1
|
Li C, Ge Q, Liu J, Zhang Q, Wang C, Cui K, Chen Z. Effects of miR-1236-3p and miR-370-5p on activation of p21 in various tumors and its inhibition on the growth of lung cancer cells. Tumour Biol 2017. [PMID: 28631573 DOI: 10.1177/1010428317710824] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Chuanchang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiaxuan Liu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghe Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ruda VM, Chandwani R, Sehgal A, Bogorad RL, Akinc A, Charisse K, Tarakhovsky A, Novobrantseva TI, Koteliansky V. The roles of individual mammalian argonautes in RNA interference in vivo. PLoS One 2014; 9:e101749. [PMID: 24992693 PMCID: PMC4081796 DOI: 10.1371/journal.pone.0101749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/28/2014] [Indexed: 11/26/2022] Open
Abstract
Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3′ untranslated region (3′UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3′UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3′UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3′UTR targeting as to harness the activity of several Ago proteins.
Collapse
Affiliation(s)
- Vera M. Ruda
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VMR); (VK)
| | - Rohit Chandwani
- Laboratory of Immune Cell Epigenetics and Signaling, Rockefeller University, New York, New York, United States of America
| | - Alfica Sehgal
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Roman L. Bogorad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Akin Akinc
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Klaus Charisse
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, Rockefeller University, New York, New York, United States of America
| | | | - Victor Koteliansky
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VMR); (VK)
| |
Collapse
|
3
|
Abstract
The Argonaute family of proteins is highly evolutionarily conserved and plays essential roles in small RNA-mediated gene regulatory pathways and in a wide variety of cellular processes. They were initially discovered by genetics studies in plants and have been well characterized as key components of gene silencing pathways guided by small RNAs, a phenomenon known as RNA interference. Conventionally, guided by different classes of small RNAs, Argonautes bind to and silence homologous target sequences at the post-transcriptional level. Increasing lines of evidence support their multi-functional roles in the nucleus. Advances in high-throughput genome-wide methodologies have greatly facilitated our understanding of their functions in post-transcriptional gene silencing as well as in other nuclear events. In this point-of-view, we will summarize key findings from genome-wide analyses of the Ago subfamily of proteins in mammals and Drosophila, discuss their nuclear functions in the regulation of transcription and alternative splicing identified in recent years, and briefly touch upon their potential implications in cancer.
Collapse
Affiliation(s)
- Vera Huang
- Department of Urology and Helen-Diller Comprehensive Cancer Center; University of California, San Francisco; San Francisco, CA USA
| | - Long-Cheng Li
- Department of Urology and Helen-Diller Comprehensive Cancer Center; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
4
|
Ago1 Interacts with RNA polymerase II and binds to the promoters of actively transcribed genes in human cancer cells. PLoS Genet 2013; 9:e1003821. [PMID: 24086155 PMCID: PMC3784563 DOI: 10.1371/journal.pgen.1003821] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022] Open
Abstract
Argonaute proteins are often credited for their cytoplasmic activities in which they function as central mediators of the RNAi platform and microRNA (miRNA)-mediated processes. They also facilitate heterochromatin formation and establishment of repressive epigenetic marks in the nucleus of fission yeast and plants. However, the nuclear functions of Ago proteins in mammalian cells remain elusive. In the present study, we combine ChIP-seq (chromatin immunoprecipitation coupled with massively parallel sequencing) with biochemical assays to show that nuclear Ago1 directly interacts with RNA Polymerase II and is widely associated with chromosomal loci throughout the genome with preferential enrichment in promoters of transcriptionally active genes. Additional analyses show that nuclear Ago1 regulates the expression of Ago1-bound genes that are implicated in oncogenic pathways including cell cycle progression, growth, and survival. Our findings reveal the first landscape of human Ago1-chromosomal interactions, which may play a role in the oncogenic transcriptional program of cancer cells. Argonaute (Ago) proteins are an evolutionarily conserved family of proteins indispensable for a gene regulation mechanism known as RNA interference (RNAi) which is mediated by small RNA including microRNA (miRNA) and small interfering RNA (siRNA) and occurs mainly in the cytoplasm. In mammalian cells, however, the function of Agos in the nucleus is largely unknown despite a few examples in which Agos are shown to be involved in regulating gene transcription and alternative splicing. In this study, by taking a genome-wide approach, we found that human Ago1, but not Ago2, is pervasively associated with gene regulatory sequences known as promoter and interacts with the core component of the gene transcription machinery to exert positive impact on gene expression in cancer cells. Strikingly, the genes bound and regulated by Ago1 are mostly genes that stimulate cell growth and survival, and are known to be involved in the development of cancer. The findings from our study unveil an unexpected role of nuclear Ago1 in regulating gene expression which may be important both in normal cellular processes and in disease such as cancer.
