1
|
Hong KQ, Zhang J, Jin B, Chen T, Wang ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microb Cell Fact 2022; 21:56. [PMID: 35392910 PMCID: PMC8991567 DOI: 10.1186/s12934-022-01779-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli. Results The results showed that a synthetic glycine-OFF riboswitch (glyOFF6) and an increased-detection-range synthetic glycine-ON riboswitch (glyON14) were successfully screened from a library based on the Bacillus subtilis glycine riboswitch using fluorescence-activated cell sorting (FACS) and tetA-based dual genetic selection. The two synthetic glycine riboswitches were successfully used in tunable regulation of lactate synthesis, dynamic regulation of serine synthesis and directed evolution of alanine-glyoxylate aminotransferase in Escherichia coli, respectively. Mutants AGXT22 and AGXT26 of alanine-glyoxylate aminotransferase with an increase of 58% and 73% enzyme activity were obtained by using a high-throughput screening platform based on the synthetic glycine-OFF riboswitch, and successfully used to increase the 5-aminolevulinic acid yield of engineered Escherichia coli. Conclusions A synthetic glycine-OFF riboswitch and an increased-detection-range synthetic glycine-ON riboswitch were successfully designed and screened. The developed riboswitches showed broad application in tunable regulation, dynamic regulation and directed evolution of enzyme in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01779-4.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhi-Wen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China. .,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Sherlock ME, Higgs G, Yu D, Widner DL, White NA, Sudarsan N, Sadeeshkumar H, Perkins KR, Mirihana Arachchilage G, Malkowski SN, King CG, Harris KA, Gaffield G, Atilho RM, Breaker RR. Architectures and complex functions of tandem riboswitches. RNA Biol 2022; 19:1059-1076. [PMID: 36093908 PMCID: PMC9481103 DOI: 10.1080/15476286.2022.2119017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
Collapse
Affiliation(s)
- Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Research-1S, Aurora, CO, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Danielle L. Widner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Neil A. White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- PTC Therapeutics, Inc, South Plainfield, NJ, USA
| | | | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Glenn Gaffield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Regulation of Glycine Cleavage and Detoxification by a Highly Conserved Glycine Riboswitch in Burkholderia spp. Curr Microbiol 2021; 78:2943-2955. [PMID: 34076709 DOI: 10.1007/s00284-021-02550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The glycine riboswitch is a known regulatory element that is unique in having two aptamers that are joined by a linker region. In this study, we investigated a glycine riboswitch located in the 5' untranslated region of a glycine cleavage system homolog (gcvTHP) in Burkholderia spp. Structure prediction using the sequence generated a model with a glycine binding pocket composed of base-triple interactions (G62-A64-A86 and G65-U84-C85) that are supported by A/G minor interactions (A17-C60-G88 and G16-C61-G87, respectively) and two ribose-zipper motifs (C11-G12 interacting with A248-A247 and C153-U154 interacting with A79-A78) which had not been previously reported. The capacity of the riboswitch to bind to glycine was experimentally validated by native gel assays and the crucial role of interactions that make up the glycine binding pocket were proven by mutations of A17U and G16C which resulted in conformational differences that may lead to dysfunction. Using glycine supplemented minimal media, we were able to prove that the expression of the gcvTHP genes found downstream of the riboswitch responded to the glycine concentrations introduced thus confirming the role of this highly conserved Burkholderia riboswitch and its associated genes as a putative glycine detoxification system in Burkholderia spp.
Collapse
|
4
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
5
|
Sherlock ME, Breaker RR. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA (NEW YORK, N.Y.) 2020; 26:675-693. [PMID: 32165489 PMCID: PMC7266159 DOI: 10.1261/rna.074997.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Torgerson CD, Hiller DA, Strobel SA. The asymmetry and cooperativity of tandem glycine riboswitch aptamers. RNA (NEW YORK, N.Y.) 2020; 26:564-580. [PMID: 31992591 PMCID: PMC7161355 DOI: 10.1261/rna.073577.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Glycine riboswitches utilize both single- and tandem-aptamer architectures. In the tandem system, the relative contribution of each aptamer toward gene regulation is not well understood. To dissect these contributions, the effects of 684 single mutants of a tandem ON switch from Bacillus subtilis were characterized for the wild-type construct and binding site mutations that selectively restrict ligand binding to either the first or second aptamer. Despite the structural symmetry of tandem aptamers, the response to these mutations was frequently asymmetrical. Mutations in the first aptamer often significantly weakened the K1/2, while several mutations in the second aptamer improved the amplitude. These results demonstrate that this ON switch favors ligand binding to the first aptamer. This is in contrast to the tandem OFF switch variant from Vibrio cholerae, which was previously shown to have preferential binding to its second aptamer. A bioinformatic analysis of tandem glycine riboswitches revealed that the two binding pockets are differentially conserved between ON and OFF switches. Altogether, this indicates that tandem ON switch variants preferentially utilize binding to the first aptamer to promote helical switching, while OFF switch variants favor binding to the second aptamer. The data set also revealed a cooperative glycine response when both binding pockets were maximally stabilized with three GC base pairs. This indicates a cooperative response may sometimes be obfuscated by a difference in the affinities of the two aptamers. This conditional cooperativity provides an additional layer of tunability to tandem glycine riboswitches that adds to their versatility as genetic switches.
