodelling that generates these mRNPs as well as detailed understanding of the molecular mechanisms by which this step is integrated with the transcriptional, splicing and polyadenylation machinery by the TREX and TREX-2 complexes remain obscure. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Eugene Valkov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
28
|
Sandri-Goldin RM. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol 2012; 6:1261-77. [PMID: 22082288 DOI: 10.2217/fmb.11.119] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human herpes viruses cause an array of illnesses ranging from cancers for Epstein?Barr virus and Kaposi?s sarcoma-associated herpes virus, to painful skin lesions, and more rarely, keratitis and encephalitis for HSV. All herpes viruses encode a multifunctional protein, typified by HSV ICP27, which plays essential roles in viral infection. ICP27 functions in all stages of mRNA biogenesis from transcription, RNA processing and export through to translation. ICP27 has also been implicated in nuclear protein quality control, cell cycle control, activation of stress signaling pathways and prevention of apoptosis. ICP27 interacts with many proteins and it binds RNA. This article focuses on how ICP27 performs its many roles and highlights similarities with its homologs, which could be targets for antiviral intervention.
Collapse
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Abstract
TREX is a conserved multiprotein complex that is necessary for efficient mRNA export to the cytoplasm. In Saccharomyces cerevisiae, the TREX complex is additionally implicated in RNA quality control pathways, but it is unclear whether this function is conserved in mammalian cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds and recruits the TREX component REF/Aly to viral mRNAs. Here, we demonstrate that REF/Aly is recruited to the KSHV noncoding polyadenylated nuclear (PAN) RNA by ORF57. This recruitment correlates with ORF57-mediated stabilization of PAN RNA, suggesting that REF/Aly promotes nuclear RNA stability. Further supporting this idea, tethering REF/Aly to PAN RNA is sufficient to increase the nuclear abundance and half-life of PAN RNA but is not sufficient to promote its export. Interestingly, REF/Aly appears to protect the poly(A) tail from deadenylation, and REF/Aly-stabilized transcripts are further adenylated over time, consistent with previous reports linking poly(A) tail length with nuclear RNA surveillance. These studies show that REF/Aly can stabilize nuclear RNAs independently of their export and support a broader conservation of RNA quality control mechanisms from yeast to humans.
Collapse
|
30
|
Muto Y, Yokoyama S. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:229-46. [PMID: 22278943 DOI: 10.1002/wrna.1107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules.
Collapse
Affiliation(s)
- Yutaka Muto
- Systems and Structural Biology Center, RIKEN, Tsurumi, Japan.
| | | |
Collapse
|
31
|
MacKellar AL, Greenleaf AL. Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II. J Biol Chem 2011; 286:36385-95. [PMID: 21856751 PMCID: PMC3196081 DOI: 10.1074/jbc.m111.268144] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The unique C-terminal domain (CTD) of RNA polymerase II, composed of tandem heptad repeats of the consensus sequence YSPTSPS, is subject to differential phosphorylation throughout the transcription cycle. Several RNA processing factors have been shown to bind the phosphorylated CTD and use it to localize to nascent pre-mRNA during transcription. In Saccharomyces cerevisiae, the mRNA export protein Yra1 (ALY/RNA export factor in metazoa) cotranscriptionally associates with mRNA and delivers it to the nuclear pore complex for export to the cytoplasm. Here we report that Yra1 directly binds in vitro the hyperphosphorylated form of the CTD characteristic of elongating RNA polymerase II and contains a phospho-CTD-interacting domain within amino acids 18-184, which also include an "RNA recognition motif" (RRM) (residues 77-184). Using UV cross-linking, we showed that the RRM alone binds RNA, although a larger segment extending to the C terminus (amino acids 77-226) displayed stronger RNA binding activity. Although the RRM is implicated in both RNA and CTD binding, RRM point mutations separated these two functions. Both functions are important in vivo as RNA binding-defective or CTD binding-defective versions of Yra1 engendered growth and mRNA export defects. We also report the construction and characterization of a useful new temperature-sensitive YRA1 allele (R107A/F126A). Using ChIP, we demonstrated that removing the N-terminal 76 amino acids of Yra1 (all of the phospho-CTD-interacting domain up to the RRM) results in a 10-fold decrease in Yra1 recruitment to genes during elongation. These results indicate that the phospho-CTD is likely involved directly in the cotranscriptional recruitment of Yra1.
Collapse
Affiliation(s)
- April L. MacKellar
- From the Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Arno L. Greenleaf
- From the Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
32
|
Tunnicliffe RB, Hautbergue GM, Kalra P, Jackson BR, Whitehouse A, Wilson SA, Golovanov AP. Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57. PLoS Pathog 2011; 7:e1001244. [PMID: 21253573 PMCID: PMC3017119 DOI: 10.1371/journal.ppat.1001244] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/26/2010] [Indexed: 01/21/2023] Open
Abstract
The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104-112 and 103-120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway.
