1
|
Akirtava C, May G, McManus CJ. Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders. Nucleic Acids Res 2025; 53:gkaf165. [PMID: 40071932 PMCID: PMC11897887 DOI: 10.1093/nar/gkaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-acting features that influence translation and messenger RNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts (-4 to +1 around the AUG start) and upstream AUGs (uAUGs) explained half of the variance in expression across TLs, the addition of other features explained ∼80% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- RNA Bioscience Initiative, University of Colorado – Anschutz, Aurora, CO 80045, United States
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
2
|
Omkar S, Mitchem MM, Hoskins JR, Shrader C, Kline JT, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. PLoS Genet 2024; 20:e1011338. [PMID: 39652584 DOI: 10.1371/journal.pgen.1011338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
3
|
Jones JD, Franco MK, Giles RN, Eyler DE, Tardu M, Smith TJ, Snyder LR, Polikanov YS, Kennedy RT, Niederer RO, Koutmou KS. Conserved 5-methyluridine tRNA modification modulates ribosome translocation. Proc Natl Acad Sci U S A 2024; 121:e2401743121. [PMID: 39159370 PMCID: PMC11363252 DOI: 10.1073/pnas.2401743121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024] Open
Abstract
While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA in Escherichia coli, Trm2 in Saccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells, trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Monika K. Franco
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Rachel N. Giles
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Daniel E. Eyler
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Mehmet Tardu
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Tyler J. Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Laura R. Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois, Chicago, IL60607
| | | | - Rachel O. Niederer
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
4
|
Wimmer B, Schernthaner J, Edobor G, Friedrich A, Poeltner K, Temaj G, Wimmer M, Kronsteiner E, Pichler M, Gercke H, Huber R, Kaefer N, Rinnerthaler M, Karl T, Krauß J, Mohr T, Gerner C, Hintner H, Breitenbach M, Bauer JW, Rakers C, Kuhn D, von Hagen J, Müller N, Rathner A, Breitenbach-Koller H. RiboScreen TM Technology Delivers a Ribosomal Target and a Small-Molecule Ligand for Ribosome Editing to Boost the Production Levels of Tropoelastin, the Monomeric Unit of Elastin. Int J Mol Sci 2024; 25:8430. [PMID: 39125999 PMCID: PMC11312584 DOI: 10.3390/ijms25158430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.
Collapse
Affiliation(s)
- Bjoern Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Jan Schernthaner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Genevieve Edobor
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Andreas Friedrich
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Katharina Poeltner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Gazmend Temaj
- Human Genetics, Faculty of Pharmacy, College UBT, 10000 Pristina, Kosovo;
| | - Marlies Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Elli Kronsteiner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Mara Pichler
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Hanna Gercke
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Ronald Huber
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Niklas Kaefer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Thomas Karl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Jan Krauß
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (T.M.); (C.G.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (T.M.); (C.G.)
- Join Metabolome Facility, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Helmut Hintner
- Department of Dermatology and Allergology, University Hospital Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria; (H.H.); (J.W.B.)
| | - Michael Breitenbach
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria; (H.H.); (J.W.B.)
| | - Christin Rakers
- Merck KGaA, Discovery & Development Technologies, Frankfurter Staße 250, 64293 Darmstadt, Germany (D.K.)
| | - Daniel Kuhn
- Merck KGaA, Discovery & Development Technologies, Frankfurter Staße 250, 64293 Darmstadt, Germany (D.K.)