Collapse
Affiliation(s)
- Chad D Torgerson
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry
| | - David A Hiller
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Abstract
RNA molecules fold into complex three-dimensional structures that sample alternate conformations ranging from minor differences in tertiary structure dynamics to major differences in secondary structure. This allows them to form entirely different substructures with each population potentially giving rise to a distinct biological outcome. The substructures can be partitioned along an existing energy landscape given a particular static cellular cue or can be shifted in response to dynamic cues such as ligand binding. We review a few key examples of RNA molecules that sample alternate conformations and how these are capitalized on for control of critical regulatory functions.
Collapse
Affiliation(s)
- Marie Teng-Pei Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
8
|
Crum M, Ram-Mohan N, Meyer MM. Regulatory context drives conservation of glycine riboswitch aptamers. PLoS Comput Biol 2019; 15:e1007564. [PMID: 31860665 PMCID: PMC6944388 DOI: 10.1371/journal.pcbi.1007564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/06/2020] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
In comparison to protein coding sequences, the impact of mutation and natural selection on the sequence and function of non-coding (ncRNA) genes is not well understood. Many ncRNA genes are narrowly distributed to only a few organisms, and appear to be rapidly evolving. Compared to protein coding sequences, there are many challenges associated with assessment of ncRNAs that are not well addressed by conventional phylogenetic approaches, including: short sequence length, lack of primary sequence conservation, and the importance of secondary structure for biological function. Riboswitches are structured ncRNAs that directly interact with small molecules to regulate gene expression in bacteria. They typically consist of a ligand-binding domain (aptamer) whose folding changes drive changes in gene expression. The glycine riboswitch is among the most well-studied due to the widespread occurrence of a tandem aptamer arrangement (tandem), wherein two homologous aptamers interact with glycine and each other to regulate gene expression. However, a significant proportion of glycine riboswitches are comprised of single aptamers (singleton). Here we use graph clustering to circumvent the limitations of traditional phylogenetic analysis when studying the relationship between the tandem and singleton glycine aptamers. Graph clustering enables a broader range of pairwise comparison measures to be used to assess aptamer similarity. Using this approach, we show that one aptamer of the tandem glycine riboswitch pair is typically much more highly conserved, and that which aptamer is conserved depends on the regulated gene. Furthermore, our analysis also reveals that singleton aptamers are more similar to either the first or second tandem aptamer, again based on the regulated gene. Taken together, our findings suggest that tandem glycine riboswitches degrade into functional singletons, with the regulated gene(s) dictating which glycine-binding aptamer is conserved.
Collapse
Affiliation(s)
- Matt Crum
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Nikhil Ram-Mohan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michelle M. Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
9
|
Zhou L, Ren J, Li Z, Nie J, Wang C, Zeng AP. Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in Escherichia coli. ACS Synth Biol 2019; 8:2327-2335. [PMID: 31550137 DOI: 10.1021/acssynbio.9b00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A riboswitch, a regulatory RNA that controls gene expression by specifically binding a ligand, is an attractive genetic element for the control of conditional gene expression and metabolic pathways. In this study, we identified a glycine riboswitch located in the 5'-untranslated regions of a glycine:proton symporter gene in Clostridium pasteurianum. The glycine riboswitch is shown to contain two tandem aptamers and to function as an activator of expression of genes fused to its expression platform. Results of singlet aptamer experiments indicated that aptamer-2 has a much higher impact on regulating gene expression than aptamer-1. Further, we successfully obtained synthetic glycine-OFF riboswitches using a dual selection approach, and one of them repressed gene expression up to 10.2-fold with an improved dynamic range. The specific glycine-OFF riboswitch can function as an independent repressor in the presence of glycine, and its repression mechanism is inferred from predicted secondary structure. The selected glycine-OFF riboswitch was used to dynamically control the biosynthesis of 5-aminolevulinic acid (5-ALA) in Escherichia coli with an unnatural 5-ALA synthetic pathway, in which glycine plays a key role. It is demonstrated that the use of a synthetic Clostridium glycine-OFF riboswitch can lead to a significant increase (11%) of 5-ALA in E. coli harboring an unnatural biosynthetic pathway.