Collapse
Affiliation(s)
- Richard B. Tunnicliffe
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | - Guillaume M. Hautbergue
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Priti Kalra
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | - Brian R. Jackson
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Stuart A. Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Alexander P. Golovanov
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Abstract
The mRNA export adaptors provide an important link between multiple nuclear mRNA processing events and the mRNA export receptor TAP/NXF1/Mex67p. They are recruited to mRNA through transcriptional and post-transcriptional events, integrating this information to licence mRNA for export. Subsequently they hand mRNA over to TAP and switch TAP to a higher-affinity RNA-binding state, ensuring its stable association with mRNA destined for export. Here we discuss the structure and function of adaptors and how they are recruited to mRNA.
Collapse
|
34
|
Hautbergue GM, Hung ML, Walsh MJ, Snijders APL, Chang CT, Jones R, Ponting CP, Dickman MJ, Wilson SA. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr Biol 2010; 19:1918-24. [PMID: 19836239 PMCID: PMC2828547 DOI: 10.1016/j.cub.2009.09.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 11/23/2022]
Abstract
Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5′ capping and 3′ end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4–7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8–10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hung ML, Hautbergue GM, Snijders APL, Dickman MJ, Wilson SA. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res 2010; 38:3351-61. [PMID: 20129943 PMCID: PMC2879514 DOI: 10.1093/nar/gkq033] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway.
Collapse
Affiliation(s)
- Ming-Lung Hung
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
36
|
Zolotukhin AS, Uranishi H, Lindtner S, Bear J, Pavlakis GN, Felber BK. Nuclear export factor RBM15 facilitates the access of DBP5 to mRNA. Nucleic Acids Res 2010; 37:7151-62. [PMID: 19786495 PMCID: PMC2790900 DOI: 10.1093/nar/gkp782] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conserved mRNA export receptor NXF1 (Mex67 in yeast) assembles with messenger ribonucleoproteins (mRNP) in the nucleus and guides them through the nuclear pore complex into the cytoplasm. The DEAD family RNA helicase Dbp5 is essential for nuclear export of mRNA and is thought to dissociate Mex67 from mRNP upon translocation, thereby generating directional passage. However, the molecular mechanism by which Dbp5 recognizes Mex67-containing mRNP is not clear. Here we report that the human NXF1-binding protein RBM15 binds specifically to human DBP5 and facilitates its direct contact with mRNA in vivo. We found that RBM15 is targeted to the nuclear envelope, where it colocalizes extensively with DBP5 and NXF1. Gene silencing of RBM15 leads to cytoplasmic depletion and nuclear accumulation of general mRNA as well as individual endogenous transcripts, indicating that RBM15 is required for efficient mRNA export. We propose a model in which RBM15 acts locally at the nuclear pore complex, by facilitating the recognition of NXF1–mRNP complexes by DBP5 during translocation, thereby contributing to efficient mRNA export.
Collapse
Affiliation(s)
- Andrei S Zolotukhin
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
37
|
Epstein-Barr virus protein EB2 contains an N-terminal transferable nuclear export signal that promotes nucleocytoplasmic export by directly binding TAP/NXF1. J Virol 2009; 83:12759-68. [PMID: 19793817 DOI: 10.1128/jvi.01276-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Epstein-Barr virus early protein EB2 (also called BMLF1, Mta, or SM), which allows the nuclear export of a subset of early and late viral mRNAs derived from intronless genes, is essential for the production of infectious virions. An important feature of mRNA export factors is their capacity to shuttle continuously between the nucleus and the cytoplasm. In a previous study, we identified a novel CRM1-independent transferable nuclear export signal (NES) at the N terminus of EB2, between amino acids 61 and 146. Here we show that this NES contains several small arginine-rich domains that cooperate to allow efficient interaction with TAP/NXF1. Recruitment of TAP/NXF1 correlates with this NES-mediated efficient nuclear export when it is fused to a heterologous protein. Moreover, the NES can export mRNAs bearing MS2 RNA-binding sites from the nucleus when tethered to the RNA via the MS2 phage coat protein RNA-binding domain.
Collapse
|
38
|
Uranishi H, Zolotukhin AS, Lindtner S, Warming S, Zhang GM, Bear J, Copeland NG, Jenkins NA, Pavlakis GN, Felber BK. The RNA-binding motif protein 15B (RBM15B/OTT3) acts as cofactor of the nuclear export receptor NXF1. J Biol Chem 2009; 284:26106-16. [PMID: 19586903 PMCID: PMC2758010 DOI: 10.1074/jbc.m109.040113] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human SPEN family proteins SHARP, RBM15/OTT1, and RBM15B/OTT3 share the structural domain architecture but show distinct functional properties. Here, we examined the function of OTT3 and compared it with its paralogues RBM15 and SHARP. We found that OTT3, like RBM15, has post-transcriptional regulatory activity, whereas SHARP does not, supporting a divergent role of RBM15 and OTT3. OTT3 shares with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Mutational analysis revealed direct interaction of OTT3 and RBM15 with NXF1 via their C-terminal regions. Biochemical and subcellular localization studies showed that OTT3 and RBM15 also interact with each other in vivo, further supporting a shared function. Genetic knockdown of RBM15 in mouse is embryonically lethal, indicating that OTT3 cannot compensate for the RBM15 loss, which supports the notion that these proteins, in addition to sharing similar activities, likely have distinct biological roles.