| | - Joerg von Hagen
- Merck KGaA Healthcare, Frankfurter Straße 250, 64293 Darmstadt, Germany;
- ryon-Greentech Accelerator, Mainzer Straße 41, 64579 Gernsheim, Germany
| | - Norbert Müller
- Institute of Biochemistry, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria;
- Department of Chemistry, Faculty of Science, University of South Bohemia in Českých Budějovicích, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Adriana Rathner
- Institute of Biochemistry, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria;
| | - Hannelore Breitenbach-Koller
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| |
Collapse
|
5
|
Akirtava C, May G, McManus CJ. Deciphering the cis-regulatory landscape of natural yeast Transcript Leaders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601937. [PMID: 39005336 PMCID: PMC11245039 DOI: 10.1101/2024.07.03.601937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-regulatory features that influence translation and mRNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts and uAUGs explained half of the variance in expression across transcript leaders, the addition of other features explained ~70% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- RNA Bioscience Initiative, University of Colorado - Anshutz, Aurora, CO, 80045, USA
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Omkar S, Shrader C, Hoskins JR, Kline JT, Mitchem MM, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598777. [PMID: 38915721 PMCID: PMC11195281 DOI: 10.1101/2024.06.13.598777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake T. Kline
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Megan M. Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
7
|
Aviner R, Lidsky PV, Xiao Y, Tassetto M, Kim D, Zhang L, McAlpine PL, Elias J, Frydman J, Andino R. SARS-CoV-2 Nsp1 cooperates with initiation factors EIF1 and 1A to selectively enhance translation of viral RNA. PLoS Pathog 2024; 20:e1011535. [PMID: 38335237 PMCID: PMC10903962 DOI: 10.1371/journal.ppat.1011535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/29/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A better mechanistic understanding of virus-host dependencies can help reveal vulnerabilities and identify opportunities for therapeutic intervention. Of particular interest are essential interactions that enable production of viral proteins, as those could target an early step in the virus lifecycle. Here, we use subcellular proteomics, ribosome profiling analyses and reporter assays to detect changes in protein synthesis dynamics during SARS-CoV-2 (CoV2) infection. We identify specific translation factors and molecular chaperones that are used by CoV2 to promote the synthesis and maturation of its own proteins. These can be targeted to inhibit infection, without major toxicity to the host. We also find that CoV2 non-structural protein 1 (Nsp1) cooperates with initiation factors EIF1 and 1A to selectively enhance translation of viral RNA. When EIF1/1A are depleted, more ribosomes initiate translation from a conserved upstream CUG start codon found in all genomic and subgenomic viral RNAs. This results in higher translation of an upstream open reading frame (uORF1) and lower translation of the main ORF, altering the stoichiometry of viral proteins and attenuating infection. Replacing the upstream CUG with AUG strongly inhibits translation of the main ORF independently of Nsp1, EIF1, or EIF1A. Taken together, our work describes multiple dependencies of CoV2 on host biosynthetic networks and proposes a model for dosage control of viral proteins through Nsp1-mediated control of translation start site selection.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
- Department of Biology and Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Peter V. Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Damian Kim
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| | - Lichao Zhang
- Chan Zuckerberg Biohub–San Francisco, Stanford, California, United States of America
| | - Patrick L. McAlpine
- Chan Zuckerberg Biohub–San Francisco, Stanford, California, United States of America
| | - Joshua Elias
- Chan Zuckerberg Biohub–San Francisco, Stanford, California, United States of America
| | - Judith Frydman
- Department of Biology and Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
8
|
Kolhe JA, Babu NL, Freeman BC. The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 2023; 83:2035-2044.e7. [PMID: 37295430 PMCID: PMC10297700 DOI: 10.1016/j.molcel.2023.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Molecular chaperones govern proteome health to support cell homeostasis. An essential eukaryotic component of the chaperone system is Hsp90. Using a chemical-biology approach, we characterized the features driving the Hsp90 physical interactome. We found that Hsp90 associated with ∼20% of the yeast proteome using its three domains to preferentially target intrinsically disordered regions (IDRs) of client proteins. Hsp90 selectively utilized an IDR to regulate client activity as well as maintained IDR-protein health by preventing the transition to stress granules or P-bodies at physiological temperatures. We also discovered that Hsp90 controls the fidelity of ribosome initiation that triggers a heat shock response when disrupted. Our study provides insights into how this abundant molecular chaperone supports a dynamic and healthy native protein landscape.
