1
|
Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12:3027-3044. [PMID: 38712531 PMCID: PMC11175841 DOI: 10.1039/d4bm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Mattiske D, Bernard P, Gradie PE, Behringer RR, Overbeek PA, O’Neill RJ, Phillips T, Tarulli G, Pask AJ. A long non-coding RNA Leat1 mediates the hormone responsiveness of EfnB2 during male urogenital development. RESEARCH SQUARE 2023:rs.3.rs-3098271. [PMID: 37461443 PMCID: PMC10350214 DOI: 10.21203/rs.3.rs-3098271/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The novel long non-coding RNA (lncRNA) Leat1 is extraordinarily conserved in both its location (syntenic with EfnB2, an essential gene in anogenital patterning) and sequence. Here we show that Leat1 is upregulated following the testosterone surge from the developing testis and directly interacts with EfnB2, positively regulating its expression. Leat1 expression is suppressed by estrogen, which in turn suppresses the expression of EfnB2. Moreover, the loss of Leat1 leads to reduced EfnB2, resulting in a severe hypospadias phenotype. The human LEAT1 gene is also co-expressed with EFNB2 in the developing human penis suggesting a conserved function for this gene in urethral closure. Together our data identify Leat1 as a novel molecular regulator of urethral closure and implicate it as a target of endocrine disruption in the etiology of hypospadias.
Collapse
Affiliation(s)
- Deidre Mattiske
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Pascal Bernard
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Paul E. Gradie
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Richard R. Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, 77030. TX, USA
- Baylor College of Medicine. Houston, 77030. TX, USA
| | | | - Rachel J O’Neill
- Department of Molecular and Cell Biology and Institute for System Genomics. The University of Connecticut, Storrs, 06259 CT, USA
| | - Tiffany Phillips
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Gerard Tarulli
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Andrew J. Pask
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| |
Collapse
|
3
|
Yang W, Cao J, Cheng H, Chen L, Yu M, Chen Y, Cui X. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioact Mater 2023; 23:438-470. [PMCID: PMC9712057 DOI: 10.1016/j.bioactmat.2022.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
The approved worldwide use of two messenger RNA (mRNA) vaccines (BNT162b2 and mRNA-1273) in late 2020 has proven the remarkable success of mRNA therapeutics together with lipid nanoformulation technology in protecting people against coronaviruses during COVID-19 pandemic. This unprecedented and exciting dual strategy with nanoformulations and mRNA therapeutics in play is believed to be a promising paradigm in targeted cancer immunotherapy in future. Recent advances in nanoformulation technologies play a prominent role in adapting mRNA platform in cancer treatment. In this review, we introduce the biologic principles and advancements of mRNA technology, and chemistry fundamentals of intriguing mRNA delivery nanoformulations. We discuss the latest promising nano-mRNA therapeutics for enhanced cancer immunotherapy by modulation of targeted specific subtypes of immune cells, such as dendritic cells (DCs) at peripheral lymphoid organs for initiating mRNA cancer vaccine-mediated antigen specific immunotherapy, and DCs, natural killer (NK) cells, cytotoxic T cells, or multiple immunosuppressive immune cells at tumor microenvironment (TME) for reversing immune evasion. We highlight the clinical progress of advanced nano-mRNA therapeutics in targeted cancer therapy and provide our perspectives on future directions of this transformative integrated technology toward clinical implementation.
Collapse
Affiliation(s)
- Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Hui Cheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China,Corresponding author
| |
Collapse
|
4
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
5
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
6
|
Li CY, Liang Z, Hu Y, Zhang H, Setiasabda KD, Li J, Ma S, Xia X, Kuang Y. Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:300-310. [PMID: 36320322 PMCID: PMC9614650 DOI: 10.1016/j.omtn.2022.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Synthetic mRNAs are rising rapidly as alternative therapeutic agents for delivery of proteins. However, the practical use of synthetic mRNAs has been restricted by their low cellular stability as well as poor protein production efficiency. The key roles of poly(A) tail on mRNA biology inspire us to explore the optimization of tail sequence to overcome the aforementioned limitations. Here, the systematic substitution of non-A nucleotides in the tails revealed that cytidine-containing tails can substantially enhance the protein production rate and duration of synthetic mRNAs both in vitro and in vivo. Such C-containing tails shield synthetic mRNAs from deadenylase CCR4-NOT transcription complex, as the catalytic CNOT proteins, especially CNOT6L and CNOT7, have lower efficiency in trimming of cytidine. Consistently, these enhancement effects of C-containing tails were observed on all synthetic mRNAs tested and were independent of transfection reagents and cell types. As the C-containing tails can be used along with other mRNA enhancement technologies to synergically boost protein production, we believe that these tails can be broadly used on synthetic mRNAs to directly promote their clinical applications.