Collapse
Affiliation(s)
- Libang Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
- College of Food Science and Technology , Nanjing Agricultural University , Weigang 1 , Nanjing 210095 , PR China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - Zhidong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - Chuang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
- Institute of Bioprocess and Biosystems Engineering , Hamburg University of Technology , Denickestrasse 15 , D-21073 Hamburg , Germany
| |
Collapse
|
10
|
Roy S, Hennelly SP, Lammert H, Onuchic JN, Sanbonmatsu KY. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch. Nucleic Acids Res 2019; 47:3158-3170. [PMID: 30605518 PMCID: PMC6451092 DOI: 10.1093/nar/gky1311] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022] Open
Abstract
Investigations of most riboswitches remain confined to the ligand-binding aptamer domain. However, during the riboswitch mediated transcription regulation process, the aptamer domain and the expression platform compete for a shared strand. If the expression platform dominates, an anti-terminator helix is formed, and the transcription process is active (ON state). When the aptamer dominates, transcription is terminated (OFF state). Here, we use an expression platform switching experimental assay and structure-based electrostatic simulations to investigate this ON-OFF transition of the full length SAM-I riboswitch and its magnesium concentration dependence. Interestingly, we find the ratio of the OFF population to the ON population to vary non-monotonically as magnesium concentration increases. Upon addition of magnesium, the aptamer domain pre-organizes, populating the OFF state, but only up to an intermediate magnesium concentration level. Higher magnesium concentration preferentially stabilizes the anti-terminator helix, populating the ON state, relatively destabilizing the OFF state. Magnesium mediated aptamer-expression platform domain closure explains this relative destabilization of the OFF state at higher magnesium concentration. Our study reveals the functional potential of magnesium in controlling transcription of its downstream genes and underscores the importance of a narrow concentration regime near the physiological magnesium concentration ranges, striking a balance between the OFF and ON states in bacterial gene regulation.
Collapse
Affiliation(s)
- Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Scott P Hennelly
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Heiko Lammert
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, TX 77005, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
11
|
Abstract
In many bacterial species, the glycine riboswitch is composed of two homologous ligand-binding domains (aptamers) that each bind glycine and act together to regulate the expression of glycine metabolic and transport genes. While the structure and molecular dynamics of the tandem glycine riboswitch have been the subject of numerous in vitro studies, the in vivo behavior of the riboswitch remains largely uncharacterized. To examine the proposed models of tandem glycine riboswitch function in a biologically relevant context, we characterized the regulatory activity of mutations to the riboswitch structure in Bacillus subtilis using β-galactosidase assays. To assess the impact disruptions to riboswitch function have on cell fitness, we introduced these mutations into the native locus of the tandem glycine riboswitch within the B. subtilis genome. Our results indicate that glycine does not need to bind both aptamers for regulation in vivo and mutations perturbing riboswitch tertiary structure have the most severe effect on riboswitch function and gene expression. We also find that in B. subtilis, the glycine riboswitch-regulated gcvT operon is important for glycine detoxification.IMPORTANCE The glycine riboswitch is a unique cis-acting mRNA element that contains two tandem homologous glycine-binding domains that act on a single expression platform to regulate gene expression in response to glycine. While many in vitro experiments have characterized the tandem architecture of the glycine riboswitch, little work has investigated the behavior of this riboswitch in vivo In this study, we analyzed the proposed models of tandem glycine riboswitch regulation in the context of its native locus within the Bacillus subtilis genome and examined how disruptions to glycine riboswitch function impact organismal fitness. Our work offers new insights into riboswitch function in vivo and reinforces the potential of riboswitches as novel antimicrobial targets.
Collapse
|
12
|
Mlýnský V, Bussi G. Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides. RNA (NEW YORK, N.Y.) 2017; 23:712-720. [PMID: 28202709 PMCID: PMC5393180 DOI: 10.1261/rna.060442.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/03/2017] [Indexed: 05/25/2023]
Abstract
Ribonucleic acid (RNA) is involved in many regulatory and catalytic processes in the cell. The function of any RNA molecule is intimately related with its structure. In-line probing experiments provide valuable structural data sets for a variety of RNAs and are used to characterize conformational changes in riboswitches. However, the structural determinants that lead to differential reactivities in unpaired nucleotides have not been investigated yet. In this work, we used a combination of theoretical approaches, i.e., classical molecular dynamics simulations, multiscale quantum mechanical/molecular mechanical calculations, and enhanced sampling techniques in order to compute and interpret the differential reactivity of individual residues in several RNA motifs, including members of the most important GNRA and UNCG tetraloop families. Simulations on the multinanosecond timescale are required to converge the related free-energy landscapes. The results for uGAAAg and cUUCGg tetraloops and double helices are compared with available data from in-line probing experiments and show that the introduced technique is able to distinguish between nucleotides of the uGAAAg tetraloop based on their structural predispositions toward phosphodiester backbone cleavage. For the cUUCGg tetraloop, more advanced ab initio calculations would be required. This study is the first attempt to computationally classify chemical probing experiments and paves the way for an identification of tertiary structures based on the measured reactivity of nonreactive nucleotides.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| |
Collapse
|
13
|
Thakral D, Tae HS. Discovery of a Structurally Unique Small Molecule that Inhibits Protein Synthesis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:35-43. [PMID: 28356892 PMCID: PMC5369043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identifying and characterizing natural products and synthetic small molecules that inhibit biochemical processes such as ribosomal translation can lead to novel sources of molecular probes and therapeutics. The search for new antibiotics has been invigorated by the increasing burden of drug-resistant bacteria and has identified many clinically essential prokaryote-specific ribosome inhibitors. However, the current cohort of antibiotics is limited with regards to bacterial resistance mechanisms because of structural similarity within classes. From a high-throughput screen for translation inhibitors, we discovered a new compound, T6102, which inhibits bacterial protein synthesis in vitro, inhibits bacterial growth of Bacillus subtilis in vivo, and has a chemical structure that appears to be unique among known classes of translation-inhibiting antibiotics. T6102's unique structure compared to current clinically-utilized antibiotics makes it an exciting new candidate for the development of next-generation antibiotics.
