1
|
Firdaus MER, Dukhno E, Kapoor R, Gerlach P. Two Birds With One Stone: RNA Virus Strategies to Manipulate G3BP1 and Other Stress Granule Components. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70005. [PMID: 40170442 PMCID: PMC11962251 DOI: 10.1002/wrna.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Stress granules (SGs) are membrane-less organelles forming in the cytoplasm in response to various types of stress, including viral infection. SGs and SG-associated proteins can play either a proviral role, by facilitating viral replication, or an antiviral role, by limiting the translation capacity, sequestering viral RNA, or contributing to the innate immune response of the cell. Consequently, viruses frequently target stress granules while counteracting cellular translation shut-off and the antiviral response. One strategy is to sequester SG components, not only to impair their assembly but also to repurpose and incorporate them into viral replication sites. G3BP1 is a key SG protein, driving its nucleation through protein-protein and protein-RNA interactions. Many cellular proteins, including other SG components, interact with G3BP1 via their ΦxFG motifs. Notably, SARS-CoV N proteins and alphaviral nsP3 proteins contain similar motifs, allowing them to compete for G3BP1. Several SG proteins have been shown to interact with the flaviviral capsid protein, which is primarily responsible for anchoring the viral genome inside the virion. There are also numerous examples of structured elements within coronaviral and flaviviral RNAs recruiting or sponging SG proteins. Despite these insights, the structural and biochemical details of SG-virus interactions remain largely unexplored and are known only for a handful of cases. Exploring their molecular relevance for infection and discovering new examples of direct SG-virus contacts is highly important, as advances in this area will open new possibilities for the design of targeted therapies and potentially broad-spectrum antivirals.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| | - Eliana Dukhno
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| | | | - Piotr Gerlach
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| |
Collapse
|
2
|
Dar SA, Malla S, Martinek V, Payea MJ, Lee CTY, Martin J, Khandeshi AJ, Martindale JL, Belair C, Maragkakis M. Full-length direct RNA sequencing uncovers stress granule-dependent RNA decay upon cellular stress. eLife 2024; 13:RP96284. [PMID: 39699162 DOI: 10.7554/elife.96284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Matthew John Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Christopher Tai-Yi Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Aditya Jignesh Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| |
Collapse
|
3
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
4
|
Li L, Garg M, Wang Y, Wang W, Godbout R. DEAD Box 1 (DDX1) protein binds to and protects cytoplasmic stress response mRNAs in cells exposed to oxidative stress. J Biol Chem 2022; 298:102180. [PMID: 35752363 PMCID: PMC9293777 DOI: 10.1016/j.jbc.2022.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
The integrated stress response is a network of highly orchestrated pathways activated when cells are exposed to environmental stressors. While global repression of translation is a well-recognized hallmark of the integrated stress response, less is known about the regulation of mRNA stability during stress. DEAD box proteins are a family of RNA unwinding/remodeling enzymes involved in every aspect of RNA metabolism. We previously showed that DEAD box 1 (DDX1) protein accumulates at DNA double-strand breaks during genotoxic stress and promotes DNA double-strand break repair via homologous recombination. Here, we examine the role of DDX1 in response to environmental stress. We show that DDX1 is recruited to stress granules (SGs) in cells exposed to a variety of environmental stressors, including arsenite, hydrogen peroxide, and thapsigargin. We also show that DDX1 depletion delays resolution of arsenite-induced SGs. Using RNA immunoprecipitation sequencing, we identify RNA targets bound to endogenous DDX1, including RNAs transcribed from genes previously implicated in stress responses. We show the amount of target RNAs bound to DDX1 increases when cells are exposed to stress, and the overall levels of these RNAs are increased during stress in a DDX1-dependent manner. Even though DDX1’s RNA-binding property is critical for maintenance of its target mRNA levels, we found RNA binding is not required for localization of DDX1 to SGs. Furthermore, DDX1 knockdown does not appear to affect RNA localization to SGs. Taken together, our results reveal a novel role for DDX1 in maintaining cytoplasmic mRNA levels in cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Mansi Garg
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
5
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
6
|
Jaquet V, Wallerich S, Voegeli S, Túrós D, Viloria EC, Becskei A. Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Res 2022; 50:1092-1110. [PMID: 35018460 PMCID: PMC8789057 DOI: 10.1093/nar/gkab1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity.
Collapse
Affiliation(s)
- Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sylvia Voegeli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Demeter Túrós
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eduardo C Viloria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
7
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Mateju D, Chao JA. Stress granules: regulators or by-products? FEBS J 2021; 289:363-373. [PMID: 33725420 DOI: 10.1111/febs.15821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Cells have to deal with conditions that can cause damage to biomolecules and eventually cell death. To protect against these adverse conditions and promote recovery, cells undergo dramatic changes upon exposure to stress. This involves activation of signaling pathways, cell cycle arrest, translational reprogramming, and reorganization of the cytoplasm. Notably, many stress conditions cause a global inhibition of mRNA translation accompanied by the formation of cytoplasmic condensates called stress granules (SGs), which sequester mRNA together with RNA-binding proteins, translation initiation factors, and other components. SGs are highly conserved in eukaryotes, suggesting that they perform an important function during the stress response. Over the years, many different roles have been assigned to SGs, including translational control, mRNA storage, regulation of mRNA decay, antiviral innate immune response, and modulation of signaling pathways. Most of our understanding, however, has been deduced from correlative data based upon the composition of SGs and only recently have technological innovations allowed hypotheses for SG function to be directly tested. Here, we discuss these challenges and explore the evidence related to the function of SGs.