Collapse
|
5
|
Biogenesis and mechanism of action of small non-coding RNAs: insights from the point of view of structural biology. Int J Mol Sci 2012; 13:10268-10295. [PMID: 22949860 PMCID: PMC3431858 DOI: 10.3390/ijms130810268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 01/17/2023] Open
Abstract
Non-coding RNAs are dominant in the genomic output of the higher organisms being not simply occasional transcripts with idiosyncratic functions, but constituting an extensive regulatory network. Among all the species of non-coding RNAs, small non-coding RNAs (miRNAs, siRNAs and piRNAs) have been shown to be in the core of the regulatory machinery of all the genomic output in eukaryotic cells. Small non-coding RNAs are produced by several pathways containing specialized enzymes that process RNA transcripts. The mechanism of action of these molecules is also ensured by a group of effector proteins that are commonly engaged within high molecular weight protein-RNA complexes. In the last decade, the contribution of structural biology has been essential to the dissection of the molecular mechanisms involved in the biosynthesis and function of small non-coding RNAs.
Collapse
|
6
|
Abstract
microRNAs (miRNAs), defined as 21–24 nucleotide non-coding RNAs, are important regulators of gene expression. Initially, the functions of miRNAs were recognized as post-transcriptional regulators on mRNAs that result in mRNA degradation and/or translational repression. It is becoming evident that miRNAs are not only restricted to function in the cytoplasm, they can also regulate gene expression in other cellular compartments by a spectrum of targeting mechanisms via coding regions, 5′ and 3′untransalated regions (UTRs), promoters, and gene termini. In this point-of-view, we will specifically focus on the nuclear functions of miRNAs and discuss examples of miRNA-directed transcriptional gene regulation identified in recent years.
Collapse
Affiliation(s)
- Vera Huang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
7
|
Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li LC. Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 2011; 40:1695-707. [PMID: 22053081 PMCID: PMC3287204 DOI: 10.1093/nar/gkr934] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is largely recognized that microRNAs (miRNAs) function to silence gene expression by targeting 3′UTR regions. However, miRNAs have also been implicated to positively-regulate gene expression by targeting promoter elements, a phenomenon known as RNA activation (RNAa). In the present study, we show that expression of mouse Cyclin B1 (Ccnb1) is dependent on key factors involved in miRNA biogenesis and function (i.e. Dicer, Drosha, Ago1 and Ago2). In silico analysis identifies highly-complementary sites for 21 miRNAs in the Ccnb1 promoter. Experimental validation identified three miRNAs (miR-744, miR-1186 and miR-466d-3p) that induce Ccnb1 expression in mouse cell lines. Conversely, knockdown of endogenous miR-744 led to decreased Ccnb1 levels. Chromatin immunoprecipitation (ChIP) analysis revealed that Ago1 was selectively associated with the Ccnb1 promoter and miR-744 increased enrichment of RNA polymerase II (RNAP II) and trimethylation of histone 3 at lysine 4 (H3K4me3) at the Ccnb1 transcription start site. Functionally, short-term overexpression of miR-744 and miR-1186 resulted in enhanced cell proliferation, while prolonged expression caused chromosomal instability and in vivo tumor suppression. Such phenotypes were recapitulated by overexpression of Ccnb1. Our findings reveal an endogenous system by which miRNA functions to activate Ccnb1 expression in mouse cells and manipulate in vivo tumor development/growth.
Collapse
Affiliation(s)
- Vera Huang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Detzer A, Engel C, Wünsche W, Sczakiel G. Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Res 2010; 39:2727-41. [PMID: 21148147 PMCID: PMC3074141 DOI: 10.1093/nar/gkq1216] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Various kinds of stress on human cells induce the formation of endogenous stress granules (SGs). Human Argonaute 2 (hAgo2), the catalytic core component of the RNA-induced silencing complex (RISC), can be recruited to SGs as well as P-bodies (PBs) indicating that the dynamic intracellular distribution of hAgo2 in SGs, in PBs or at other sub-cellular sites could be related to the efficiency of the RNA interference (RNAi) machinery. Here, we studied the influence of heat shock, sodium arsenite (NaAsO2), cycloheximide (CHX) and LipofectamineTM 2000-mediated transfection of phosphorothioate (PS)-modified oligonucleotides (ON) on the intracellular localization of hAgo2 and the efficiency of RNAi. Fluorescence microscopy and sedimentation analysis of cell fractions indicate stress-induced accumulation of hAgo2 in SGs and the loss of distinctly composed complexes containing hAgo2 or their sub-cellular context. Transfection of cells with PS-ON induces cell stress that is phenotypically similar to the established inducers heat shock and NaAsO2. The intracellular re-distribution of hAgo2 is related to its increased metabolic stability and to decreased RNAi directed by microRNA or by short interfering RNA. Here, we propose a functional model of the relationship between cell stress, translocation of hAgo2 to SGs providing a depot function, and loss of RNAi activity.
Collapse
Affiliation(s)
- Anke Detzer
- Institut für Molekulare Medizin, Centre for Structural and Cell Biology in Medicine (CSCM), Universität zu Lübeck and UK S-H, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | |
Collapse
|