Collapse
Affiliation(s)
- Durga Thakral
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT,To whom all correspondence should be addressed: Durga Thakral, 367 Cedar Street, New Haven, CT 06510, Phone Number: 203-737-3402, Fax Number: 203-785-7430,
| | - Hyun Seop Tae
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
14
|
Ruff KM, Muhammad A, McCown PJ, Breaker RR, Strobel SA. Singlet glycine riboswitches bind ligand as well as tandem riboswitches. RNA (NEW YORK, N.Y.) 2016; 22:1728-1738. [PMID: 27659053 PMCID: PMC5066625 DOI: 10.1261/rna.057935.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 05/21/2023]
Abstract
The glycine riboswitch often occurs in a tandem architecture, with two ligand-binding domains (aptamers) followed by a single expression platform. Based on previous observations, we hypothesized that "singlet" versions of the glycine riboswitch, which contain only one aptamer domain, are able to bind glycine if appropriate structural contacts are maintained. An initial alignment of 17 putative singlet riboswitches indicated that the single consensus aptamer domain is flanked by a conserved peripheral stem-loop structure. These singlets were sorted into two subtypes based on whether the active aptamer domain precedes or follows the peripheral stem-loop, and an example of each subtype of singlet riboswitch was characterized biochemically. The singlets possess glycine-binding affinities comparable to those of previously published tandem examples, and the conserved peripheral domains form A-minor interactions with the single aptamer domain that are necessary for ligand-binding activity. Analysis of sequenced genomes identified a significant number of singlet glycine riboswitches. Based on these observations, we propose an expanded model for glycine riboswitch gene control that includes singlet and tandem architectures.
Collapse
Affiliation(s)
- Karen M Ruff
- Department of Molecular Biophysics and Biochemistry
| | | | - Phillip J McCown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
15
|
Ketterer S, Gladis L, Kozica A, Meier M. Engineering and characterization of fluorogenic glycine riboswitches. Nucleic Acids Res 2016; 44:5983-92. [PMID: 27220466 PMCID: PMC4937332 DOI: 10.1093/nar/gkw465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/15/2016] [Indexed: 11/20/2022] Open
Abstract
A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties.
Collapse
Affiliation(s)
- Simon Ketterer
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Lukas Gladis
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Adnan Kozica
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Martini JWR, Diambra L, Habeck M. Cooperative binding: a multiple personality. J Math Biol 2015; 72:1747-74. [PMID: 26319983 DOI: 10.1007/s00285-015-0922-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/30/2015] [Indexed: 02/02/2023]
Abstract
Cooperative binding has been described in many publications and has been related to or defined by several different properties of the binding behavior of the ligand to the target molecule. In addition to the commonly used Hill coefficient, other characteristics such as a sigmoidal shape of the overall titration curve in a linear plot, a change of ligand affinity of the other binding sites when a site of the target molecule becomes occupied, or complex roots of the binding polynomial have been used to define or to quantify cooperative binding. In this work, we analyze how the different properties are related in the most general model for binding curves based on the grand canonical partition function and present several examples which highlight differences between the cooperativity characterizing properties which are discussed. Our results mainly show that among the presented definitions there are not two which fully coincide. Moreover, this work poses the question whether it can make sense to distinguish between positive and negative cooperativity based on the macroscopic binding isotherm only. This article shall emphasize that scientists who investigate cooperative effects in biological systems could help avoiding misunderstandings by stating clearly which kind of cooperativity they discuss.
Collapse
Affiliation(s)
- Johannes W R Martini
- Max Planck Institute for Developmental Biology, Tübingen, Germany.
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, Georg-August University Göttingen, Göttingen, Germany.
