1
|
Chaudhuri A, Paul S, Banerjea M, Das B. Polyadenylated versions of small non-coding RNAs in Saccharomyces cerevisiae are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:155-186. [PMID: 38783922 PMCID: PMC11115967 DOI: 10.15698/mic2024.05.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
In Saccharomyces cerevisiae, polyadenylated forms of mature (and not precursor) small non-coding RNAs (sncRNAs) those fail to undergo proper 3'-end maturation are subject to an active degradation by Rrp6p and Rrp47p, which does not require the involvement of core exosome and TRAMP components. In agreement with this finding, Rrp6p/Rrp47p is demonstrated to exist as an exosome-independent complex, which preferentially associates with mature polyadenylated forms of these sncRNAs. Consistent with this observation, a C-terminally truncated version of Rrp6p (Rrp6p-ΔC2) lacking physical association with the core nuclear exosome supports their decay just like its full-length version. Polyadenylation is catalyzed by both the canonical and non-canonical poly(A) polymerases, Pap1p and Trf4p. Analysis of the polyadenylation profiles in WT and rrp6-Δ strains revealed that the majority of the polyadenylation sites correspond to either one to three nucleotides upstream or downstream of their mature ends and their poly(A) tails ranges from 10-15 adenylate residues. Most interestingly, the accumulated polyadenylated snRNAs are functional in the rrp6-Δ strain and are assembled into spliceosomes. Thus, Rrp6p-Rrp47p defines a core nuclear exosome-independent novel RNA turnover system in baker's yeast targeting imperfectly processed polyadenylated sncRNAs that accumulate in the absence of Rrp6p.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Present Position: Zentrum fǜr Molekulare, Medizin, Institut fǜr Kardiovaskuläre Regeneration, Haus 25B, Goethe-Universität, Theodor-Stern-Kai 7, Universitätsklinikum, 60590 Frankfurt am Main, Germany
| | - Soumita Paul
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| |
Collapse
|
2
|
de Amorim J, Slavotinek A, Fasken MB, Corbett AH, Morton DJ. Modeling Pathogenic Variants in the RNA Exosome. RNA & DISEASE 2020; 7:e1166. [PMID: 34676290 PMCID: PMC8528344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Exosomopathies are a collection of rare diseases caused by mutations in genes that encode structural subunits of the RNA exosome complex (EXOSC). The RNA exosome is critical for both processing and degrading many RNA targets. Mutations in individual RNA exosome subunit genes (termed EXOSC genes) are linked to a variety of distinct diseases. These exosomopathies do not arise from homozygous loss-of-function or large deletions in the EXOSC genes likely because some level of RNA exosome activity is essential for viability. Thus, all patients described so far have at least one allele with a missense mutation encoding an RNA exosome subunit with a single pathogenic amino acid change linked to disease. Understanding how these changes lead to the disparate clinical presentations that have been reported for this class of diseases necessitates investigation of how individual pathogenic missense variants alter RNA exosome function. Such studies will require access to patient samples, a challenge for these very rare diseases, coupled with modeling the patient variants. Here, we highlight five recent studies that model pathogenic variants in EXOSC3, EXOSC2, and EXOSC5.
Collapse
Affiliation(s)
- Julia de Amorim
- Department of Biology, Emory University,1510 Clifton Rd., NE RRC 1021, Atlanta, GA 30322, United States
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University,1510 Clifton Rd., NE RRC 1021, Atlanta, GA 30322, United States
| | - Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Milo B. Fasken
- Department of Biology, Emory University,1510 Clifton Rd., NE RRC 1021, Atlanta, GA 30322, United States
| | - Anita H. Corbett
- Department of Biology, Emory University,1510 Clifton Rd., NE RRC 1021, Atlanta, GA 30322, United States
| | - Derrick J. Morton
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Department of Biomedical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, United States
| |
Collapse
|
3
|
Shanmugam T, Abbasi N, Kim HS, Kim HB, Park NI, Park GT, Oh SA, Park SK, Muench DG, Choi Y, Park YI, Choi SB. An Arabidopsis divergent pumilio protein, APUM24, is essential for embryogenesis and required for faithful pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1092-1105. [PMID: 29031033 DOI: 10.1111/tpj.13745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 05/06/2023]
Abstract
Pumilio RNA-binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre-rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T-DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro-embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA-protein interaction assay showed that the histidine-tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nazia Abbasi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Hyung-Sae Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Ho Bang Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nam-Il Park
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, South Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| |
Collapse
|
4
|
Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE, Cherry S. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 2017; 30:1658-70. [PMID: 27474443 PMCID: PMC4973295 DOI: 10.1101/gad.284604.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
Here, Molleston et al. find that signals from viral infections repurpose TRAMP complex components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.