Collapse
Affiliation(s)
- Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Kharis Daniel Setiasabda
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiawei Li
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China,HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China,Corresponding author Yi Kuang, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Qureischi M, Mohr J, Arellano-Viera E, Knudsen SE, Vohidov F, Garitano-Trojaola A. mRNA-based therapies: Preclinical and clinical applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:1-54. [PMID: 36064262 DOI: 10.1016/bs.ircmb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At the fundamental level, messenger RNA (mRNA)-based therapeutics involves the delivery of in vitro-transcribed (IVT) mRNA into the cytoplasm of a target cell, where it is translated into the desired protein. IVT mRNA presents various advantages compared to DNA and recombinant protein-based approaches that make it ideal for a broad range of therapeutic applications. IVT mRNA, which is translated in the cytoplasm after transfection into cells, can encode virtually any target protein. Notably, it does not enter the nucleus, which avoids its integration into the genome and the risk of insertional mutagenesis. The large-scale production of IVT mRNA is less complex than production of recombinant proteins, and Good Manufacturing Practice-compliant mRNA production is easily scalable, ideally poising mRNA for not only off-the-shelf, but more personalized treatment approaches. IVT mRNA's safety profile, pharmacokinetics, and pharmacodynamics, including its inherent immunostimulatory capacity, can be optimized for different therapeutic applications by harnessing a wide array of optimized sequence elements, chemical modifications, purification techniques, and delivery methods. The value of IVT mRNA was recently proved during the COVID-19 pandemic when mRNA-based vaccines outperformed the efficacy of established technologies, and millions of doses were rapidly deployed. In this review, we will discuss chemical modifications of IVT mRNA and highlight numerous preclinical and clinical applications including vaccines for cancer and infectious diseases, cancer immunotherapy, protein replacement, gene editing, and cell reprogramming.
Collapse
|
9
|
Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 2022; 23:93-106. [PMID: 34594027 PMCID: PMC7614307 DOI: 10.1038/s41580-021-00417-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
In eukaryotes, poly(A) tails are present on almost every mRNA. Early experiments led to the hypothesis that poly(A) tails and the cytoplasmic polyadenylate-binding protein (PABPC) promote translation and prevent mRNA degradation, but the details remained unclear. More recent data suggest that the role of poly(A) tails is much more complex: poly(A)-binding protein can stimulate poly(A) tail removal (deadenylation) and the poly(A) tails of stable, highly translated mRNAs at steady state are much shorter than expected. Furthermore, the rate of translation elongation affects deadenylation. Consequently, the interplay between poly(A) tails, PABPC, translation and mRNA decay has a major role in gene regulation. In this Review, we discuss recent work that is revolutionizing our understanding of the roles of poly(A) tails in the cytoplasm. Specifically, we discuss the roles of poly(A) tails in translation and control of mRNA stability and how poly(A) tails are removed by exonucleases (deadenylases), including CCR4-NOT and PAN2-PAN3. We also discuss how deadenylation rate is determined, the integration of deadenylation with other cellular processes and the function of PABPC. We conclude with an outlook for the future of research in this field.
Collapse
|
10
|
Efficient Modified-mRNA Transfection in Neural Stem Cells. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. NANOMATERIALS 2020; 10:nano10020364. [PMID: 32093140 PMCID: PMC7075285 DOI: 10.3390/nano10020364] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
The use of messenger RNA (mRNA) in gene therapy is increasing in recent years, due to its unique features compared to plasmid DNA: Transient expression, no need to enter into the nucleus and no risk of insertional mutagenesis. Nevertheless, the clinical application of mRNA as a therapeutic tool is limited by its instability and ability to activate immune responses; hence, mRNA chemical modifications together with the design of suitable vehicles result essential. This manuscript includes a revision of the strategies employed to enhance in vitro transcribed (IVT) mRNA functionality and efficacy, including the optimization of its stability and translational efficiency, as well as the regulation of its immunostimulatory properties. An overview of the nanosystems designed to protect the mRNA and to overcome the intra and extracellular barriers for successful delivery is also included. Finally, the present and future applications of mRNA nanomedicines for immunization against infectious diseases and cancer, protein replacement, gene editing, and regenerative medicine are highlighted.