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University Göttingen, Göttingen, Germany.
| | - Luis Diambra
- Centro Regional de Estudios Geńomicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Michael Habeck
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, Georg-August University Göttingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
17
|
Peselis A, Gao A, Serganov A. Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie 2015; 117:100-9. [PMID: 26143008 DOI: 10.1016/j.biochi.2015.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2023]
Abstract
Recent progress in identification and characterization of novel types of non-coding RNAs has proven that RNAs carry out a variety of cellular functions ranging from scaffolding to gene expression control. In both prokaryotic and eukaryotic cells, several classes of non-coding RNAs control expression of dozens of genes in response to specific cues. One of the most interesting and outstanding questions in the RNA field is whether regulatory RNAs are capable of employing basic biological concepts, such as allostery and cooperativity, previously attributed to the function of proteins. Aside from regulatory RNAs that form complementary base pairing with their nucleic acid targets, several RNA classes modulate gene expression via molecular mechanisms which can be paralleled to protein-mediated regulation. Among these RNAs are riboswitches, metabolite-sensing non-coding regulatory elements that adopt intrinsic three-dimensional structures and specifically bind various small molecule ligands. These characteristics of riboswitches make them well-suited for complex regulatory responses observed in allosteric and cooperative protein systems. Here we present an overview of the biochemical, genetic, and structural studies of riboswitches with a major focus on complex regulatory mechanisms and biological principles utilized by riboswitches for such genetic modulation.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
18
|
Cheng CY, Chou FC, Kladwang W, Tian S, Cordero P, Das R. Consistent global structures of complex RNA states through multidimensional chemical mapping. eLife 2015; 4:e07600. [PMID: 26035425 PMCID: PMC4495719 DOI: 10.7554/elife.07600] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/02/2015] [Indexed: 11/13/2022] Open
Abstract
Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OHCleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states. DOI:http://dx.doi.org/10.7554/eLife.07600.001 Our genetic material, in the form of molecules of DNA, provides instructions for many different processes in our cells. To issue these instructions, particular sections of DNA are copied to make a type of molecule called ribonucleic acid (RNA). Some of these RNA molecules contain instructions to make proteins, but others—known as non-coding RNAs—regulate the activity of genes in cells. The genetic information within RNA is encoded by the sequence of four different chemical parts called ‘nucleotides’. RNA can exist as a single strand of nucleotides, but the nucleotides can also pair up in specific combinations to form sections of double-stranded RNA. Therefore, a single strand of non-coding RNA can fold into a complex three-dimensional shape that contains loops, twists, and bulges. The three-dimensional structures of non-coding RNAs are crucial for their roles in cells, but the variety and complexity of shapes that they can form makes it technically difficult to study them. In 2008, researchers developed a new method called MOHCA that can map the positions of nucleotides that are close together in the three-dimensional structure. Highly reactive chemicals are attached to the nucleotides and these can react with, and damage, other nearby nucleotides. By detecting which nucleotides have been damaged, it is possible to map the positions of these nucleotides and decipher the structure of the RNA molecule using computer algorithms. MOHCA is a promising approach, but the initial methods to find the damaged nucleotides were tedious and required specialized equipment. Now, Cheng, Das et al.—including some of the researchers involved in the 2008 work—have developed an improved version of MOHCA that uses readily available RNA sequencing techniques to find the damaged nucleotides. The RNA sequencing data are then analyzed by a new algorithm in the Rosetta computer modeling software. Cheng, Das et al. used this newly developed ‘MOHCA-seq’ and Rosetta to reveal the structures of a human non-coding RNA and several other non-coding RNA molecules to a much higher level of detail than before. Together, MOHCA-seq and Rosetta provide a rapid method for researchers to decipher the three-dimensional structure of non-coding RNAs. This method is likely to speed up the analysis of the complex structures of non-coding RNAs. It will be useful in future efforts to work out what roles these RNAs play in cells, including their activity in cancer, neurodegeneration, and other diseases. DOI:http://dx.doi.org/10.7554/eLife.07600.002
Collapse
Affiliation(s)
- Clarence Yu Cheng
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Pablo Cordero
- Biomedical Informatics Program, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, United States
| |
Collapse
|
19
|
Abstract
Reliable modeling of RNA tertiary structures is key to both understanding these structures' roles in complex biological machines and to eventually facilitating their design for molecular computing and robotics. In recent years, a concerted effort to improve computational prediction of RNA structure through the RNA-Puzzles blind prediction trials has accelerated advances in the field. Among other approaches, the versatile and expanding Rosetta molecular modeling software now permits modeling of RNAs in the 100-300 nucleotide size range at consistent subhelical (~1 nm) resolution. Our laboratory's current state-of-the-art methods for RNAs in this size range involve Fragment Assembly of RNA with Full-Atom Refinement (FARFAR), which optimizes RNA conformations in the context of a physically realistic energy function, as well as hybrid techniques that leverage experimental data to inform computational modeling. In this chapter, we give a practical guide to our current workflow for modeling RNA three-dimensional structures using FARFAR, including strategies for using data from multidimensional chemical mapping experiments to focus sampling and select accurate conformations.