Collapse
Affiliation(s)
- Jerome M Molleston
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ryan H Moy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sanjay V Menghani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keiko Rausch
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
McIver SC, Katsumura KR, Davids E, Liu P, Kang YA, Yang D, Bresnick EH. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. eLife 2016; 5. [PMID: 27543448 PMCID: PMC5040589 DOI: 10.7554/elife.17877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Since the highly conserved exosome complex mediates the degradation and processing of multiple classes of RNAs, it almost certainly controls diverse biological processes. How this post-transcriptional RNA-regulatory machine impacts cell fate decisions and differentiation is poorly understood. Previously, we demonstrated that exosome complex subunits confer an erythroid maturation barricade, and the erythroid transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the cognate genes. While dissecting requirements for the maturation barricade in Mus musculus, we discovered that the exosome complex is a vital determinant of a developmental signaling transition that dictates proliferation/amplification versus differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor tyrosine kinase expression and stem cell factor/Kit signaling, while preventing responsiveness to erythropoietin-instigated signals that promote differentiation. Functioning as a gatekeeper of this developmental signaling transition, the exosome complex controls the massive production of erythroid cells that ensures organismal survival in homeostatic and stress contexts. DOI:http://dx.doi.org/10.7554/eLife.17877.001 Red blood cells supply an animal’s tissues with the oxygen they need to survive. These cells circulate for a certain amount of time before they die. To replenish the red blood cells that are lost, first a protein called stem cell factor (SCF) instructs stem cells and precursor cells to proliferate, and a second protein, known as erythropoietin, then signals to these cells to differentiate into mature red blood cells. It is important to maintain this balance between these two processes because too much proliferation can lead to cancer while too much differentiation will exhaust the supply of stem cells. Previous work has shown that a collection of proteins called the exosome complex can block steps leading towards mature red blood cells. The exosome complex controls several processes within cells by modifying or degrading a variety of messenger RNAs, the molecules that serve as intermediates between DNA and protein. However, it was not clear how the exosome complex sets up the differentiation block and whether it is somehow connected to the signaling from SCF and erythropoietin. McIver et al. set out to address this issue by isolating precursor cells with the potential to become red blood cells from mouse fetal livers and experimentally reducing the levels of the exosome complex. The experiments showed that these cells were no longer able to respond when treated with SCF in culture, whereas the control cells responded as normal. Further experiments showed that cells with less of the exosome complex also made less of a protein named Kit. Normally, SCF interacts with Kit to instruct cells to multiply. Lastly, although the experimental cells could no longer respond to these proliferation signals, they could react to erythropoietin, which promotes differentiation. Thus, normal levels of the exosome complex keep the delicate balance between proliferation and differentiation, which is crucial to the development of red blood cells. In future, it will be important to study the exosome complex in living mice and in human cells, and to see whether it also controls other signaling pathways. Furthermore, it is worth exploring whether this new knowledge can help efforts to produce red blood cells on an industrial scale, which could then be used to treat patients with conditions such as anemia. DOI:http://dx.doi.org/10.7554/eLife.17877.002
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Elsa Davids
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| |
Collapse
|
6
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
7
|
An Interaction between RRP6 and SU(VAR)3-9 Targets RRP6 to Heterochromatin and Contributes to Heterochromatin Maintenance in Drosophila melanogaster. PLoS Genet 2015; 11:e1005523. [PMID: 26389589 PMCID: PMC4577213 DOI: 10.1371/journal.pgen.1005523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 08/22/2015] [Indexed: 11/19/2022] Open
Abstract
RNA surveillance factors are involved in heterochromatin regulation in yeast and plants, but less is known about the possible roles of ribonucleases in the heterochromatin of animal cells. Here we show that RRP6, one of the catalytic subunits of the exosome, is necessary for silencing heterochromatic repeats in the genome of Drosophila melanogaster. We show that a fraction of RRP6 is associated with heterochromatin, and the analysis of the RRP6 interaction network revealed physical links between RRP6 and the heterochromatin factors HP1a, SU(VAR)3-9 and RPD3. Moreover, genome-wide studies of RRP6 occupancy in cells depleted of SU(VAR)3-9 demonstrated that SU(VAR)3-9 contributes to the tethering of RRP6 to a subset of heterochromatic loci. Depletion of the exosome ribonucleases RRP6 and DIS3 stabilizes heterochromatic transcripts derived from transposons and repetitive sequences, and renders the heterochromatin less compact, as shown by micrococcal nuclease and proximity-ligation assays. Such depletion also increases the amount of HP1a bound to heterochromatic transcripts. Taken together, our results suggest that SU(VAR)3-9 targets RRP6 to a subset of heterochromatic loci where RRP6 degrades chromatin-associated non-coding RNAs in a process that is necessary to maintain the packaging of the heterochromatin.
