1
|
Wang SH, Hu SY, Li M, Liu M, Sun H, Zhao JR, Chen WT, Yuan ML. Comparative Mitogenomic Analyses of Darkling Beetles (Coleoptera: Tenebrionidae) Provide Evolutionary Insights into tRNA-like Sequences. Genes (Basel) 2023; 14:1738. [PMID: 37761878 PMCID: PMC10530909 DOI: 10.3390/genes14091738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Tenebrionidae is widely recognized owing to its species diversity and economic importance. Here, we determined the mitochondrial genomes (mitogenomes) of three Tenebrionidae species (Melanesthes exilidentata, Anatolica potanini, and Myladina unguiculina) and performed a comparative mitogenomic analysis to characterize the evolutionary characteristics of the family. The tenebrionid mitogenomes were highly conserved with respect to genome size, gene arrangement, base composition, and codon usage. All protein-coding genes evolved under purifying selection. The largest non-coding region (i.e., control region) showed several unusual features, including several conserved repetitive fragments (e.g., A+T-rich regions, G+C-rich regions, Poly-T tracts, TATA repeat units, and longer repetitive fragments) and tRNA-like structures. These tRNA-like structures can bind to the appropriate anticodon to form a cloverleaf structure, although base-pairing is not complete. We summarized the quantity, types, and conservation of tRNA-like sequences and performed functional and evolutionary analyses of tRNA-like sequences with various anticodons. Phylogenetic analyses based on three mitogenomic datasets and two tree inference methods largely supported the monophyly of each of the three subfamilies (Stenochiinae, Pimeliinae, and Lagriinae), whereas both Tenebrioninae and Diaperinae were consistently recovered as polyphyletic. We obtained a tenebrionid mitogenomic phylogeny: (Lagriinae, (Pimeliinae, ((Tenebrioninae + Diaperinae), Stenochiinae))). Our results provide insights into the evolution and function of tRNA-like sequences in tenebrionid mitogenomes and contribute to our general understanding of the evolution of Tenebrionidae.
Collapse
Affiliation(s)
- Su-Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| | - Hao Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| | - Jia-Rui Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wen-Ting Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
2
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
3
|
Rao ALN, Cheng Kao C. The brome mosaic virus 3' untranslated sequence regulates RNA replication, recombination, and virion assembly. Virus Res 2015; 206:46-52. [PMID: 25687214 DOI: 10.1016/j.virusres.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/18/2022]
Abstract
The 3' untranslated region in each of the three genomic RNAs of Brome mosaic virus (BMV) is highly homologous and contains a sequence that folds into a tRNA-like structure (TLS). Experiments performed over the past four decades revealed that the BMV 3' TLS regulates many important steps in BMV infection. This review summarizes in vitro and in vivo studies of the roles of the BMV 3' TLS functioning as a minus-strand promoter, in RNA recombination, and to nucleate virion assembly.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology, University of California, Riverside, CA 925210-0122, USA.
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
4
|
The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis. PLoS One 2014; 9:e98422. [PMID: 24852421 PMCID: PMC4031142 DOI: 10.1371/journal.pone.0098422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023] Open
Abstract
The synthesis of the negative-strand [(−)-strand] complement of the ∼30 kilobase, positive-strand [(+)-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (−)-strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (−)-strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) to detect and quantitate the synthesis of bovine coronavirus (BCoV) defective interfering (DI) RNA (−) strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3′-terminal 55 nucleotides (nts) which function in the synthesis of (−)- or (+)-strand BCoV DI RNA. The major findings are as follows: (i) nts from -5 to -39 within the 3′-terminal 55 nts are the cis-acting elements responsible for (−)-strand BCoV DI RNA synthesis, (ii) nts from −3 to −34 within the 3′-terminal 55 nts are cis-acting elements required for (+)-strand BCoV DI RNA synthesis, and (iii) the nucleotide species at the 3′-most position (−1) is important, but not critical, for both (−)- and (+)-strand BCoV DI RNA synthesis. These results demonstrate that the 3′-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (−)- and (+)-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (−)-strand RNA synthesis in coronaviruses.