Collapse
Affiliation(s)
- Janhavi A Kolhe
- Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, IL, USA
| | - Neethu L Babu
- Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, IL, USA
| | - Brian C Freeman
- Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
May GE, Akirtava C, Agar-Johnson M, Micic J, Woolford J, McManus J. Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning. eLife 2023; 12:e69611. [PMID: 37227054 PMCID: PMC10259493 DOI: 10.7554/elife.69611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
Upstream open-reading frames (uORFs) are potent cis-acting regulators of mRNA translation and nonsense-mediated decay (NMD). While both AUG- and non-AUG initiated uORFs are ubiquitous in ribosome profiling studies, few uORFs have been experimentally tested. Consequently, the relative influences of sequence, structural, and positional features on uORF activity have not been determined. We quantified thousands of yeast uORFs using massively parallel reporter assays in wildtype and ∆upf1 yeast. While nearly all AUG uORFs were robust repressors, most non-AUG uORFs had relatively weak impacts on expression. Machine learning regression modeling revealed that both uORF sequences and locations within transcript leaders predict their effect on gene expression. Indeed, alternative transcription start sites highly influenced uORF activity. These results define the scope of natural uORF activity, identify features associated with translational repression and NMD, and suggest that the locations of uORFs in transcript leaders are nearly as predictive as uORF sequences.
Collapse
Affiliation(s)
- Gemma E May
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Matthew Agar-Johnson
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - John Woolford
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
- Computational Biology Department, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
10
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
11
|
Booth DG, Kozar N, Bradley S, Meijer D. Characterizing the molecular etiology of arthrogryposis multiplex congenita in patients with LGI4 mutations. Glia 2021; 69:2605-2617. [PMID: 34288120 DOI: 10.1002/glia.24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/05/2022]
Abstract
Disruption of axon-glia interactions in the peripheral nervous system has emerged as a major cause of arthrogryposis multiplex congenita (AMC), a condition characterized by multiple congenital postural abnormalities involving the major joints. Several genes crucially important to the biology of Schwann cells have now been implicated with AMC. One such gene is LGI4 which encodes a secreted glycoprotein. LGI4 is expressed and secreted by Schwann cells and binds its receptor ADAM22 on the axonal membrane to drive myelination. Homozygous mutations in LGI4 or ADAM22 results in severe congenital hypomyelination and joint contractures in mice. Recently bi-allelic LGI4 loss of function mutations has been described in three unrelated families with severe AMC. Two individuals in a fourth, non-consanguineous family were found to be compound heterozygous for two LGI4 missense mutations. It is not known how these missense mutations affect the biology of LGI4. Here we investigated whether these missense mutations affected the secretion of the protein, its ADAM22 binding capacity, or its myelination-promoting function. We demonstrate that the mutations largely affect the progression of the mutant protein through the endomembrane system resulting in severely reduced expression. Importantly, binding to ADAM22 and myelination-promoting activity appear largely unaffected, suggesting that treatment with chemical chaperones to improve secretion of the mutant proteins might prove beneficial.