Collapse
|
8
|
Marin-Vicente C, Domingo-Prim J, Eberle AB, Visa N. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination. J Cell Sci 2015; 128:1097-107. [PMID: 25632158 DOI: 10.1242/jcs.158733] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs.
Collapse
Affiliation(s)
- Consuelo Marin-Vicente
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Judit Domingo-Prim
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andrea B Eberle
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Nature 2014; 513:431-5. [PMID: 25043062 DOI: 10.1038/nature13468] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
Abstract
Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.
Collapse
|
10
|
Quality control of mRNP biogenesis: networking at the transcription site. Semin Cell Dev Biol 2014; 32:37-46. [PMID: 24713468 DOI: 10.1016/j.semcdb.2014.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery.
Collapse
|
11
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
12
|
Turk EM, Das V, Seibert RD, Andrulis ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 2013; 8:e78105. [PMID: 24143261 PMCID: PMC3797045 DOI: 10.1371/journal.pone.0078105] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNA-metabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrial-targeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
Collapse
Affiliation(s)
- Edward M. Turk
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Vaijayanti Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Ryan D. Seibert
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Erik D. Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
13
|
Stuparevic I, Mosrin-Huaman C, Hervouet-Coste N, Remenaric M, Rahmouni AR. Cotranscriptional recruitment of RNA exosome cofactors Rrp47p and Mpp6p and two distinct Trf-Air-Mtr4 polyadenylation (TRAMP) complexes assists the exonuclease Rrp6p in the targeting and degradation of an aberrant messenger ribonucleoprotein particle (mRNP) in yeast. J Biol Chem 2013; 288:31816-29. [PMID: 24047896 DOI: 10.1074/jbc.m113.491290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cotranscriptional mRNA processing and packaging reactions that lead to the formation of export-competent messenger ribonucleoprotein particles (mRNPs) are under the surveillance of quality control steps. Aberrant mRNPs resulting from faulty events are retained in the nucleus with ensuing elimination of their mRNA component. The molecular mechanisms by which the surveillance system recognizes defective mRNPs and stimulates their destruction by the RNA degradation machinery are still not completely elucidated. Using an experimental approach in which mRNP formation in yeast is disturbed by the action of the bacterial Rho helicase, we have shown previously that the targeting of Rho-induced aberrant mRNPs is mediated by Rrp6p, which is recruited cotranscriptionally in association with Nrd1p following Rho action. Here we investigated the specific involvement in this quality control process of different cofactors associated with the nuclear RNA degradation machinery. We show that, in addition to the main hydrolytic action of the exonuclease Rrp6p, the cofactors Rrp47p, Mpp6p as well as the Trf-Air-Mtr4 polyadenylation (TRAMP) components Trf4p, Trf5p, and Air2p contribute significantly by stimulating the degradation process upon their cotranscriptional recruitment. Trf4p and Trf5p are apparently recruited in two distinct TRAMP complexes that both contain Air2p as component. Surprisingly, Rrp47p appears to play an important role in mutual protein stabilization with Rrp6p, which highlights a close association between the two partners. Together, our results provide an integrated view of how different cofactors of the RNA degradation machinery cooperate to target and eliminate aberrant mRNPs.
Collapse
Affiliation(s)
- Igor Stuparevic
- From the Centre de Biophysique Moléculaire, Unité Propre de Recherche (UPR) 4301 du CNRS, rue Charles Sadron, 45071 Orléans, France
| | | | | | | | | |
Collapse
|
14
|
Biancheri R, Cassandrini D, Pinto F, Trovato R, Di Rocco M, Mirabelli-Badenier M, Pedemonte M, Panicucci C, Trucks H, Sander T, Zara F, Rossi A, Striano P, Minetti C, Santorelli FM. EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement. J Neurol 2013; 260:1866-70. [DOI: 10.1007/s00415-013-6896-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
|
15
|
Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP. Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Res 2013; 41:2963-80. [PMID: 23358822 PMCID: PMC3597698 DOI: 10.1093/nar/gkt037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin insulators are functionally conserved DNA-protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3' to 5' RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs', which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome.