Collapse
Affiliation(s)
- Clarence Yu Cheng
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, California, USA; Department of Physics, Stanford University, Stanford, California, USA.
| |
Collapse
|
20
|
Ruff KM, Strobel SA. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA (NEW YORK, N.Y.) 2014; 20:1775-88. [PMID: 25246650 PMCID: PMC4201829 DOI: 10.1261/rna.047266.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/22/2014] [Indexed: 05/21/2023]
Abstract
The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.
Collapse
Affiliation(s)
- Karen M Ruff
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
21
|
Sherman EM, Elsayed G, Esquiaqui JM, Elsayed M, Brinda B, Ye JD. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch. J Biochem 2014; 156:323-31. [PMID: 25092436 DOI: 10.1093/jb/mvu048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glycine riboswitches contain two aptamers and turn on the expression of downstream genes in bacteria. Although full-length glycine riboswitches were shown to exhibit no glycine-binding cooperativity, the truncated glycine riboswitches were confirmed to bind two glycine molecules cooperatively. Thorough understanding of the ligand-binding cooperativity may shed light on the molecular basis of the cooperativity and help design novel intricate biosensing genetic circuits for application in synthetic biology. A previously proposed sequential model does not readily provide explanation for published data showing a deleterious mutation in the first aptamer inhibiting the glycine binding of the second one. Using the glycine riboswitch from Vibrio cholerae as a model system, we have identified a region in the first aptamer that modulates the second aptamer function especially in the shortened glycine riboswitch. Importantly, this modulation can be rescued by the addition of a complementary oligodeoxynucleotide, demonstrating the feasibility of developing this system into novel genetic circuits that sense both glycine and a DNA signal.
Collapse
Affiliation(s)
- Eileen M Sherman
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Galal Elsayed
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Jackie M Esquiaqui
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Mohammed Elsayed
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Bryan Brinda
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Sanbonmatsu KY. Dynamics of riboswitches: Molecular simulations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1046-1050. [PMID: 24953187 DOI: 10.1016/j.bbagrm.2014.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Riboswitch RNAs play key roles in bacterial metabolism and represent a promising new class of antibiotic targets for treatment of infectious disease. While many studies of riboswitches have been performed, the exact mechanism of riboswitch operation is still not fully understood at the atomistic level of detail. Molecular dynamics simulations are useful for interpreting existing experimental data and producing predictions for new experiments. Here, a wide range of computational studies on riboswitches is reviewed. By elucidating the key principles of riboswitch operation, computation may aid in the effort to design more specific antibiotics with affinities greater than those of the native ligand. Such a detailed understanding may be required to improve efficacy and reduce side effects. These studies are laying the groundwork for understanding the action mechanism of new compounds that inhibit riboswitch activity. Future directions such as magnesium effects, large-scale conformational changes, expression platforms and co-transcriptional folding are also discussed. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Karissa Y Sanbonmatsu
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, USA
| |
Collapse
|
23
|
Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus. J Bacteriol 2014; 196:1369-76. [PMID: 24443533 DOI: 10.1128/jb.01480-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycine cleavage (GCV) system catalyzes the oxidative cleavage of glycine into CO2, NH4(+), and a methylene group, which is accepted by tetrahydrofolate (THF) to form N(5),N(10)-methylene-THF. Streptomyces griseus contains gcvP and the gcvT-gcvH operon, which encode three intrinsic components of the GCV system. We identified the transcriptional start sites of gcvTH and gcvP and found putative glycine riboswitches in their 5' untranslated regions (5' UTRs). The ratios of the transcripts of the gcvT and gcvP coding sequences (CDSs) to those of the respective 5' UTRs were significantly higher in the presence of glycine in the wild-type strain. However, the levels of gcvT and gcvP CDS transcripts were not increased by glycine in the respective 5' UTR deletion mutants. A reporter gene assay showed that a transcriptional terminator exists in the 5' UTR of gcvTH. Furthermore, by an in-line probing assay, we confirmed that glycine bound directly to the putative riboswitch RNAs. These results indicate that the S. griseus glycine riboswitches enhance transcriptional read-through to the downstream CDSs, like known glycine riboswitches in other bacteria. We examined the growth of three mutants in which either or both of the gcvTH and gcvP 5' UTRs were deleted. Like the wild-type strain, all mutants grew vigorously in a medium containing 0.9% glucose as a carbon source. However, the mutants showed severely restricted growth in a medium containing 0.9% glucose and 1% glycine, while the wild-type strain grew normally. This indicates that glycine has a growth-inhibitory effect and that the GCV system plays a critical role in glycine detoxification in S. griseus.