Collapse
Affiliation(s)
- Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
9
|
Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Mol Cell 2020; 80:470-484.e8. [PMID: 33053322 PMCID: PMC7657445 DOI: 10.1016/j.molcel.2020.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022]
Abstract
Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5′ ends of mRNAs. Following glucose withdrawal, 5′ binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5′ RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress. A quantitative proteomic approach reveals global stress-induced changes in RNA binding Translation shutdown is driven by rapid loss of mRNA binding by key initiation factors Heat shock induces general mRNA degradation facilitated by Xrn1
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Mishra R, Kunar R, Mandal L, Alone DP, Chandrasekharan S, Tiwari AK, Tapadia MG, Mukherjee A, Roy JK. A Forward Genetic Approach to Mapping a P-Element Second Site Mutation Identifies DCP2 as a Novel Tumor Suppressor in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:2601-2618. [PMID: 32591349 PMCID: PMC7407449 DOI: 10.1534/g3.120.401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022]
Abstract
The use of transposons to create mutations has been the cornerstone of Drosophila genetics in the past few decades. Second-site mutations caused by transpositions are often devoid of transposons and thereby affect subsequent analyses. In a P-element mutagenesis screen, a second site mutation was identified on chromosome 3, wherein the homozygous mutants exhibit classic hallmarks of tumor suppressor mutants, including brain tumor and lethality; hence the mutant line was initially named as lethal (3) tumorous brain [l(3)tb]. Classical genetic approaches relying on meiotic recombination and subsequent complementation with chromosomal deletions and gene mutations mapped the mutation to CG6169, the mRNA decapping protein 2 (DCP2), on the left arm of the third chromosome (3L). Thus the mutation was renamed as DCP2l(3)tb Fine mapping of the mutation further identified the presence of a Gypsy-LTR like sequence in the 5'UTR coding region of DCP2, along with the expansion of the adjacent upstream intergenic AT-rich sequence. The mutant phenotypes are rescued by the introduction of a functional copy of DCP2 in the mutant background, thereby establishing the causal role of the mutation and providing a genetic validation of the allelism. With the increasing repertoire of genes being associated with tumor biology, this is the first instance of mRNA decapping protein being implicated in Drosophila tumorigenesis. Our findings, therefore, imply a plausible role for the mRNA degradation pathway in tumorigenesis and identify DCP2 as a potential candidate for future explorations of cell cycle regulatory mechanisms.
Collapse
Affiliation(s)
- Rakesh Mishra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rohit Kunar
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140306, India
| | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, 752020 Khurda
| | - Shanti Chandrasekharan
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, Delhi, 110012 India
| | - Anand Krishna Tiwari
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar 382 007, India
| | - Madhu Gwaldas Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
11
|
Abdel-Hameed AAE, Prasad KVSK, Jiang Q, Reddy ASN. Salt-Induced Stability of SR1/CAMTA3 mRNA Is Mediated by Reactive Oxygen Species and Requires the 3' End of Its Open Reading Frame. PLANT & CELL PHYSIOLOGY 2020; 61:748-760. [PMID: 31917443 DOI: 10.1093/pcp/pcaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Soil salinity, a prevalent abiotic stress, causes enormous losses in global crop yields annually. Previous studies have shown that salt stress-induced reprogramming of gene expression contributes to the survival of plants under this stress. However, mechanisms regulating gene expression in response to salt stress at the posttranscriptional level are not well understood. In this study, we show that salt stress increases the level of Signal Responsive 1 (SR1) mRNA, a member of signal-responsive Ca2+/calmodulin-regulated transcription factors, by enhancing its stability. We present multiple lines of evidence indicating that reactive oxygen species generated by NADPH oxidase activity mediate salt-induced SR1 transcript stability. Using mutants impaired in either nonsense-mediated decay, XRN4 or mRNA decapping pathways, we show that neither the nonsense-mediated mRNA decay pathway, XRN4 nor the decapping of SR1 mRNA is required for its decay. We analyzed the salt-induced accumulation of eight truncated versions of the SR1 coding region (∼3 kb) in the sr1 mutant background. This analysis identified a 500-nt region at the 3' end of the SR1 coding region to be required for the salt-induced stability of SR1 mRNA. Potential mechanisms by which this region confers SR1 transcript stability in response to salt are discussed.
Collapse
Affiliation(s)
- Amira A E Abdel-Hameed
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Kasavajhala V S K Prasad
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Qiyan Jiang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
12
|
Kozlova NV, Pichon C, Rahmouni AR. mRNA with Mammalian Codon Bias Accumulates in Yeast Mutants with Constitutive Stress Granules. Int J Mol Sci 2020; 21:ijms21041234. [PMID: 32059599 PMCID: PMC7072924 DOI: 10.3390/ijms21041234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Stress granules and P bodies are cytoplasmic structures assembled in response to various stress factors and represent sites of temporary storage or decay of mRNAs. Depending on the source of stress, the formation of these structures may be driven by distinct mechanisms, but several stresses have been shown to stabilize mRNAs via inhibition of deadenylation. A recent study identified yeast gene deletion mutants with constitutive stress granules and elevated P bodies; however, the mechanisms which trigger its formation remain poorly understood. Here, we investigate the possibility of accumulating mRNA with mammalian codon bias, which we termed the model RNA, in these mutants. We found that the model RNA accumulates in dcp2 and xrn1 mutants and in four mutants with constitutive stress granules overlapping with P bodies. However, in eight other mutants with constitutive stress granules, the model RNA is downregulated, or its steady state levels vary. We further suggest that the accumulation of the model RNA is linked to its protection from the main mRNA surveillance path. However, there is no obvious targeting of the model RNA to stress granules or P bodies. Thus, accumulation of the model RNA and formation of constitutive stress granules occur independently and only some paths inducing formation of constitutive stress granules will stabilize mRNA as well.
Collapse
Affiliation(s)
- Natalia V. Kozlova
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Colléguim Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| |
Collapse
|
13
|
The Dynamics of Cytoplasmic mRNA Metabolism. Mol Cell 2020; 77:786-799.e10. [PMID: 31902669 DOI: 10.1016/j.molcel.2019.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed an experimental and analytical framework for examining these dynamics for mRNAs from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse intragenic and intergenic poly(A)-tail lengths. Once in the cytoplasm, they have a broad (1000-fold) range of deadenylation rate constants, which correspond to cytoplasmic lifetimes. Indeed, with few exceptions, degradation appears to occur primarily through deadenylation-linked mechanisms, with little contribution from either endonucleolytic cleavage or deadenylation-independent decapping. Most mRNA molecules degrade only after their tail lengths fall below 25 nt. Decay rate constants of short-tailed mRNAs vary broadly (1000-fold) and are larger for short-tailed mRNAs that have previously undergone more rapid deadenylation. This coupling helps clear rapidly deadenylated mRNAs, enabling the large range in deadenylation rate constants to impart a similarly large range in stabilities.