Collapse
Affiliation(s)
- Hiroaki Uranishi
- Human Retrovirus Section, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cléry A, Blatter M, Allain FHT. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 2008; 18:290-8. [PMID: 18515081 DOI: 10.1016/j.sbi.2008.04.002] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 04/09/2008] [Indexed: 01/10/2023]
Abstract
The RNA recognition motif (RRM) is one of the most abundant protein domains in eukaryotes. While the structure of this domain is well characterized by the packing of two alpha-helices on a four-stranded beta-sheet, the mode of protein and RNA recognition by RRMs is not clear owing to the high variability of these interactions. Here we report recent structural data on RRM-RNA and RRM-protein interactions showing the ability of this domain to modulate its binding affinity and specificity using each of its constitutive elements (beta-strands, loops, alpha-helices). The extreme structural versatility of the RRM interactions explains why RRM-containing proteins have so diverse biological functions.
Collapse
Affiliation(s)
- Antoine Cléry
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
40
|
Hautbergue GM, Golovanov AP. Increasing the sensitivity of cryoprobe protein NMR experiments by using the sole low-conductivity arginine glutamate salt. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 191:335-9. [PMID: 18207440 DOI: 10.1016/j.jmr.2007.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/06/2007] [Accepted: 12/21/2007] [Indexed: 05/25/2023]
Abstract
Decrease in experimental sensitivity of cryoprobe experiments for salty samples, attributed to increased sample conductivity, has been a long-standing issue in protein NMR. Salt concentration can not be simply reduced as this often leads to protein aggregation. A simple and inexpensive solution to this problem is demonstrated here. We show that even for proteins prone to aggregation, the traditional solubilizing salt, 100mM NaCl, can be completely replaced by 50mM l-Arg and l-Glu. This replacement simultaneously reduces the sample conductivity and improves protein solubility. Up to a 6-fold overall increase in experimental sensitivity was achieved, in comparison with the traditional salty buffer. At constant protein concentration up to 2-fold increase in sensitivity was observed. The lengths of the proton pi/2 pulses were also significantly decreased, up to the level typical for non-salty samples in water.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
41
|
Hautbergue GM, Hung ML, Golovanov AP, Lian LY, Wilson SA. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci U S A 2008; 105:5154-9. [PMID: 18364396 PMCID: PMC2278192 DOI: 10.1073/pnas.0709167105] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Indexed: 11/18/2022] Open
Abstract
Adaptor proteins stimulate the nuclear export of mRNA, but their mechanism of action remains unclear. Here, we show that REF/ALY binds mRNA; but upon formation of a ternary complex with TAP the RNA is transferred from REF to TAP, and overexpression of TAP displaces REF from mRNA in vivo. RNA is also handed over from two other adaptors, 9G8 and SRp20 to TAP upon formation of a ternary complex. Interestingly, the RNA-binding affinity of TAP is enhanced 4-fold in vitro once it is complexed with REF. 9G8 and SRp20 also enhance the TAP RNA-binding activity in vitro. Consistent with a model in which TAP directly binds mRNA handed over from adaptors during export, we show that TAP binds mRNA in vivo by an arginine-rich motif in its N-terminal domain. The importance of direct TAP-mRNA interactions is confirmed by the observation that a mutant form of TAP that fails to bind mRNA but retains the ability to bind REF does not function in mRNA export.
Collapse
Affiliation(s)
- Guillaume M. Hautbergue
- *Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Ming-Lung Hung
- *Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Alexander P. Golovanov
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; and
| | - Lu-Yun Lian
- School of Biological Sciences, Biosciences Building, University of Liverpool, P.O. Box 147, Liverpool L69 7ZB, United Kingdom
| | - Stuart A. Wilson
- *Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
42
|
Matzat LH, Berberoglu S, Lévesque L. Formation of a Tap/NXF1 homotypic complex is mediated through the amino-terminal domain of Tap and enhances interaction with nucleoporins. Mol Biol Cell 2007; 19:327-38. [PMID: 17978099 DOI: 10.1091/mbc.e07-03-0255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear export of mRNAs is mediated by the Tap/Nxt1 pathway. Tap moves its RNA cargo through the nuclear pore complex by direct interaction with nucleoporin phenylalanine-glycine repeats. This interaction is strengthened by the formation of a Tap/Nxt1 heterodimer. We now present evidence that Tap can form a multimeric complex with itself and with other members of the NXF family. We also show that the homotypic Tap complex can interact with both Nxt1 and nucleoporins in vitro. The region mediating this oligomerization is localized to the first 187 amino acids of Tap, which overlaps with its RNA-binding domain. Removal of this domain greatly reduces the ability of Tap to bind nucleoporins in vitro and in vivo. This is the first report showing that the Tap amino terminus modulates the interaction of Tap with nucleoporins. We speculate that this mechanism has a regulatory role for RNA export independent of RNA binding.
Collapse
Affiliation(s)
- Leah H Matzat
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|