Collapse
|
24
|
Hamachi K, Hayashi H, Shimamura M, Yamaji Y, Kaneko A, Fujisawa A, Umehara T, Tamura K. Glycols modulate terminator stem stability and ligand-dependency of a glycine riboswitch. Biosystems 2013; 113:59-65. [PMID: 23721735 DOI: 10.1016/j.biosystems.2013.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The Bacillus subtilis glycine riboswitch comprises tandem glycine-binding aptamers and a putative terminator stem followed by the gcvT operon. Gene expression is regulated via the sensing of glycine. However, we found that the riboswitch behaves in a "glycine-independent" manner in the presence of polyethylene glycol (PEG) and ethylene glycol. The effect is related to the formation of a terminator stem within the expression platform under such conditions. The results revealed that increasing PEG stabilized the structure of the terminator stem. By contrast, the addition of ethylene glycol destabilized the terminator stem. PEG and ethylene glycol have opposite effects on transcription as well as on stable terminator stem formation. The glycine-independency of the riboswitch and the effects of such glycols might shed light on the evolution of riboswitches.
Collapse
Affiliation(s)
- Kokoro Hamachi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mujahid S, Orsi RH, Vangay P, Boor KJ, Wiedmann M. Refinement of the Listeria monocytogenes σB regulon through quantitative proteomic analysis. MICROBIOLOGY-SGM 2013; 159:1109-1119. [PMID: 23618998 DOI: 10.1099/mic.0.066001-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
σ(B) is an alternative σ factor that regulates stress response and virulence genes in the foodborne pathogen Listeria monocytogenes. To gain further insight into σ(B)-dependent regulatory mechanisms in L. monocytogenes, we (i) performed quantitative proteomic comparisons between the L. monocytogenes parent strain 10403S and an isogenic ΔsigB mutant and (ii) conducted a meta-analysis of published microarray studies on the 10403S σ(B) regulon. A total of 134 genes were found to be significantly positively regulated by σ(B) at the transcriptomic level with >75 % of these genes preceded by putative σ(B)-dependent promoters; 21 of these 134 genes were also found to be positively regulated by σ(B) through proteomics. In addition, 15 proteins were only found to be positively regulated by σ(B) through proteomics analyses, including Lmo1349, a putative glycine cleavage system protein. The lmo1349 gene is preceded by a 5' UTR that functions as a glycine riboswitch, which suggests regulation of glycine metabolism by σ(B) in L. monocytogenes. Herein, we propose a model where σ(B) upregulates pathways that facilitate biosynthesis and uptake of glycine, which may then activate this riboswitch. Our data also (i) identified a number of σ(B)-dependent proteins that appear to be encoded by genes that are co-regulated by multiple transcriptional regulators, in particular PrfA, and (ii) found σ(B)-dependent genes and proteins to be overrepresented in the 'energy metabolism' role category, highlighting contributions of the σ(B) regulon to L. monocytogenes energy metabolism as well as a role of PrfA and σ(B) interaction in regulating aspects of energy metabolism in L. monocytogenes.
Collapse
Affiliation(s)
- S Mujahid
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - R H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - P Vangay
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - K J Boor
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Baird NJ, Ferré-D’Amaré AR. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. RNA (NEW YORK, N.Y.) 2013; 19:167-76. [PMID: 23249744 PMCID: PMC3543082 DOI: 10.1261/rna.036269.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/03/2012] [Indexed: 05/21/2023]
Abstract
Most known glycine riboswitches have two homologous aptamer domains arranged in tandem and separated by a short linker. The two aptamers associate through reciprocal "quaternary" interactions that have been proposed to result in cooperative glycine binding. Recently, the interaptamer linker was found to form helix P0 with a previously unrecognized segment 5' to the first aptamer domain. P0 was shown to increase glycine affinity, abolish cooperativity, and conform to the K-turn motif consensus. We examine the global thermodynamic and structural role of P0 using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS), respectively. To evaluate the generality of P0 function, we prepared glycine riboswitch constructs lacking and including P0 from Bacillus subtilis, Fusobacterium nucleatum, and Vibrio cholerae. We find that P0 indeed folds into a K-turn, supports partial pre-folding of all three glycine-free RNAs, and is required for ITC observation of glycine binding under physiologic Mg(2+) concentrations. Except for the unusually small riboswitch from F. nucleatum, the K-turn is needed for maximally compacting the glycine-bound states of the RNAs. Formation of a ribonucleoprotein complex between the B. subtilis or the F. nucleatum RNA constructs and the bacterial K-turn binding protein YbxF promotes additional folding of the free riboswitch, and enhances glycine binding. Consistent with the previously reported loss of cooperativity, P0-containing B. subtilis and V. cholerae tandem aptamers bound no more than one glycine molecule per riboswitch. Our results indicate that the P0 K-turn helps organize the quaternary structure of tandem glycine riboswitches, thereby facilitating ligand binding under physiologic conditions.