Collapse
|
14
|
Jacob D, Thüring K, Galliot A, Marchand V, Galvanin A, Ciftci A, Scharmann K, Stock M, Roignant J, Leidel SA, Motorin Y, Schaffrath R, Klassen R, Helm M. Absolute Quantification of Noncoding RNA by Microscale Thermophoresis. Angew Chem Int Ed Engl 2019; 58:9565-9569. [PMID: 30892798 PMCID: PMC6617968 DOI: 10.1002/anie.201814377] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/08/2023]
Abstract
Accurate quantification of the copy numbers of noncoding RNA has recently emerged as an urgent problem, with impact on fields such as RNA modification research, tissue differentiation, and others. Herein, we present a hybridization-based approach that uses microscale thermophoresis (MST) as a very fast and highly precise readout to quantify, for example, single tRNA species with a turnaround time of about one hour. We developed MST to quantify the effect of tRNA toxins and of heat stress and RNA modification on single tRNA species. A comparative analysis also revealed significant differences to RNA-Seq-based quantification approaches, strongly suggesting a bias due to tRNA modifications in the latter. Further applications include the quantification of rRNA as well as of polyA levels in cellular RNA.
Collapse
Affiliation(s)
- Dominik Jacob
- Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzStaudingerweg 555128MainzGermany
| | - Kathrin Thüring
- Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzStaudingerweg 555128MainzGermany
| | - Aurellia Galliot
- Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzStaudingerweg 555128MainzGermany
| | - Virginie Marchand
- Lorraine UniversityUMS2008 IBSLor CNRS-UL-INSERM, Biopôle UL9, Avenue de la Forêt de Haye54505Vandoeuvre-les-NancyFrance
| | - Adeline Galvanin
- Lorraine UniversityUMR7365 IMoPA CNRS-UL, Biopôle UL9, Avenue de la Forêt de Haye54505Vandoeuvre-les-NancyFrance
| | - Akif Ciftci
- Institute for Biochemistry and Molecular BiologyFaculty of MedicineUniversity of FreiburgStefan-Meier-Str. 1779104FreiburgGermany
| | - Karin Scharmann
- Max Planck Research Group for RNA BiologyMax Planck Institute for Molecular BiomedicineVon-Esmarch-Str. 5448149MünsterGermany
| | - Michael Stock
- Institute of Molecular BiologyAckermannweg 455128MainzGermany
| | | | - Sebastian A. Leidel
- Max Planck Research Group for RNA BiologyMax Planck Institute for Molecular BiomedicineVon-Esmarch-Str. 5448149MünsterGermany
| | - Yuri Motorin
- Lorraine UniversityUMR7365 IMoPA CNRS-UL, Biopôle UL9, Avenue de la Forêt de Haye54505Vandoeuvre-les-NancyFrance
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet MikrobiologieUniversität KasselHeinrich-Plett-Str. 4034132KasselGermany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet MikrobiologieUniversität KasselHeinrich-Plett-Str. 4034132KasselGermany
| | - Mark Helm
- Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzStaudingerweg 555128MainzGermany
| |
Collapse
|
15
|
Jacob D, Thüring K, Galliot A, Marchand V, Galvanin A, Ciftci A, Scharmann K, Stock M, Roignant J, Leidel SA, Motorin Y, Schaffrath R, Klassen R, Helm M. Absolute Quantifizierung nicht‐kodierender RNA‐Spezies mittels Mikroskala‐Thermophorese. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dominik Jacob
- Institut für Pharmazie und BiochemieJohannes Gutenberg Universität Mainz Staudingerweg 5 55128 Mainz Deutschland
| | - Kathrin Thüring
- Institut für Pharmazie und BiochemieJohannes Gutenberg Universität Mainz Staudingerweg 5 55128 Mainz Deutschland
| | - Aurellia Galliot
- Institut für Pharmazie und BiochemieJohannes Gutenberg Universität Mainz Staudingerweg 5 55128 Mainz Deutschland
| | - Virginie Marchand
- Lorraine UniversityUMS2008 IBSLor CNRS-UL-INSERM, Biopôle UL 9, Avenue de la Forêt de Haye 54505 Vandoeuvre-les-Nancy Frankreich
| | - Adeline Galvanin
- Lorraine UniversityUMR7365 IMoPA CNRS-UL, Biopôle UL 9, Avenue de la Forêt de Haye 54505 Vandoeuvre-les-Nancy Frankreich
| | - Akif Ciftci
- Institut für Biochemie und MolekularbiologieMedizinische FakultätUniversität Freiburg Stefan-Meier-Straße 17 79104 Freiburg Deutschland
| | - Karin Scharmann
- Max Planck Research Group for RNA BiologyMax-Planck-Institute für molekulare Biomedizin Von-Esmarch-Straße 54 48149 Münster Deutschland
| | - Michael Stock
- Institute of Molecular Biology Ackermannweg 4 55128 Mainz Deutschland
| | | | - Sebastian A. Leidel
- Max Planck Research Group for RNA BiologyMax-Planck-Institute für molekulare Biomedizin Von-Esmarch-Straße 54 48149 Münster Deutschland
| | - Yuri Motorin
- Lorraine UniversityUMR7365 IMoPA CNRS-UL, Biopôle UL 9, Avenue de la Forêt de Haye 54505 Vandoeuvre-les-Nancy Frankreich
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet MikrobiologieUniversität Kassel Heinrich-Plett-Straße 40 34132 Kassel Deutschland
| | - Roland Klassen
- Institut für Biologie, Fachgebiet MikrobiologieUniversität Kassel Heinrich-Plett-Straße 40 34132 Kassel Deutschland
| | - Mark Helm
- Institut für Pharmazie und BiochemieJohannes Gutenberg Universität Mainz Staudingerweg 5 55128 Mainz Deutschland
| |
Collapse
|
16
|
Guzikowski AR, Chen YS, Zid BM. Stress-induced mRNP granules: Form and function of processing bodies and stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1524. [PMID: 30793528 PMCID: PMC6500494 DOI: 10.1002/wrna.1524] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/18/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
In response to stress, cells must quickly reprogram gene expression to adapt and survive. This is achieved in part by altering levels of mRNAs and their translation into proteins. Recently, the formation of two stress-induced messenger ribonucleoprotein (mRNP) assemblies named stress granules and processing bodies has been postulated to directly impact gene expression during stress. These assemblies sequester and concentrate specific proteins and RNAs away from the larger cytoplasm during stress, thereby providing a layer of posttranscriptional gene regulation with the potential to directly impact mRNA levels, protein translation, and cell survival. The function of these granules has generally been ascribed either by the protein components concentrated into them or, more broadly, by global changes that occur during stress. Recent proteome- and transcriptome-wide studies have provided a more complete view of stress-induced mRNP granule composition in varied cell types and stress conditions. However, direct measurements of the phenotypic and functional consequences of stress granule and processing body formation are lacking. This leaves our understanding of their roles during stress incomplete. Continued study into the function of these granules will be an important part in elucidating how cells respond to and survive stressful environmental changes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anna R. Guzikowski