Collapse
Affiliation(s)
- Su Jun Lim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet 2012; 8:e1003078. [PMID: 23166521 PMCID: PMC3499365 DOI: 10.1371/journal.pgen.1003078] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/26/2012] [Indexed: 11/22/2022] Open
Abstract
The poly(A)-binding protein nuclear 1 (PABPN1) is a ubiquitously expressed protein that is thought to function during mRNA poly(A) tail synthesis in the nucleus. Despite the predicted role of PABPN1 in mRNA polyadenylation, little is known about the impact of PABPN1 deficiency on human gene expression. Specifically, it remains unclear whether PABPN1 is required for general mRNA expression or for the regulation of specific transcripts. Using RNA sequencing (RNA–seq), we show here that the large majority of protein-coding genes express normal levels of mRNA in PABPN1–deficient cells, arguing that PABPN1 may not be required for the bulk of mRNA expression. Unexpectedly, and contrary to the view that PABPN1 functions exclusively at protein-coding genes, we identified a class of PABPN1–sensitive long noncoding RNAs (lncRNAs), the majority of which accumulated in conditions of PABPN1 deficiency. Using the spliced transcript produced from a snoRNA host gene as a model lncRNA, we show that PABPN1 promotes lncRNA turnover via a polyadenylation-dependent mechanism. PABPN1–sensitive lncRNAs are targeted by the exosome and the RNA helicase MTR4/SKIV2L2; yet, the polyadenylation activity of TRF4-2, a putative human TRAMP subunit, appears to be dispensable for PABPN1–dependent regulation. In addition to identifying a novel function for PABPN1 in lncRNA turnover, our results provide new insights into the post-transcriptional regulation of human lncRNAs. In eukaryotic cells, protein-coding genes are transcribed to produce pre-messenger RNAs (pre–mRNAs) that are processed at the 3′ end by the addition of a sequence of poly-adenosine. This 3′ end poly(A) tail normally confers positive roles to the mRNA life cycle by stimulating nuclear export and translation. The fundamental role of mRNA polyadenylation is generally mediated by the activity of poly(A)-binding proteins (PABPs) that bind to the 3′ poly(A) tail of eukaryotic mRNAs. In the nucleus, the evolutionarily conserved poly(A)-binding protein PABPN1 is thought to be important for gene expression, as it stimulates mRNA polyadenylation in biochemical assays. Using a high-throughput sequencing approach that quantitatively measures the level of RNA expressed from all genes, we addressed the global impact of a PABPN1 deficiency on human gene expression. Notably, we found that most mRNAs were normally expressed in PABPN1–deficient cells, a result inconsistent with a role for PABPN1 in general mRNA metabolism. Surprisingly, our genome-wide analysis unveiled a new function for PABPN1 in a polyadenylation-dependent pathway of RNA decay that targets non-protein coding genes. Our discovery that PABPN1 functions in the regulation of noncoding RNAs raises the possibility that oculopharyngeal muscular dystrophy, a disease associated with mutations in the PABPN1 gene, is caused by defective expression of noncoding RNAs.
Collapse
Affiliation(s)
- Yves B. Beaulieu
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Yap K, Lim ZQ, Khandelia P, Friedman B, Makeyev EV. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes Dev 2012; 26:1209-23. [PMID: 22661231 DOI: 10.1101/gad.188037.112] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3'-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context.
Collapse
Affiliation(s)
- Karen Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
18
|
Hessle V, von Euler A, González de Valdivia E, Visa N. Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore. RNA (NEW YORK, N.Y.) 2012; 18:1466-1474. [PMID: 22745224 PMCID: PMC3404368 DOI: 10.1261/rna.032045.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs.