Collapse
Affiliation(s)
- Daniel G Booth
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Nina Kozar
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Bradley
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Dies Meijer
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
13
|
Kulkarni SD, Zhou F, Sen ND, Zhang H, Hinnebusch AG, Lorsch JR. Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae. BMC Biol 2019; 17:101. [PMID: 31810458 PMCID: PMC6898956 DOI: 10.1186/s12915-019-0718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Translation of an mRNA in eukaryotes starts at an AUG codon in most cases, but near-cognate codons (NCCs) such as UUG, ACG, and AUU can also be used as start sites at low levels in Saccharomyces cerevisiae. Initiation from NCCs or AUGs in the 5'-untranslated regions (UTRs) of mRNAs can lead to translation of upstream open reading frames (uORFs) that might regulate expression of the main ORF (mORF). Although there is some circumstantial evidence that the translation of uORFs can be affected by environmental conditions, little is known about how it is affected by changes in growth temperature. RESULTS Using reporter assays, we found that changes in growth temperature can affect translation from NCC start sites in yeast cells, suggesting the possibility that gene expression could be regulated by temperature by altering use of different uORF start codons. Using ribosome profiling, we provide evidence that growth temperature regulates the efficiency of translation of nearly 200 uORFs in S. cerevisiae. Of these uORFs, most that start with an AUG codon have increased translational efficiency at 37 °C relative to 30 °C and decreased efficiency at 20 °C. For translationally regulated uORFs starting with NCCs, we did not observe a general trend for the direction of regulation as a function of temperature, suggesting mRNA-specific features can determine the mode of temperature-dependent regulation. Consistent with this conclusion, the position of the uORFs in the 5'-leader relative to the 5'-cap and the start codon of the main ORF correlates with the direction of temperature-dependent regulation of uORF translation. We have identified several novel cases in which changes in uORF translation are inversely correlated with changes in the translational efficiency of the downstream main ORF. Our data suggest that translation of these mRNAs is subject to temperature-dependent, uORF-mediated regulation. CONCLUSIONS Our data suggest that alterations in the translation of specific uORFs by temperature can regulate gene expression in S. cerevisiae.
Collapse
Affiliation(s)
- Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Present Address: School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hongen Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Cheng MSQ, Su MXX, Wang MXN, Sun MZY, Ou TM. Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions. Methods 2019; 167:124-133. [PMID: 31185274 DOI: 10.1016/j.ymeth.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis is critical to cell survival and translation regulation is essential to post-transcriptional gene expression regulation. Disorders of this process, particularly through RNA-binding proteins, is associated with the development and progression of a number of diseases, including cancers. However, the molecular mechanisms underlying the initiation of protein synthesis are intricate, making it difficult to find a drug that interferes with this process. Chemical probes are useful in elucidating the structures of RNA-protein complex and molecular mechanism of biological events. Moreover, some of these chemical probes show certain therapeutic benefits and can be further developed as leading compounds. Here, we will briefly review the general process and mechanism of protein synthesis, and emphasis on chemical probes in examples of probing the RNA structural changes and RNA-protein interactions. Moreover, the therapeutic potential of these probes is also discussed to give a comprehensive understanding.
Collapse
Affiliation(s)
- Miss Sui-Qi Cheng
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Miss Xiao-Xuan Su
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China.
| | - Miss Xiao-Na Wang
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Miss Zhi-Yin Sun
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Tian-Miao Ou
- Sun Yat-Sen University, School of Pharmaceutical Sciences, 132 Waihuan East Road, Guangzhou University City, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Sulima SO, Kampen KR, De Keersmaecker K. Cancer Biogenesis in Ribosomopathies. Cells 2019; 8:E229. [PMID: 30862070 PMCID: PMC6468915 DOI: 10.3390/cells8030229] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional "onco-specialization" of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim R Kampen
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
17
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
18
|
Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. mBio 2017; 8:mBio.00844-17. [PMID: 28655822 PMCID: PMC5487733 DOI: 10.1128/mbio.00844-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs) in its >700-nucleotide (nt) 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs) in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression. There is a deepening and widening appreciation of the diverse roles of translation in controlling gene expression. A central fungal transcription factor, the best-studied example of which is Saccharomyces cerevisiae GCN4, is crucial for the response to amino acid limitation. Two upstream open reading frames (uORFs) in the GCN4 mRNA are critical for controlling GCN4 synthesis. We observed that two uORFs in the corresponding Neurospora crassa cpc-1 mRNA appear functionally analogous to the GCN4 uORFs. We also discovered that, surprisingly, unlike GCN4, the CPC1 coding sequence extends far upstream from the presumed AUG start codon with no other in-frame AUG codons. Similar extensions were seen in homologs from many filamentous fungi. We observed that multiple non-AUG near-cognate codons (NCCs) in this extended reading frame, some conserved, initiated translation to produce longer forms of CPC1, underscoring the significance of noncanonical initiation in controlling gene expression.