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Yang S. Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
17
|
Wilburn DB, Feldhoff RC. An annual cycle of gene regulation in the red-legged salamander mental gland: from hypertrophy to expression of rapidly evolving pheromones. BMC DEVELOPMENTAL BIOLOGY 2019; 19:10. [PMID: 31029098 PMCID: PMC6487043 DOI: 10.1186/s12861-019-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Background Cell differentiation is mediated by synchronized waves of coordinated expression for hundreds to thousands of genes, and must be regulated to produce complex tissues and phenotypes. For many animal species, sexual selection has driven the development of elaborate male ornaments, requiring sex-specific differentiation pathways. One such male ornament is the pheromone-producing mental gland of the red-legged salamander (Plethodon shermani). Mental gland development follows an annual cycle of extreme hypertrophy, production of pheromones for the ~ 2 month mating season, and then complete resorption before repeating the process in the following year. At the peak of the mating season, the transcriptional and translational machinery of the mental gland are almost exclusively redirected to the synthesis of rapidly evolving pheromones. Of these pheromones, Plethodontid Modulating Factor (PMF) has experienced an unusual history: following gene duplication, the protein coding sequence diversified from positive sexual selection while the untranslated regions have been conserved by purifying selection. The molecular underpinnings that bridge the processes of gland hypertrophy, pheromone synthesis, and conservation of the untranslated regions remain to be determined. Results Using Illumina sequencing, we prepared a de novo transcriptome of the mental gland at six stages of development. Differential expression analysis and immunohistochemistry revealed that the mental gland initially adopts a highly proliferative, almost tumor-like phenotype, followed by a rapid increase in pheromone mRNA and protein. One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), which selectively and cooperatively binds the highly conserved PMF 3′ UTR. CIRBP, along with other proteins associated with stress response, have seemingly been co-opted to aid in mental gland development by helping to regulate pheromone synthesis. Conclusions The P. shermani mental gland utilizes a complex system of transcriptional and post-transcriptional gene regulation to facilitate its hypertrophication and pheromone synthesis. The data support the evolutionary interplay of coding and noncoding segments in rapid gene evolution, and necessitate the study of co-evolution between pheromone gene products and their transcriptional/translational regulators. Additionally, the mental gland could be a powerful emerging model of regulated tissue proliferation and subsequent resorption within the dermis and share molecular links to skin cancer biology. Electronic supplementary material The online version of this article (10.1186/s12861-019-0190-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Richard C Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
18
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
19
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
20
|
Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol 2017; 24:1057-1063. [PMID: 29106412 PMCID: PMC5877826 DOI: 10.1038/nsmb.3499] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022]
Abstract
Poly(A) tails are important elements in mRNA translation and stability. However, recent genome-wide studies concluded that poly(A) tail length was generally not associated with translational efficiency in non-embryonic cells. To investigate if poly(A) tail size might be coupled to gene expression in an intact organism, we used an adapted TAIL-seq protocol to measure poly(A) tails in Caenorhabditis elegans. Surprisingly, we found that well-expressed transcripts contain relatively short, well-defined tails. This attribute appears dependent on translational efficiency, as transcripts enriched for optimal codons and ribosome association had the shortest tail sizes, while non-coding RNAs retained long tails. Across eukaryotes, short tails were a feature of abundant and well-translated mRNAs. Although this seems to contradict the dogma that deadenylation induces translational inhibition and mRNA decay, it instead suggests that well-expressed mRNAs accumulate with pruned tails that accommodate a minimal number of poly(A) binding proteins, which may be ideal for protective and translational functions.
Collapse
|
21
|
Horvathova I, Voigt F, Kotrys AV, Zhan Y, Artus-Revel CG, Eglinger J, Stadler MB, Giorgetti L, Chao JA. The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells. Mol Cell 2017; 68:615-625.e9. [PMID: 29056324 DOI: 10.1016/j.molcel.2017.09.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023]
Abstract
RNA degradation plays a fundamental role in regulating gene expression. In order to characterize the spatiotemporal dynamics of RNA turnover in single cells, we developed a fluorescent biosensor based on dual-color, single-molecule RNA imaging that allows intact transcripts to be distinguished from stabilized degradation intermediates. Using this method, we measured mRNA decay in single cells and found that individual degradation events occur independently within the cytosol and are not enriched within processing bodies. We show that slicing of an mRNA targeted for endonucleolytic cleavage by the RNA-induced silencing complex can be observed in real time in living cells. This methodology provides a framework for investigating the entire life history of individual mRNAs from birth to death in single cells.
Collapse
Affiliation(s)
- Ivana Horvathova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Franka Voigt
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Anna V Kotrys
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | | | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
22
|
An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress. Sci Rep 2017; 7:44395. [PMID: 28290514 PMCID: PMC5349606 DOI: 10.1038/srep44395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/07/2017] [Indexed: 01/19/2023] Open
Abstract
Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation.