Collapse
|
12
|
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76:301-328. [PMID: 30334070 PMCID: PMC6339677 DOI: 10.1007/s00018-018-2935-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
While active immunization elicits a lasting immune response by the body, passive immunotherapy transiently equips the body with exogenously generated immunological effectors in the form of either target-specific antibodies or lymphocytes functionalized with target-specific receptors. In either case, administration or expression of recombinant proteins plays a fundamental role. mRNA prepared by in vitro transcription (IVT) is increasingly appreciated as a drug substance for delivery of recombinant proteins. With its biological role as transient carrier of genetic information translated into protein in the cytoplasm, therapeutic application of mRNA combines several advantages. For example, compared to transfected DNA, mRNA harbors inherent safety features. It is not associated with the risk of inducing genomic changes and potential adverse effects are only temporary due to its transient nature. Compared to the administration of recombinant proteins produced in bioreactors, mRNA allows supplying proteins that are difficult to manufacture and offers extended pharmacokinetics for short-lived proteins. Based on great progress in understanding and manipulating mRNA properties, efficacy data in various models have now demonstrated that IVT mRNA constitutes a potent and flexible platform technology. Starting with an introduction into passive immunotherapy, this review summarizes the current status of IVT mRNA technology and its application to such immunological interventions.
Collapse
Affiliation(s)
- Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Andreas Thess
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Moritz Thran
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Ingo Jordan
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells. Sci Rep 2018; 8:16995. [PMID: 30451889 PMCID: PMC6242934 DOI: 10.1038/s41598-018-35138-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show that multiple C2H2-ZNF mRNAs experience differential polyadenylation resulting in populations with short and long poly(A) tails. Furthermore, a significant proportion of C2H2-ZNF mRNAs are retained in the nucleus. Intriguingly, both short poly(A) tails and nuclear retention can be specified by the repeated elements that encode zinc finger motifs. These Zinc finger Coding Regions (ZCRs) appear to restrict polyadenylation of nascent RNAs and at the same time impede their export. However, the polyadenylation process is not necessary for nuclear retention of ZNF mRNAs. We propose that inefficient polyadenylation and export may allow C2H2-ZNF mRNAs to moonlight as non-coding RNAs or to be stored for later use.
Collapse
|
14
|
Xiong Q, Lee GY, Ding J, Li W, Shi J. Biomedical applications of mRNA nanomedicine. NANO RESEARCH 2018; 11:5281-5309. [PMID: 31007865 PMCID: PMC6472920 DOI: 10.1007/s12274-018-2146-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 05/20/2023]
Abstract
As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.
Collapse
Affiliation(s)
- Qingqing Xiong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060 China
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jianxun Ding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenliang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- School of Pharmacy, Jilin Medical University, Jilin, 132013 China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
15
|
Sawazaki R, Imai S, Yokogawa M, Hosoda N, Hoshino SI, Mio M, Mio K, Shimada I, Osawa M. Characterization of the multimeric structure of poly(A)-binding protein on a poly(A) tail. Sci Rep 2018; 8:1455. [PMID: 29362417 PMCID: PMC5780489 DOI: 10.1038/s41598-018-19659-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
Eukaryotic mature mRNAs possess a poly adenylate tail (poly(A)), to which multiple molecules of poly(A)-binding protein C1 (PABPC1) bind. PABPC1 regulates translation and mRNA metabolism by binding to regulatory proteins. To understand functional mechanism of the regulatory proteins, it is necessary to reveal how multiple molecules of PABPC1 exist on poly(A). Here, we characterize the structure of the multiple molecules of PABPC1 on poly(A), by using transmission electron microscopy (TEM), chemical cross-linking, and NMR spectroscopy. The TEM images and chemical cross-linking results indicate that multiple PABPC1 molecules form a wormlike structure in the PABPC1-poly(A) complex, in which the PABPC1 molecules are linearly arrayed. NMR and cross-linking analyses indicate that PABPC1 forms a multimer by binding to the neighbouring PABPC1 molecules via interactions between the RNA recognition motif (RRM) 2 in one molecule and the middle portion of the linker region of another molecule. A PABPC1 mutant lacking the interaction site in the linker, which possesses an impaired ability to form the multimer, reduced the in vitro translation activity, suggesting the importance of PABPC1 multimer formation in the translation process. We therefore propose a model of the PABPC1 multimer that provides clues to comprehensively understand the regulation mechanism of mRNA translation.