Collapse
Affiliation(s)
- Viktoria Hessle
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anne von Euler
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Neus Visa
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
19
|
Hou D, Ruiz M, Andrulis ED. The ribonuclease Dis3 is an essential regulator of the developmental transcriptome. BMC Genomics 2012; 13:359. [PMID: 22853036 PMCID: PMC3434026 DOI: 10.1186/1471-2164-13-359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance of a large number of distinct RNA species. Evolutionarily conserved from eubacteria to eukaryotes and a crucial component of the RNA processing exosome, Dis3 has been shown to be essential in yeast and fly S2 cells. However, it is not known whether Dis3 has essential functions in a metazoan. This study inquires whether Dis3 is required for Drosophila development and viability and how Dis3 regulates the transcriptome in the developing fly. Results Using transgenic flies, we show that Dis3 knock down (Dis3KD) retards growth, induces melanotic tumor formation, and ultimately results in 2nd instar larval lethality. In order to determine whether Dis3KD fly phenotypes were a consequence of disrupting developmentally regulated RNA turnover, we performed RNA deep sequencing analysis on total RNA isolated from developmentally staged animals. Bioinformatic analysis of transcripts from Dis3KD flies reveals substantial transcriptomic changes, most notably down-regulation in early expressed RNAs. Finally, gene ontology analysis of this early stage shows that Dis3 regulates transcripts related to extracellular structure and remodelling, neurogenesis, and nucleotide metabolism. Conclusions We conclude that Dis3 is essential for early Drosophila melanogaster development and has specific and important stage-specific roles in regulating RNA metabolism. In showing for the first time that Dis3 is required for the development of a multicellular organism, our work provides mechanistic insight into how Dis3—either independent of or associated with the RNA processing exosome—participates in cell type-specific RNA turnover in metazoan development.
Collapse
Affiliation(s)
- Dezhi Hou
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
20
|
Dis3- and exosome subunit-responsive 3' mRNA instability elements. Biochem Biophys Res Commun 2012; 423:461-6. [PMID: 22668878 DOI: 10.1016/j.bbrc.2012.05.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/20/2022]
Abstract
Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3'-5' exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3' untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.
Collapse
|
21
|
Plant Exosomes and Cofactors. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:31-52. [DOI: 10.1016/b978-0-12-404740-2.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:286-93. [PMID: 22012863 DOI: 10.1002/wrna.115] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular organisms are similar to biological communities, consisting of various cell types; thus, inter-cell communication is critical for the functioning of the whole system that ultimately constitutes a living being. Conventional models of cellular exchange include signaling molecules and direct contact-mediated cell communications. Exosomes, small vesicles originating from an inward budding of the plasma membrane, represent a new avenue for signaling between cells. This interchange is achieved by packaging RNA species into exosomes endowed with specific cell surface-targeting motifs. The delivered RNA molecules are functional, and mRNA can be translated into new proteins, while microRNAs (miRNAs) target host mRNAs in the recipient cell. RNA involved in transmitting information or molecules between cells is called exosomal RNA (esRNA). This review summarizes the characteristics of exosomes, specifically focusing on their role in the horizontal transfer of cellular information.
Collapse
Affiliation(s)
- Saraswathi Ramachandran
- Department of Craniofacial Biology, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
24
|
Smith SB, Kiss DL, Turk E, Tartakoff AM, Andrulis ED. Pronounced and extensive microtubule defects in a Saccharomyces cerevisiae DIS3 mutant. Yeast 2011; 28:755-69. [PMID: 21919057 DOI: 10.1002/yea.1899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/21/2011] [Accepted: 07/10/2011] [Indexed: 11/05/2022] Open
Abstract
Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that function in disparate cellular compartments and RNA metabolic pathways. Here, in a genetic, cell biological and transcriptomic analysis, we examined the role of Dis3, an essential polypeptide with endo- and 3'→5' exo-ribonuclease activity, in cell cycle progression. We present several lines of evidence that perturbation of DIS3 affects microtubule (MT) localization and structure in Saccharomyces cerevisiae. Cells with a DIS3 mutant: (a) accumulate anaphase and pre-anaphase mitotic spindles; (b) exhibit spindles that are misorientated and displaced from the bud neck; (c) harbour elongated spindle-associated astral MTs; (d) have an increased G1 astral MT length and number; and (e) are hypersensitive to MT poisons. Mutations in the core exosome genes RRP4 and MTR3 and the exosome cofactor gene MTR4, but not other exosome subunit gene mutants, also elicit MT phenotypes. RNA deep sequencing analysis (RNA-seq) shows broad changes in the levels of cell cycle- and MT-related transcripts in mutant strains. Collectively, the data presented in this study suggest an evolutionarily conserved role for Dis3 in linking RNA metabolism, MTs and cell cycle progression.
Collapse
Affiliation(s)
- Sarah B Smith
- Department of Molecular Biology and Microbiology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|