Collapse
|
23
|
Kawa D, Testerink C. Regulation of mRNA decay in plant responses to salt and osmotic stress. Cell Mol Life Sci 2016; 74:1165-1176. [PMID: 27677492 PMCID: PMC5346435 DOI: 10.1007/s00018-016-2376-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
Plant acclimation to environmental stresses requires fast signaling to initiate changes in developmental and metabolic responses. Regulation of gene expression by transcription factors and protein kinases acting upstream are important elements of responses to salt and drought. Gene expression can be also controlled at the post-transcriptional level. Recent analyses on mutants in mRNA metabolism factors suggest their contribution to stress signaling. Here we highlight the components of mRNA decay pathways that contribute to responses to osmotic and salt stress. We hypothesize that phosphorylation state of proteins involved in mRNA decapping affect their substrate specificity.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Walters RW, Parker R. Coupling of Ribostasis and Proteostasis: Hsp70 Proteins in mRNA Metabolism. Trends Biochem Sci 2016; 40:552-559. [PMID: 26410596 DOI: 10.1016/j.tibs.2015.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023]
Abstract
A key aspect of the control of gene expression is the differential rates of mRNA translation and degradation, including alterations due to extracellular inputs. Surprisingly, multiple examples now argue that Hsp70 protein chaperones and their associated Hsp40 partners modulate both mRNA degradation and translation. Hsp70 proteins affect mRNA metabolism by various mechanisms including regulating nascent polypeptide chain folding, activating signal transduction pathways, promoting clearance of stress granules, and controlling mRNA degradation in an mRNA-specific manner. Taken together, these observations highlight the general principle that mRNA metabolism is coupled to the proteostatic state of the cell, often as assessed by the presence of unfolded or misfolded proteins.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
25
|
Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules. PLoS Genet 2015; 11:e1005564. [PMID: 26447709 PMCID: PMC4598065 DOI: 10.1371/journal.pgen.1005564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023] Open
Abstract
Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs. Eukaryotic cells affect precise changes in shape and growth in response to environmental and nutritional stress, enabling cell survival and wild-type function. The single-celled budding yeast provides a striking example, undergoing a set of changes under conditions of nitrogen or glucose limitation resulting in the formation of extended cellular chains or filaments. Related filamentous growth transitions are required for virulence in pathogenic fungi and have been studied extensively; however, the full scope of signaling underlying the filamentous growth transition remains to be determined. Here, we used a combination of genetics and proteomics to identify proteins that undergo phosphorylation dependent upon kinases required for filamentous growth. Within this protein set, we identified novel sites of phosphorylation in the yeast proteome and extensive phosphorylation of mRNA-protein complexes regulating mRNA decay and translation. The data indicate an interrelationship between filamentous growth and these ubiquitously conserved sites of RNA regulation: the RNA-protein complexes are required for the filamentous growth transition, and a well studied filamentous growth signaling kinase is required for wild-type numbers of RNA-protein complexes. This interdependence is previously unappreciated, highlighting an additional level of translational control underlying this complex growth transition.
Collapse
|
26
|
He F, Jacobson A. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. RNA (NEW YORK, N.Y.) 2015; 21:1633-47. [PMID: 26184073 PMCID: PMC4536323 DOI: 10.1261/rna.052449.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/08/2015] [Indexed: 05/23/2023]
Abstract
Decapping commits an mRNA to complete degradation and promotes general 5' to 3' decay, nonsense-mediated decay (NMD), and transcript-specific degradation. In Saccharomyces cerevisiae, a single decapping enzyme composed of a regulatory subunit (Dcp1) and a catalytic subunit (Dcp2) targets thousands of distinct substrate mRNAs. However, the mechanisms controlling this enzyme's in vivo activity and substrate specificity remain elusive. Here, using a genetic approach, we show that the large C-terminal domain of Dcp2 includes a set of conserved negative and positive regulatory elements. A single negative element inhibits enzymatic activity and controls the downstream functions of several positive elements. The positive elements recruit the specific decapping activators Edc3, Pat1, and Upf1 to form distinct decapping complexes and control the enzyme's substrate specificity and final activation. Our results reveal unforeseen regulatory mechanisms that control decapping enzyme activity and function in vivo, and define roles for several decapping activators in the regulation of mRNA decapping.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
27
|
Abstract
Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states.
Collapse
Affiliation(s)
- J Ross Buchan
- a Department of Molecular and Cellular Biology ; University of Arizona ; Tucson , AZ USA
| |
Collapse
|
28
|
Yamagishi R, Hosoda N, Hoshino SI. Arsenite inhibits mRNA deadenylation through proteolytic degradation of Tob and Pan3. Biochem Biophys Res Commun 2014; 455:323-31. [PMID: 25446091 DOI: 10.1016/j.bbrc.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 01/24/2023]
Abstract
The poly(A) tail of mRNAs plays pivotal roles in the posttranscriptional control of gene expression at both translation and mRNA stability. Recent findings demonstrate that the poly(A) tail is globally stabilized by some stresses. However, the mechanism underlying this phenomenon has not been elucidated. Here, we show that arsenite-induced oxidative stress inhibits deadenylation of mRNA primarily through downregulation of Tob and Pan3, both of which mediate the recruitment of deadenylases to mRNA. Arsenite selectively induces the proteolytic degradation of Tob and Pan3, and siRNA-mediated knockdown of Tob and Pan3 recapitulates stabilization of the mRNA poly(A) tail observed during arsenite stress. Although arsenite also inhibits translation by activating the eIF2α kinase HRI, arsenite-induced mRNA stabilization can be observed under HRI-depleted conditions. These results highlight the essential role of Tob and Pan3 in the stress-induced global stabilization of mRNA.
Collapse
Affiliation(s)
- Ryota Yamagishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
29
|
Abstract
Poly(A) tails are important regulators of mRNA stability and translational efficiency. Cytoplasmic removal of poly(A) tails by 3'→5' exonucleases (deadenylation) is the rate-limiting step in mRNA degradation. Two exonuclease complexes contribute the majority of the deadenylation activity in eukaryotes: Ccr4-Not and Pan2-Pan3. These can be specifically recruited to mRNA to regulate mRNA stability or translational efficiency, thereby fine-tuning gene expression. In the present review, we discuss the activities and roles of the Pan2-Pan3 deadenylation complex.
Collapse
|
30
|
Abstract
RNA granules have been observed in different organisms, cell types and under different conditions, and their formation is crucial for the mRNA life cycle. However, very little is known about the molecular mechanisms governing their assembly and disassembly. The aggregation-prone LSCRs (low-sequence-complexity regions), and in particular, the polyQ/N-rich regions, have been extensively studied under pathological conditions due to their role in neurodegenerative diseases. In the present review, we discuss recent in vitro, in vivo and computational data that, globally, suggest a role for polyQ/N regions in RNA granule assembly.
Collapse
|
31
|
Huch S, Nissan T. Interrelations between translation and general mRNA degradation in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:747-63. [PMID: 24944158 PMCID: PMC4285117 DOI: 10.1002/wrna.1244] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 12/31/2022]
Abstract
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. How to cite this article: WIREs RNA 2014, 5:747–763. doi: 10.1002/wrna.1244
Collapse
Affiliation(s)
- Susanne Huch
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
32
|
|
33
|
Whi3, an S. cerevisiae RNA-binding protein, is a component of stress granules that regulates levels of its target mRNAs. PLoS One 2013; 8:e84060. [PMID: 24386330 PMCID: PMC3873981 DOI: 10.1371/journal.pone.0084060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023] Open
Abstract
RNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing. We show that Whi3 localizes to stress granules in response to glucose deprivation or heat shock. The kinetics and pattern of Whi3 localization in response to a range of temperatures were subtly but distinctly different from those of known components of RNA processing granules. Deletion of Whi3 resulted in an increase in the relative abundance of Whi3 target RNAs, either in the presence or absence of heat shock. Increased levels of the CLN3 mRNA in whi3Δ cells may explain their decreased cell size. Another mRNA target of Whi3 encodes the zinc-responsive transcription factor Zap1, suggesting a role for Whi3 in response to zinc stress. Indeed, we found that whi3Δ cells have enhanced sensitivity to zinc toxicity. Together our results suggest an expanded model for Whi3 function: in addition to its role as a regulator of the cell cycle, Whi3 may have a role in stress-dependent RNA processing and responses to a variety of stress conditions.