Collapse
Affiliation(s)
- Ryoichi Sawazaki
- Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nao Hosoda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shin-Ichi Hoshino
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Muneyo Mio
- Molecular Profiling Research Center for Drug Discovery and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuhiro Mio
- Molecular Profiling Research Center for Drug Discovery and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
17
|
Park HJ, Ko HL, Jung SY, Jo HB, Nam JH. The Characteristics of RNA Vaccine; its Strengths and Weaknesses. ACTA ACUST UNITED AC 2016. [DOI: 10.4167/jbv.2016.46.3.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Seo-Yeon Jung
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Han-Byeol Jo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| |
Collapse
|
18
|
Kiss DL, Oman KM, Dougherty JA, Mukherjee C, Bundschuh R, Schoenberg DR. Cap homeostasis is independent of poly(A) tail length. Nucleic Acids Res 2015; 44:304-14. [PMID: 26673707 PMCID: PMC4705677 DOI: 10.1093/nar/gkv1460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2015] [Indexed: 12/02/2022] Open
Abstract
Cap homeostasis is a cyclical process of decapping and recapping that maintains the cap on a subset of the cytoplasmic transcriptome. Interfering with cytoplasmic capping results in the redistribution of target transcripts from polysomes to non-translating mRNPs, where they accumulate in an uncapped but nonetheless stable form. It is generally thought that decapping is preceded by shortening of the poly(A) tail to a length that can no longer support translation. Therefore recapped target transcripts would either have to undergo cytoplasmic polyadenylation or retain a reasonably long poly(A) tail if they are to return to the translating pool. In cells that are inhibited for cytoplasmic capping there is no change in the overall distribution of poly(A) lengths or in the elution profile of oligo(dT)-bound targets. Poly(A) tail lengths were similar for target mRNAs on polysomes or in non-translating mRNPs, and the presence of polyadenylated uncapped mRNA in mRNPs was confirmed by separation into capped and uncapped pools prior to assay. Finally, in silico analysis of cytoplasmic capping targets revealed significant correlations with genes encoding transcripts with uridylated or multiply modified 3′ ends, and genes possessing multiple 3′-untranslated regions (UTRs) generated by alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Daniel L Kiss
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Kenji M Oman
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Julie A Dougherty
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Chandrama Mukherjee
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Physics, The Ohio State University, Columbus, OH 43210, USA Department of Chemistry and Biochemistry, and Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Kojima S, Gendreau KL, Sher-Chen EL, Gao P, Green CB. Changes in poly(A) tail length dynamics from the loss of the circadian deadenylase Nocturnin. Sci Rep 2015; 5:17059. [PMID: 26586468 PMCID: PMC4653638 DOI: 10.1038/srep17059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
mRNA poly(A) tails are important for mRNA stability and translation, and enzymes that regulate the poly(A) tail length significantly impact protein profiles. There are eleven putative deadenylases in mammals, and it is thought that each targets specific transcripts, although this has not been clearly demonstrated. Nocturnin (NOC) is a unique deadenylase with robustly rhythmic expression and loss of Noc in mice (Noc KO) results in resistance to diet-induced obesity. In an attempt to identify target transcripts of NOC, we performed “poly(A)denylome” analysis, a method that measures poly(A) tail length of transcripts in a global manner, and identified 213 transcripts that have extended poly(A) tails in Noc KO liver. These transcripts share unexpected characteristics: they are short in length, have long half-lives, are actively translated, and gene ontology analyses revealed that they are enriched in functions in ribosome and oxidative phosphorylation pathways. However, most of these transcripts do not exhibit rhythmicity in poly(A) tail length or steady-state mRNA level, despite Noc’s robust rhythmicity. Therefore, even though the poly(A) tail length dynamics seen between genotypes may not result from direct NOC deadenylase activity, these data suggest that NOC exerts strong effects on physiology through direct and indirect control of target mRNAs.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390-9111.,Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA, 24061
| | - Kerry L Gendreau
- Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA, 24061
| | - Elaine L Sher-Chen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390-9111
| | - Peng Gao
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390-9111
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390-9111
| |
Collapse
|
20