Collapse
|
19
|
Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 2015; 4:e05534. [PMID: 25695637 PMCID: PMC4363877 DOI: 10.7554/elife.05534] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.
Collapse
Affiliation(s)
- Kristin S Koutmou
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Julie L Brunelle
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Aditya Radhakrishnan
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
20
|
Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon. Genes Dev 2014; 28:502-20. [PMID: 24589778 PMCID: PMC3950347 DOI: 10.1101/gad.236547.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic initiator tRNA (tRNAi) contains several highly conserved, unique sequence features, yet their importance in accurate start codon selection is unknown. Using genetic and biochemical analyses, Dong et al. show that conserved bases throughout tRNAi, from the anticodon stem to the acceptor stem, play key roles in ensuring the fidelity of start codon recognition. This work delineates specific molecular functions for signature initiator tRNA residues and establishes their importance for initiation accuracy in living eukaryotic cells. Eukaryotic initiator tRNA (tRNAi) contains several highly conserved unique sequence features, but their importance in accurate start codon selection was unknown. Here we show that conserved bases throughout tRNAi, from the anticodon stem to acceptor stem, play key roles in ensuring the fidelity of start codon recognition in yeast cells. Substituting the conserved G31:C39 base pair in the anticodon stem with different pairs reduces accuracy (the Sui− [suppressor of initiation codon] phenotype), whereas eliminating base pairing increases accuracy (the Ssu− [suppressor of Sui−] phenotype). The latter defect is fully suppressed by a Sui− substitution of T-loop residue A54. These genetic data are paralleled by opposing effects of Sui− and Ssu− substitutions on the stability of methionylated tRNAi (Met-tRNAi) binding (in the ternary complex [TC] with eIF2-GTP) to reconstituted preinitiation complexes (PICs). Disrupting the C3:G70 base pair in the acceptor stem produces a Sui− phenotype and also reduces the rate of TC binding to 40S subunits in vitro and in vivo. Both defects are suppressed by an Ssu− substitution in eIF1A that stabilizes the open/POUT conformation of the PIC that exists prior to start codon recognition. Our data indicate that these signature sequences of tRNAi regulate accuracy by distinct mechanisms, promoting the open/POUT conformation of the PIC (for C3:G70) or destabilizing the closed/PIN state (for G31:C39 and A54) that is critical for start codon recognition.
Collapse
|
21
|
Sagar V, Murray KE. The mammalian orthoreovirus bicistronic M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require interaction of 5'-3' untranslated regions. Virus Res 2014; 183:30-40. [PMID: 24486484 DOI: 10.1016/j.virusres.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Mammalian orthoreovirus mRNAs possess short 5' UTR, lack 3' poly(A) tails, and may lack 5' cap structures at late times post-infection. As such, the mechanisms by which these viral mRNAs recruit ribosomes remain completely unknown. Toward addressing this question, we used bicistronic MRV M3 mRNA to analyze the role of 5' and 3' UTRs during MRV protein synthesis. The 5' UTR was found to be dispensable for translation initiation; however, reducing its length promoted increased downstream initiation. Modifying start site Kozak context altered the ratio of upstream to downstream initiation, whereas mutations in the 3' UTR did not. Moreover, an M3 mRNA lacking a 3' UTR was able to rescue MRV infection to WT levels in an siRNA trans-complementation assay. Together, these data allow us to propose a model in which the MRV M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require the viral mRNA 3' UTR or 5'-3' UTRs interaction.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States.
| | - Kenneth E Murray
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
22
|
Bauer JW, Brandl C, Haubenreisser O, Wimmer B, Weber M, Karl T, Klausegger A, Breitenbach M, Hintner H, von der Haar T, Tuite MF, Breitenbach-Koller L. Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS One 2013; 8:e67609. [PMID: 23861776 PMCID: PMC3704640 DOI: 10.1371/journal.pone.0067609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/25/2013] [Indexed: 11/23/2022] Open
Abstract
Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered ‘specialized’ ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.