Collapse
|
34
|
Glazier VE, Panepinto JC. The ER stress response and host temperature adaptation in the human fungal pathogen Cryptococcus neoformans. Virulence 2013; 5:351-6. [PMID: 24253500 PMCID: PMC3956513 DOI: 10.4161/viru.27187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In all eukaryotic cells, the ER stress response is pivotal to survival and adaptation under stress conditions. During temperature adaptation in the human fungal pathogen Cryptococcus neoformans, ER stress is engaged transiently. Studies of this response have demonstrated that both the engagement (turning on the response), as well as the resolution (turning off the response) are required for temperature adaptation and, therefore, pathogenesis. In this review, we synthesize our current understanding of ER stress response engagement and resolution in C. neoformans during host temperature adaptation with a focus on the posttranscriptional events that regulate it. Identification of fungal-specific and Cryptococcus-specific elements of the evolutionarily conserved ER stress response pathway could lead to identification of anti-fungal targets in this fundamental stress response.
Collapse
Affiliation(s)
- Virginia E Glazier
- Department of Microbiology and Immunology; Witebsky Center for Microbial Pathogenesis and Immunology; University at Buffalo; The State University of New York; Buffalo, NY USA
| | - John C Panepinto
- Department of Microbiology and Immunology; Witebsky Center for Microbial Pathogenesis and Immunology; University at Buffalo; The State University of New York; Buffalo, NY USA
| |
Collapse
|
35
|
Aglietti RA, Floor SN, McClendon CL, Jacobson MP, Gross JD. Active site conformational dynamics are coupled to catalysis in the mRNA decapping enzyme Dcp2. Structure 2013; 21:1571-80. [PMID: 23911090 DOI: 10.1016/j.str.2013.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
Abstract
Removal of the 5' cap structure by Dcp2 is a major step in several 5'-3' mRNA decay pathways. The activity of Dcp2 is enhanced by Dcp1 and bound coactivators, yet the details of how these interactions are linked to chemistry are poorly understood. Here, we report three crystal structures of the catalytic Nudix hydrolase domain of Dcp2 that demonstrate binding of a catalytically essential metal ion, and enzyme kinetics are used to identify several key active site residues involved in acid/base chemistry of decapping. Using nuclear magnetic resonance and molecular dynamics, we find that a conserved metal binding loop on the catalytic domain undergoes conformational changes during the catalytic cycle. These findings describe key events during the chemical step of decapping, suggest local active site conformational changes are important for activity, and provide a framework to explain stimulation of catalysis by the regulatory domain of Dcp2 and associated coactivators.
Collapse
Affiliation(s)
- Robin A Aglietti
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
36
|
Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 2013; 425:3750-75. [PMID: 23467123 DOI: 10.1016/j.jmb.2013.02.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/15/2023]
Abstract
mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.
Collapse
|
37
|
The discovery and analysis of P Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:23-43. [PMID: 23224963 DOI: 10.1007/978-1-4614-5107-5_3] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Relationship of GW/P-bodies with stress granules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:197-211. [PMID: 23224972 DOI: 10.1007/978-1-4614-5107-5_12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Whereas P-bodies are intimately linked to the cytoplasmic RNA decay machinery, stress granules harbor stalled translation initiation complexes that accumulate upon stress-induced translation arrest. In this Chapter, we reflect on the relationship between P-bodies and stress granules. In mammalian cells, the two structures can be clearly distinguished from each other using specific protein or RNA markers, but they also share many proteins and mRNAs. While the formation of P-bodies and stress granules is coordinately triggered by stress, their assembly appears to be regulated independently by different pathways. Under certain types of stress, P-bodies frequently dock with stress granules, and overexpressing certain proteins that localize to both structures can cause P-body/stress granule fusion. Currently available data suggest that these self-assembling compartments are controlled by flux of mRNAs within the cytoplasm, and that their assembly mirrors the translation and degradation rates of their component mRNAs.
Collapse
|
39
|
Abstract
Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and rRNA-metabolism factors. These proteins show dynamic subcellular localization during stress, including assembly into stress granules and processing bodies (P bodies). Cross-linking and immunoprecipitation (CLIP) analyses of the P-body components Pat1, Lsm1, Dhh1 and Sbp1 identified sites of interaction on specific mRNAs, revealing positional binding preferences and co-assembly preferences. When taken together, this work defines the major yeast mRNP proteins, reveals widespread changes in their subcellular location during stress and begins to define assembly rules for P-body mRNPs.
Collapse
|
40
|
Rajyaguru P, Parker R. RGG motif proteins: modulators of mRNA functional states. Cell Cycle 2012; 11:2594-9. [PMID: 22767211 PMCID: PMC3873214 DOI: 10.4161/cc.20716] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A recent report demonstrates that a subset of RGG-motif proteins can bind translation initiation factor eIF4G and repress mRNA translation. This adds to the growing number of roles RGG-motif proteins play in modulating transcription, splicing, mRNA export and now translation. Herein, we review the nature and breadth of functions of RGG-motif proteins. In addition, the interaction of some RGG-motif proteins and other translation repressors with eIF4G highlights the role of eIF4G as a general modulator of mRNA function and not solely as a translation initiation factor.
Collapse
Affiliation(s)
- Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, Tucson, AZ, USA
| | | |
Collapse
|
41
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
42
|
Arribere JA, Doudna JA, Gilbert WV. Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 2012; 44:745-58. [PMID: 22152478 DOI: 10.1016/j.molcel.2011.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/21/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022]
Abstract
Cell survival in changing environments requires appropriate regulation of gene expression, including posttranscriptional regulatory mechanisms. From reporter gene studies in glucose-starved yeast, it was proposed that translationally silenced eukaryotic mRNAs accumulate in P bodies and can return to active translation. We present evidence contradicting the notion that reversible storage of nontranslating mRNAs is a widespread and general phenomenon. First, genome-wide measurements of mRNA abundance, translation, and ribosome occupancy after glucose withdrawal show that most mRNAs are depleted from the cell coincident with their depletion from polysomes. Second, only a limited subpopulation of translationally repressed transcripts, comprising fewer than 400 genes, can be reactivated for translation upon glucose readdition in the absence of new transcription. This highly selective posttranscriptional regulation could be a mechanism for cells to minimize the energetic costs of reversing gene-regulatory decisions in rapidly changing environments by transiently preserving a pool of transcripts whose translation is rate-limiting for growth.