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
21
|
Cytoplasmic poly(A) binding protein C4 serves a critical role in erythroid differentiation. Mol Cell Biol 2014; 34:1300-9. [PMID: 24469397 DOI: 10.1128/mcb.01683-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expression of an mRNA is strongly impacted by its 3' poly(A) tail and associated poly(A)-binding proteins (PABPs). Vertebrates encode six PABP isoforms that vary in abundance, distribution, developmental control, and subcellular localization. Here we demonstrate that the minor PABP isoform PABPC4 is expressed in erythroid cells and impacts the steady-state expression of a subset of erythroid mRNAs. Motif analyses reveal a high-value AU-rich motif in the 3' untranslated regions (UTRs) of PABPC4-impacted mRNAs. This motif enhances the association of PABPC4 with mRNAs containing critically shortened poly(A) tails. This association may serve to protect a subset of mRNAs from accelerated decay. Finally, we demonstrate that selective depletion of PABPC4 in an erythroblast cell line inhibits terminal erythroid maturation with corresponding alterations in the erythroid gene expression. These observations lead us to conclude that PABPC4 plays an essential role in posttranscriptional control of a major developmental pathway.
Collapse
|
22
|
Target specificity among canonical nuclear poly(A) polymerases in plants modulates organ growth and pathogen response. Proc Natl Acad Sci U S A 2013; 110:13994-9. [PMID: 23918356 DOI: 10.1073/pnas.1303967110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyadenylation of pre-mRNAs is critical for efficient nuclear export, stability, and translation of the mature mRNAs, and thus for gene expression. The bulk of pre-mRNAs are processed by canonical nuclear poly(A) polymerase (PAPS). Both vertebrate and higher-plant genomes encode more than one isoform of this enzyme, and these are coexpressed in different tissues. However, in neither case is it known whether the isoforms fulfill different functions or polyadenylate distinct subsets of pre-mRNAs. Here we show that the three canonical nuclear PAPS isoforms in Arabidopsis are functionally specialized owing to their evolutionarily divergent C-terminal domains. A strong loss-of-function mutation in PAPS1 causes a male gametophytic defect, whereas a weak allele leads to reduced leaf growth that results in part from a constitutive pathogen response. By contrast, plants lacking both PAPS2 and PAPS4 function are viable with wild-type leaf growth. Polyadenylation of SMALL AUXIN UP RNA (SAUR) mRNAs depends specifically on PAPS1 function. The resulting reduction in SAUR activity in paps1 mutants contributes to their reduced leaf growth, providing a causal link between polyadenylation of specific pre-mRNAs by a particular PAPS isoform and plant growth. This suggests the existence of an additional layer of regulation in plant and possibly vertebrate gene expression, whereby the relative activities of canonical nuclear PAPS isoforms control de novo synthesized poly(A) tail length and hence expression of specific subsets of mRNAs.
Collapse
|
23
|
Kojima S, Sher-Chen EL, Green CB. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 2013; 26:2724-36. [PMID: 23249735 DOI: 10.1101/gad.208306.112] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(A) tails are 3' modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
24
|
Abstract
The 3' ends of two large noncoding RNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and MEN β, are formed by cleavage by RNase P and are capped but not polyadenylated. In the November 1, 2012, issue of Genes & Development, Wilusz and colleagues (pp. 2392-2407) show that when these 3' ends are formed on a GFP reporter, the resulting mRNA is exported to the cytoplasm and translated. The 3' end forms a novel triple-helical structure that supports export and translation as well as a poly(A) tail does.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
25
|
Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012; 9:1319-30. [PMID: 23064118 DOI: 10.4161/rna.22269] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mRNA vaccines combine desirable immunological properties with an outstanding safety profile and the unmet flexibility of genetic vaccines. Based on in situ protein expression, mRNA vaccines are capable of inducing a balanced immune response comprising both cellular and humoral immunity while not subject to MHC haplotype restriction. In addition, mRNA is an intrinsically safe vector as it is a minimal and only transient carrier of information that does not interact with the genome. Because any protein can be expressed from mRNA without the need to adjust the production process, mRNA vaccines also offer maximum flexibility with respect to development. Taken together, mRNA presents a promising vector that may well become the basis of a game-changing vaccine technology platform. Here, we outline the current knowledge regarding different aspects that should be considered when developing an mRNA-based vaccine technology.