Collapse
|
5
|
Yi G, Letteney E, Kim CH, Kao CC. Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element. RNA (NEW YORK, N.Y.) 2009; 15:615-26. [PMID: 19237464 PMCID: PMC2661835 DOI: 10.1261/rna.1375509] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/16/2009] [Indexed: 05/20/2023]
Abstract
Viruses provide valuable insights into the regulation of molecular processes. Brome mosaic virus (BMV) is one of the simplest entities with four viral proteins and three genomic RNAs. Here we report that the BMV capsid protein (CP), which functions in RNA encapsidation and virus trafficking, also represses viral RNA replication in a concentration-dependent manner by inhibiting the accumulation of the RNA replication proteins. Expression of the replication protein 2a in trans can partially rescue BMV RNA accumulation. A mutation in the CP can decrease the repression of translation. Translation repression by the CP requires a hairpin RNA motif named the B Box that contains seven loop nucleotides (nt) within the 5' untranslated regions (UTR) of BMV RNA1 and RNA2. Purified CP can bind directly to the B Box RNA with a K (d) of 450 nM. The secondary structure of the B Box RNA was determined to contain a highly flexible 7-nt loop using NMR spectroscopy, native gel analysis, and thermal denaturation studies. The B Box is also recognized by the BMV 1a protein to assemble the BMV replicase, suggesting that the BMV CP can act to regulate several viral infection processes.
Collapse
Affiliation(s)
- Guanghui Yi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, 77843, USA
| | | | | | | |
Collapse
|
6
|
Karran RA, Hudak KA. Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo. Nucleic Acids Res 2008; 36:7230-9. [PMID: 19004869 PMCID: PMC2602774 DOI: 10.1093/nar/gkn896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.
Collapse
Affiliation(s)
- Rajita A Karran
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
7
|
Zhang G, Zhang J, Simon AE. Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. J Virol 2004; 78:7619-33. [PMID: 15220437 PMCID: PMC434078 DOI: 10.1128/jvi.78.14.7619-7633.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3'-terminal bases. Deletion of satC 3'-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3' end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3'-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3' terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3' end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3'-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD 20742, USA
| | | | | |
Collapse
|
8
|
Sivakumaran K, Choi SK, Hema M, Kao CC. Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. J Virol 2004; 78:6091-101. [PMID: 15163702 PMCID: PMC416551 DOI: 10.1128/jvi.78.12.6091-6101.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based solely on in vitro results, two contrasting models have been proposed for the recognition of the brome mosaic virus (BMV) subgenomic core promoter by the replicase. The first posits that the replicase recognizes at least four key nucleotides in the core promoter, followed by an induced fit, wherein some of the nucleotides base pair prior to the initiation of RNA synthesis (S. Adkins and C. C. Kao, Virology 252:1-8, 1998). The second model posits that a short RNA hairpin in the core promoter serves as a landing pad for the replicase and that at least some of the key nucleotides help form a stable hairpin (P. C. J. Haasnoot, F. Brederode, R. C. L. Olsthoorn, and J. Bol, RNA 6:708-716, 2000; P. C. J. Haasnoot, R. C. L. Olsthoorn, and J. Bol, RNA 8:110-122, 2002). We used transfected barley protoplasts to examine the recognition of the subgenomic core promoter by the BMV replicase. Key nucleotides required for subgenomic initiation in vitro were found to be important for RNA4 levels in protoplasts. In addition, additional residues not required in vitro and the formation of an RNA hairpin within the core promoter were correlated with wild-type RNA4 levels in cells. Using a template competition assay, the core promoter of ca. 20 nucleotides was found to be sufficient for replicase binding. Mutations of the key residues in the core promoter reduced replicase binding, but deletions that disrupt the predicted base pairing in the proposed stem retained binding at wild-type levels. Together, these results indicate that key nucleotides in the BMV subgenomic core promoter direct replicase recognition but that the formation of a stem-loop is required at a step after binding. Additional functional characterization of the subgenomic core promoter was performed. A portion of the promoter for BMV minus-strand RNA synthesis could substitute for the subgenomic core promoter in transfected cells. The comparable sequence from Cowpea Chlorotic Mottle Virus (CCMV) could also substitute for the BMV subgenomic core promoter. However, nucleotides in the CCMV core required for RNA synthesis are not identical to those in BMV, suggesting that the subgenomic core promoter can induce the BMV replicase in interactions needed for subgenomic RNA transcription in vivo.
Collapse
Affiliation(s)
- K Sivakumaran
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX 77843, USA
| | | | | | | |
Collapse
|