Collapse
Affiliation(s)
- Joshua A Arribere
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
43
|
Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc Natl Acad Sci U S A 2012; 109:2872-7. [PMID: 22323607 DOI: 10.1073/pnas.1113620109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics in bilobed enzymes can be used to regulate their activity. One such enzyme, the eukaryotic decapping enzyme Dcp2, controls the half-life of mRNA by cleaving the 5' cap structure, which exposes a monophosphate that is efficiently degraded by exonucleases. Decapping by Dcp2 is thought to be controlled by an open-to-closed transition involving formation of a composite active site with two domains sandwiching substrate, but many details of this process are not understood. Here, using NMR spectroscopy and enzyme kinetics, we show that Trp43 of Schizosaccharomyces pombe Dcp2 is a conserved gatekeeper of this open-to-closed transition. We find that Dcp2 samples multiple conformations in solution on the millisecond-microsecond timescale. Mutation of the gatekeeper tryptophan abolishes the dynamic behavior of Dcp2 and attenuates coactivation by a yeast enhancer of decapping (Edc1). Our results determine the dynamics of the open-to-closed transition in Dcp2, suggest a structural pathway for coactivation, predict that Dcp1 directly contacts the catalytic domain of Dcp2, and show that coactivation of decapping by Dcp2 is linked to formation of the composite active site.
Collapse
|
44
|
Sánchez-Arreguín A, Pérez-Martínez AS, Herrera-Estrella A. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. EUKARYOTIC CELL 2012; 11:30-41. [PMID: 22058143 PMCID: PMC3255938 DOI: 10.1128/ec.05263-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/24/2011] [Indexed: 11/20/2022]
Abstract
The genus Trichoderma is one of the most widely used biological control agents of plant-pathogenic fungi. The main mechanism for survival and dispersal of Trichoderma is through the production of asexual spores (conidia). The transition from filamentous growth to conidiation can be triggered by light, nutrient deprivation, and mechanical damage of the mycelium. We conducted proteomic profiling analyses of Trichoderma atroviride after a blue light pulse. The use of two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) analysis allowed us to identify 72 proteins whose expression was affected by blue light. Functional category analysis showed that the various proteins are involved in metabolism, cell rescue, and protein synthesis. We determined the relationship between mRNA levels of selected genes 30 min after a light pulse and protein expression levels at different times after the pulse and found this correlation to be very weak. The correlation was highest when protein and mRNA levels were compared for the same time point. The transcription factors BLR-1 and BLR-2 are vital to the photoconidiation process; here we demonstrate that both BLR proteins are active in darkness and affect several elements at both the transcript and protein levels. Unexpectedly, in darkness, downregulation of proteins prevailed in the Δblr-1 mutant, while upregulation of proteins predominated in the Δblr-2 mutant. Our data demonstrate that the BLR proteins play roles individually and as a complex.
Collapse
Affiliation(s)
- Alejandro Sánchez-Arreguín
- Laboratorio Nacional de Gnómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico National, Irapuato, Guanajuato, México
| | | | | |
Collapse
|
45
|
Garre E, Romero-Santacreu L, De Clercq N, Blasco-Angulo N, Sunnerhagen P, Alepuz P. Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock. Mol Biol Cell 2011; 23:137-50. [PMID: 22072789 PMCID: PMC3248893 DOI: 10.1091/mbc.e11-05-0419] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress. In response to osmotic stress, global translation is inhibited, but the mRNAs encoding stress-protective proteins are selectively translated to allow cell survival. To date, the mechanisms and factors involved in the specific translation of osmostress-responsive genes in Saccharomyces cerevisiae are unknown. We find that the mRNA cap-binding protein Cbc1 is important for yeast survival under osmotic stress. Our results provide new evidence supporting a role of Cbc1 in translation initiation. Cbc1 associates with polysomes, while the deletion of the CBC1 gene causes hypersensitivity to the translation inhibitor cycloheximide and yields synthetic “sickness” in cells with limiting amounts of translation initiator factor eIF4E. In cbc1Δ mutants, translation drops sharply under osmotic stress, the subsequent reinitiation of translation is retarded, and “processing bodies” containing untranslating mRNAs remain for long periods. Furthermore, osmostress-responsive mRNAs are transcriptionally induced after osmotic stress in cbc1Δ cells, but their rapid association with polysomes is delayed. However, in cells containing a thermosensitive eIF4E allele, their inability to grow at 37ºC is suppressed by hyperosmosis, and Cbc1 relocalizes from nucleus to cytoplasm. These data support a model in which eIF4E-translation could be stress-sensitive, while Cbc1-mediated translation is necessary for the rapid translation of osmostress-protective proteins under osmotic stress.
Collapse
Affiliation(s)
- Elena Garre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Borja MS, Piotukh K, Freund C, Gross JD. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA (NEW YORK, N.Y.) 2011; 17:278-90. [PMID: 21148770 PMCID: PMC3022277 DOI: 10.1261/rna.2382011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/08/2010] [Indexed: 05/20/2023]
Abstract
Cap hydrolysis is a critical step in several eukaryotic mRNA decay pathways and is carried out by the evolutionarily conserved decapping complex containing Dcp2 at the catalytic core. In yeast, Dcp1 is an essential activator of decapping and coactivators such as Edc1 and Edc2 are thought to enhance activity, though their mechanism remains elusive. Using kinetic analysis we show that a crucial function of Dcp1 is to couple the binding of coactivators of decapping to activation of Dcp2. Edc1 and Edc2 bind Dcp1 via its EVH1 proline recognition site and stimulate decapping by 1000-fold, affecting both the K(M) for mRNA and rate of the catalytic step. The C-terminus of Edc1 is necessary and sufficient to enhance the catalytic step, while the remainder of the protein likely increases mRNA binding to the decapping complex. Lesions in the Dcp1 EVH1 domain or the Edc1 proline-rich sequence are sufficient to block stimulation. These results identify a new role of Dcp1, which is to link the binding of coactivators to substrate recognition and activation of Dcp2.