Collapse
|
26
|
Mukherjee C, Patil DP, Kennedy BA, Bakthavachalu B, Bundschuh R, Schoenberg DR. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep 2012; 2:674-84. [PMID: 22921400 DOI: 10.1016/j.celrep.2012.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/20/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022] Open
Abstract
The notion that decapping leads irreversibly to messenger RNA (mRNA) decay was contradicted by the identification of capped transcripts missing portions of their 5' ends and a cytoplasmic complex that can restore the cap on uncapped mRNAs. In this study, we used accumulation of uncapped transcripts in cells inhibited for cytoplasmic capping to identify the targets of this pathway. Inhibition of cytoplasmic capping results in the destabilization of some transcripts and the redistribution of others from polysomes to nontranslating messenger ribonucleoproteins, where they accumulate in an uncapped state. Only a portion of the mRNA transcriptome is affected by cytoplasmic capping, and its targets encode proteins involved in nucleotide binding, RNA and protein localization, and the mitotic cell cycle. The 3' untranslated regions of recapping targets are enriched for AU-rich elements and microRNA binding sites, both of which function in cap-dependent mRNA silencing. These findings identify a cyclical process of decapping and recapping that we term cap homeostasis.
Collapse
|
27
|
Folkers ME, Delker DA, Maxwell CI, Nelson CA, Schwartz JJ, Nix DA, Hagedorn CH. ENCODE tiling array analysis identifies differentially expressed annotated and novel 5' capped RNAs in hepatitis C infected liver. PLoS One 2011; 6:e14697. [PMID: 21359205 PMCID: PMC3040182 DOI: 10.1371/journal.pone.0014697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/24/2011] [Indexed: 01/02/2023] Open
Abstract
Microarray studies of chronic hepatitis C infection have provided valuable
information regarding the host response to viral infection. However, recent
studies of the human transcriptome indicate pervasive transcription in
previously unannotated regions of the genome and that many RNA transcripts have
short or lack 3′ poly(A) ends. We hypothesized that using ENCODE tiling
arrays (1% of the genome) in combination with affinity purifying Pol II
RNAs by their unique 5′ m7GpppN cap would identify previously
undescribed annotated and unannotated genes that are differentially expressed in
liver during hepatitis C virus (HCV) infection. Both 5′-capped and
poly(A)+ populations of RNA were analyzed using ENCODE tiling arrays.
Sixty-four annotated genes were significantly increased in HCV cirrhotic as
compared to control liver; twenty-seven (42%) of these genes were
identified only by analyzing 5′ capped RNA. Thirty-one annotated genes
were significantly decreased; sixteen (50%) of these were identified only
by analyzing 5′ capped RNA. Bioinformatic analysis showed that capped RNA
produced more consistent results, provided a more extensive expression profile
of intronic regions and identified upregulated Pol II transcriptionally active
regions in unannotated areas of the genome in HCV cirrhotic liver. Two of these
regions were verified by PCR and RACE analysis. qPCR analysis of liver biopsy
specimens demonstrated that these unannotated transcripts, as well as IRF1,
TRIM22 and MET, were also upregulated in hepatitis C with mild inflammation and
no fibrosis. The analysis of 5′ capped RNA in combination with ENCODE
tiling arrays provides additional gene expression information and identifies
novel upregulated Pol II transcripts not previously described in HCV infected
liver. This approach, particularly when combined with new RNA sequencing
technologies, should also be useful in further defining Pol II transcripts
differentially regulated in specific disease states and in studying RNAs
regulated by changes in pre-mRNA splicing or 3′ polyadenylation
status.