Collapse
|
27
|
Kwok CK, Sherlock ME, Bevilacqua PC. Decrease in RNA Folding Cooperativity by Deliberate Population of Intermediates in RNA G-Quadruplexes. Angew Chem Int Ed Engl 2012; 52:683-6. [DOI: 10.1002/anie.201206475] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/09/2012] [Indexed: 01/16/2023]
|
28
|
Kwok CK, Sherlock ME, Bevilacqua PC. Decrease in RNA Folding Cooperativity by Deliberate Population of Intermediates in RNA G-Quadruplexes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Serganov A, Patel DJ. Molecular recognition and function of riboswitches. Curr Opin Struct Biol 2012; 22:279-86. [PMID: 22579413 DOI: 10.1016/j.sbi.2012.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Regulatory mRNAs elements termed riboswitches respond to elevated concentrations of cellular metabolites by modulating expression of associated genes. Riboswitches attain their high metabolite selectivity by capitalizing on the intrinsic tertiary structures of their sensor domains. Over the years, riboswitch structure and folding have been amongst the most researched topics in the RNA field. Most recently, novel structures of single-ligand and cooperative double-ligand sensors have broadened our knowledge of architectural and molecular recognition principles exploited by riboswitches. The structural information has been complemented by extensive folding studies, which have provided several important clues on the formation of ligand-competent conformations and mechanisms of ligand discrimination. These studies have greatly improved our understanding of molecular events in riboswitch-mediated gene expression control and provided the molecular basis for intervention into riboswitch-controlled genetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Ave., MSB-393, New York, NY 10016, USA
| | | |
Collapse
|
30
|
Sherman EM, Esquiaqui J, Elsayed G, Ye JD. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA (NEW YORK, N.Y.) 2012; 18:496-507. [PMID: 22279151 PMCID: PMC3285937 DOI: 10.1261/rna.031286.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/14/2011] [Indexed: 05/21/2023]
Abstract
Comprised of two aptamers connected by a short nucleotide linker, the glycine riboswitch was the first example of naturally occurring RNA elements reported to bind small organic molecules cooperatively. Earlier works have shown binding of glycine to the second aptamer allows tertiary interactions to be made between the two aptamers, which facilitates binding of a separate glycine molecule to the first aptamer, leading to glycine-binding cooperativity. Prompted by a distinctive protection pattern in the linker region of a minimal glycine riboswitch construct, we have identified a highly conserved (>90%) leader-linker duplex involving leader nucleotides upstream of the previously reported consensus glycine riboswitch sequences. In >50% of the glycine riboswitches, the leader-linker interaction forms a kink-turn motif. Characterization of three glycine ribsowitches showed that the leader-linker interaction improved the glycine-binding affinities by 4.5- to 86-fold. In-line probing and native gel assays with two aptamers in trans suggested synergistic action between glycine-binding and interaptamer interaction during global folding of the glycine riboswitch. Mutational analysis showed that there appeared to be no ligand-binding cooperativity in the glycine riboswitch when the leader-linker interaction is present, and the previously measured cooperativity is simply an artifact of a truncated construct missing the leader sequence.
Collapse
Affiliation(s)
- Eileen M. Sherman
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Jackie Esquiaqui
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Galal Elsayed
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
- Corresponding author.E-mail .
| |
Collapse
|
31
|
Kladwang W, Chou FC, Das R. Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. J Am Chem Soc 2012; 134:1404-7. [PMID: 22192063 DOI: 10.1021/ja2093508] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tertiary structures of functional RNA molecules remain difficult to decipher. A new generation of automated RNA structure prediction methods may help address these challenges but have not yet been experimentally validated. Here we apply four prediction tools to a class of double glycine riboswitches that can bind two ligands cooperatively. A novel method (BPPalign), RMdetect, JAR3D, and Rosetta 3D modeling give consistent predictions for a new stem P0 and a kink-turn motif. These elements structure the linker between the RNAs' double aptamers. Chemical mapping on the Fusobacterium nucleatum riboswitch with N-methylisatoic anhydride, dimethyl sulfate and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate probing, mutate-and-map studies, and mutation/rescue experiments all provide strong evidence for the structured linker. Under solution conditions that permit rigorous thermodynamic analysis, disrupting this helix-junction-helix structure gives 120- and 6-30-fold poorer dissociation constants for the RNA's two glycine-binding transitions, corresponding to an overall energetic impact of 4.3 ± 0.5 kcal/mol. Prior biochemical and crystallography studies did not include this critical element due to over-truncation of the RNA. We speculate that several further undiscovered elements are likely to exist in the flanking regions of this and other functional RNAs, and automated prediction tools can play a useful role in their detection and dissection.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
32
|
Butler EB, Xiong Y, Wang J, Strobel SA. Structural basis of cooperative ligand binding by the glycine riboswitch. ACTA ACUST UNITED AC 2011; 18:293-8. [PMID: 21439473 DOI: 10.1016/j.chembiol.2011.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/15/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 Å crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.
Collapse
Affiliation(s)
- Ethan B Butler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|