Collapse
Affiliation(s)
- Mark S Borja
- Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
47
|
Khong A, Jan E. Modulation of stress granules and P bodies during dicistrovirus infection. J Virol 2011; 85:1439-51. [PMID: 21106737 PMCID: PMC3028890 DOI: 10.1128/jvi.02220-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) are dynamic cytosolic aggregates composed of ribonucleoproteins that are induced during cellular stress when protein synthesis is inhibited. The function of SGs is poorly understood, but they are thought to be sites for reorganizing mRNA and protein. Several viruses can modulate SG formation, suggesting that SGs have an impact on virus infection. In this study, we have investigated the relationship of SG formation in Drosophila S2 cells infected by cricket paralysis virus (CrPV), a member of the Dicistroviridae family. Despite a rapid shutoff of host translation during CrPV infection, several hallmark SG markers such as the Drosophila TIA-1 and G3BP (RasGAP-SH3-binding protein) homologs, Rox8 and Rin, respectively, do not aggregate in CrPV-infected cells, even when challenged with potent SG inducers such as heat shock, oxidative stress, and pateamine A treatment. Furthermore, we demonstrate that a subset of P body markers become moderately dispersed at late times of infection. In contrast, as shown by fluorescent in situ hybridization, poly(A)(+) RNA granules still form at late times of infection. These poly(A)(+) RNA granules do not contain viral RNA nor do they colocalize with P body markers. Finally, our results demonstrate that the CrPV viral 3C protease is sequestered to SGs under cellular stress but not during virus infection. In summary, we propose that dicistrovirus infection leads to the selective inhibition of distinct SGs so that viral proteins are available for viral processing.
Collapse
Affiliation(s)
- Anthony Khong
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| |
Collapse
|
48
|
Luo G, Costanzo M, Boone C, Dickson RC. Nutrients and the Pkh1/2 and Pkc1 protein kinases control mRNA decay and P-body assembly in yeast. J Biol Chem 2010; 286:8759-70. [PMID: 21163942 DOI: 10.1074/jbc.m110.196030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulated mRNA decay is essential for eukaryotic survival but the mechanisms for regulating global decay and coordinating it with growth, nutrient, and environmental cues are not known. Here we show that a signal transduction pathway containing the Pkh1/Pkh2 protein kinases and one of their effector kinases, Pkc1, is required for and regulates global mRNA decay at the deadenylation step in Saccharomyces cerevisiae. Additionally, many stresses disrupt protein synthesis and release mRNAs from polysomes for incorporation into P-bodies for degradation or storage. We find that the Pkh1/2-Pkc1 pathway is also required for stress-induced P-body assembly. Control of mRNA decay and P-body assembly by the Pkh-Pkc1 pathway only occurs in nutrient-poor medium, suggesting a novel role for these processes in evolution. Our identification of a signaling pathway for regulating global mRNA decay and P-body assembly provides a means to coordinate mRNA decay with other cellular processes essential for growth and long-term survival. Mammals may use similar regulatory mechanisms because components of the decay apparatus and signaling pathways are conserved.
Collapse
Affiliation(s)
- Guangzuo Luo
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
49
|
Buchan JR, Yoon JH, Parker R. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 2010; 124:228-39. [PMID: 21172806 DOI: 10.1242/jcs.078444] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells respond to cellular stresses by the inhibition of translation and the accumulation of mRNAs in cytoplasmic RNA-protein (ribonucleoprotein) granules termed stress granules and P-bodies. An unresolved issue is how different stresses affect formation of messenger RNP (mRNP) granules. In the present study, we examine how sodium azide (NaN(3)), which inhibits mitochondrial respiration, affects formation of mRNP granules as compared with glucose deprivation in budding yeast. We observed that NaN(3) treatment inhibits translation and triggers formation of P-bodies and stress granules. The composition of stress granules induced by NaN(3) differs from that of glucose-deprived cells by containing eukaryotic initiation factor (eIF)3, eIF4A/B, eIF5B and eIF1A proteins, and by lacking the heterogeneous nuclear RNP (hnRNP) protein Hrp1. Moreover, in contrast with glucose-deprived stress granules, NaN(3)-triggered stress granules show different assembly rules, form faster and independently from P-bodies and dock or merge with P-bodies over time. Strikingly, addition of NaN(3) and glucose deprivation in combination, regardless of the order, always results in stress granules of a glucose deprivation nature, suggesting that both granules share an mRNP remodeling pathway. These results indicate that stress granule assembly, kinetics and composition in yeast can vary in a stress-specific manner, which we suggest reflects different rate-limiting steps in a common mRNP remodeling pathway.
Collapse
Affiliation(s)
- J Ross Buchan
- Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
50
|
Jiao X, Xiang S, Oh C, Martin CE, Tong L, Kiledjian M. Identification of a quality-control mechanism for mRNA 5'-end capping. Nature 2010; 467:608-11. [PMID: 20802481 PMCID: PMC2948066 DOI: 10.1038/nature09338] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/06/2010] [Indexed: 11/11/2022]
Abstract
The 7-methylguanosine cap structure at the 5′-end of eukaryotic mRNAs is a critical determinant of their stability and translational efficiency1–3. It is generally believed that 5’-end capping is a constitutive process that occurs during mRNA maturation and lacks the need for a quality control mechanism to ensure its fidelity. We recently reported that the yeast Rai1 protein has pyrophosphohydrolase activity towards mRNAs lacking a 5’-end cap4. Here we show that, in vitro as well as in yeast cells, Rai1 possess a novel decapping endonuclease activity that can also remove the entire cap structure dinucleotide from an mRNA. Interestingly this activity is targeted preferentially towards mRNAs with unmethylated caps in contrast to the canonical decapping enzyme, Dcp2, that targets mRNAs with a methylated cap. Capped but unmethylated mRNAs generated in yeast cells with a defect in the methyltransferase gene are more stable in a rai1 gene disrupted background. Moreover, rai1Δ yeast cells with wild-type capping enzymes show significant accumulation of mRNAs with 5’-end capping defects under nutritional stress conditions of glucose or amino acid starvation. These findings provide evidence that 5’-end capping is not a constitutive process that necessarily always proceeds to completion and demonstrates that Rai1 plays an essential role in clearing mRNAs with aberrant 5’-end caps. We propose Rai1 is involved in a hitherto-uncharacterized quality control process that ensures mRNA 5’-end integrity by an aberrant-cap mediated mRNA decay mechanism.
Collapse
Affiliation(s)
- Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|