Collapse
Affiliation(s)
- Milan E. Folkers
- Department of Medicine, University of Utah,
Salt Lake City, Utah, United States of America
| | - Don A. Delker
- Department of Medicine, University of Utah,
Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah,
Salt Lake City, Utah, United States of America
| | - Christopher I. Maxwell
- Department of Medicine, University of Utah,
Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah,
Salt Lake City, Utah, United States of America
| | - Cassie A. Nelson
- Department of Medicine, University of Utah,
Salt Lake City, Utah, United States of America
| | - Jason J. Schwartz
- Department of Surgery, University of Utah,
Salt Lake City, Utah, United States of America
| | - David A. Nix
- Huntsman Cancer Institute, University of Utah,
Salt Lake City, Utah, United States of America
| | - Curt H. Hagedorn
- Department of Medicine, University of Utah,
Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah,
Salt Lake City, Utah, United States of America
- Department of Experimental Pathology,
University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hamilton BJ, Wang XW, Collins J, Bloch D, Bergeron A, Henry B, Terry BM, Zan M, Mouland AJ, Rigby WFC. Separate cis-trans pathways post-transcriptionally regulate murine CD154 (CD40 ligand) expression: a novel function for CA repeats in the 3'-untranslated region. J Biol Chem 2008; 283:25606-25616. [PMID: 18640985 PMCID: PMC2533087 DOI: 10.1074/jbc.m802492200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/08/2008] [Indexed: 12/14/2022] Open
Abstract
We report a role for CA repeats in the 3'-untranslated region (3'-UTR) in regulating CD154 expression. Human CD154 is encoded by an unstable mRNA; this instability is conferred in cis by a portion of its 3'-UTR that includes a polypyrimidine-rich region and CA dinucleotide repeat. We demonstrate similar instability activity with the murine CD154 3'-UTR. This instability element mapped solely to a conserved 100-base CU-rich region alone, which we call a CU-rich response element. Surprisingly, the CA dinucleotide-rich region also regulated reporter expression but at the level of translation. This activity was associated with poly(A) tail shortening and regulated by heterogeneous nuclear ribonucleoprotein L levels. We conclude that the CD154 3'-UTR contains dual cis-acting elements, one of which defines a novel function for exonic CA dinucleotide repeats. These findings suggest a mechanism for the association of 3'-UTR CA-rich response element polymorphisms with CD154 overexpression and the subsequent risk of autoimmune disease.
Collapse
Affiliation(s)
| | - Xiao-Wei Wang
- Department of Medicine, Lebanon, New Hampshire 03756
| | - Jane Collins
- Department of Medicine, Lebanon, New Hampshire 03756
| | - Donald Bloch
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Alan Bergeron
- Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| | - Brian Henry
- Department of Medicine, Lebanon, New Hampshire 03756
| | | | - Moe Zan
- Department of Medicine, Lebanon, New Hampshire 03756
| | - Andrew J Mouland
- Lady Davis Institute for Medical Research and McGill University, Montreal, Quebec H3T 1E2, Canada
| | - William F C Rigby
- Department of Medicine, Lebanon, New Hampshire 03756; Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756.
| |
Collapse
|
29
|
Abstract
Regulating gene expression at the translational level controls a wide variety of biological events such as development, long-term memory, stress response, transport and storage of certain nutrients, and viral infection. Protein synthesis at steady-state level can be directly measured with Western blot or using an easy-to-detect reporter such as luciferase. However, these methods do not measure the association of mRNA with ribosomes, which is more meaningful in understanding the mechanism and dynamics of translation. This chapter describes the use of sucrose density gradients for analysis of polysome profiles. RNA or protein samples extracted from gradient fractions are commonly used for further analysis of their association with translating ribosomes. We also describe an in vitro translation system prepared from HeLa S3 cell cytoplasmic extract that shows dependency on the mRNA cap and length of the poly(A) length tail, both features of translation in vivo. This is particularly useful to study the cis- and trans-acting factors involved in translational control. Lastly, we describe a method for transfecting cells with an in vitro prepared RNA to study the impact of poly(A) length on translation. This approach is particularly useful for characterizing cis-acting elements that work in conjunction with poly(A) in regulating translation.
Collapse
|
30
|
Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, de Moor CH. A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res 2007; 35:e132. [PMID: 17933768 PMCID: PMC2095794 DOI: 10.1093/nar/gkm830] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The length of the poly(A) tail of an mRNA plays an important role in translational efficiency, mRNA stability and mRNA degradation. Regulated polyadenylation and deadenylation of specific mRNAs is involved in oogenesis, embryonic development, spermatogenesis, cell cycle progression and synaptic plasticity. Here we report a new technique to analyse the length of poly(A) tails and to separate a mixed population of mRNAs into fractions dependent on the length of their poly(A) tails. The method can be performed on crude lysate or total RNA, is fast, highly reproducible and minor changes in poly(A) tail length distribution are easily detected. We validated the method by analysing mRNAs known to undergo cytoplasmic polyadenylation during Xenopus laevis oocyte maturation. We then separated RNA from NIH3T3 cells into two fractions with short and long poly(A) tails and compared them by microarray analysis. In combination with the validation experiments, the results indicate that ∼25% of the expressed genes have a poly(A) tail of less than 30 residues in a significant percentage of their transcripts.
Collapse
Affiliation(s)
- Hedda A Meijer
- RNA Biology Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM. Functional analysis of individual binding activities of the scaffold protein eIF4G. J Biol Chem 2006; 282:1695-708. [PMID: 17130132 DOI: 10.1074/jbc.m602780200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.
Collapse
Affiliation(s)
- Tracey M Hinton
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. ACTA ACUST UNITED AC 2005; 170:913-24. [PMID: 16157702 PMCID: PMC2171455 DOI: 10.1083/jcb.200504039] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
4E-transporter (4E-T) is one of several proteins that bind the mRNA 5′cap-binding protein, eukaryotic initiation factor 4E (eIF4E), through a conserved binding motif. We previously showed that 4E-T is a nucleocytoplasmic shuttling protein, which mediates the import of eIF4E into the nucleus. At steady state, 4E-T is predominantly cytoplasmic and is concentrated in bodies that conspicuously resemble the recently described processing bodies (P-bodies), which are believed to be sites of mRNA decay. In this paper, we demonstrate that 4E-T colocalizes with mRNA decapping factors in bona fide P-bodies. Moreover, 4E-T controls mRNA half-life, because its depletion from cells using short interfering RNA increases mRNA stability. The 4E-T binding partner, eIF4E, also is localized in P-bodies. 4E-T interaction with eIF4E represses translation, which is believed to be a prerequisite for targeting of mRNAs to P-bodies. Collectively, these data suggest that 4E-T interaction with eIF4E is a priming event in inducing messenger ribonucleoprotein rearrangement and transition from translation to decay.
Collapse
Affiliation(s)
- Maria A Ferraiuolo
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Peng J, Murray EL, Schoenberg DR. The poly(A)-limiting element enhances mRNA accumulation by increasing the efficiency of pre-mRNA 3' processing. RNA (NEW YORK, N.Y.) 2005; 11:958-65. [PMID: 15872182 PMCID: PMC1262677 DOI: 10.1261/rna.2020805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The poly(A)-limiting element (PLE) is a conserved sequence originally found in the 3' UTR of Xenopus albumin mRNA whose presence restricts the length of the poly(A) tail on both pre-mRNA and fully processed mRNA to <20 nt. Results presented in this study show that the PLE also increases the cytoplasmic level of reporter beta-globin mRNA. Transcription run-on shows this increase was not due to increased reporter gene transcription, and experiments with tetracycline repressor-controlled reporter mRNA showed the PLE does not alter the rate of mRNA decay. Both RT-PCR and RNase protection assay showed the PLE caused a 50% increase in the 3' processing of reporter beta-globin mRNA in vivo. This was confirmed in vitro, where PLE-containing RNA was cleaved in HeLa nuclear extract at a rate 80% faster than a control RNA bearing an inactive element. These results indicate that the PLE regulates the length of the poly(A) tail and the efficiency of 3' processing. In addition, they show that PLE-containing mRNA with a <20-nt poly(A) tail is as stable as mRNA with a 100- to 200-nt poly(A) tail.
Collapse
Affiliation(s)
- Jing Peng
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, 43210-1218, USA
| | | | | |
Collapse
|