Collapse
Affiliation(s)
- Johann W. Bauer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | - Clemens Brandl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | | | - Bjoern Wimmer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Manuela Weber
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Thomas Karl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Alfred Klausegger
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | | | - Helmut Hintner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (MFT); (LB-K)
| | - Lore Breitenbach-Koller
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- * E-mail: (MFT); (LB-K)
| |
Collapse
|
23
|
Barth-Baus D, Bhasker CR, Zoll W, Merrick WC. Influence of translation factor activities on start site selection in six different mRNAs. ACTA ACUST UNITED AC 2013; 1:e24419. [PMID: 26824019 PMCID: PMC4718060 DOI: 10.4161/trla.24419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022]
Abstract
Current literature using biochemical assays, structural analyses and genetic manipulations has reported that the key factors associated with the faithful matching of the initiator met-tRNA to the start codon AUG are eIF1, eIF1A and eIF5. However, these findings were in each case based upon the utilization of a single mRNA, perhaps with variations. In an effort to evaluate this general finding, we tested six different mRNAs. Our results confirm that these three proteins are important for start site selection. However, two additional findings would not have been predicted. The first is that eIF1 plays a major role in selecting against start codons that are in close proximity to the 5′ end of the mRNA (i.e., less than 21 nucleotides). Second, the addition of eIF5B had nearly the same affect as the addition of eIF5. This is unexpected given the different roles that eIF5 and eIF5B have been proposed to play in the 80S initiation pathway. Finally, although many of the mRNAs appear to respond qualitatively in a similar manner, the quantitative differences noted suggest that there is still some mRNA specific character to our findings. This character may be the length of the 5′ UTR, involvement of an IRES element, secondary structure either 5′ or 3′ of the start codon or specific sequence/structure elements that interact with RNA binding proteins or the ribosome.
Collapse
Affiliation(s)
- Daine Barth-Baus
- Department of Biochemistry; School of Medicine; Case Western Reserve University; Cleveland, OH USA
| | | | - Wendy Zoll
- Biology Department; Montgomery County Community College; Blue Bell, PA USA
| | - William C Merrick
- Department of Biochemistry; School of Medicine; Case Western Reserve University; Cleveland, OH USA
| |
Collapse
|
24
|
Borck G, Shin BS, Stiller B, Mimouni-Bloch A, Thiele H, Kim JR, Thakur M, Skinner C, Aschenbach L, Smirin-Yosef P, Har-Zahav A, Nürnberg G, Altmüller J, Frommolt P, Hofmann K, Konen O, Nürnberg P, Munnich A, Schwartz CE, Gothelf D, Colleaux L, Dever TE, Kubisch C, Basel-Vanagaite L. eIF2γ mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation. Mol Cell 2012; 48:641-6. [PMID: 23063529 DOI: 10.1016/j.molcel.2012.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/24/2012] [Accepted: 09/06/2012] [Indexed: 12/26/2022]
Abstract
Together with GTP and initiator methionyl-tRNA, translation initiation factor eIF2 forms a ternary complex that binds the 40S ribosome and then scans an mRNA to select the AUG start codon for protein synthesis. Here, we show that a human X-chromosomal neurological disorder characterized by intellectual disability and microcephaly is caused by a missense mutation in eIF2γ (encoded by EIF2S3), the core subunit of the heterotrimeric eIF2 complex. Biochemical studies of human cells overexpressing the eIF2γ mutant and of yeast eIF2γ with the analogous mutation revealed a defect in binding the eIF2β subunit to eIF2γ. Consistent with this loss of eIF2 integrity, the yeast eIF2γ mutation impaired translation start codon selection and eIF2 function in vivo in a manner that was suppressed by overexpressing eIF2β. These findings directly link intellectual disability to impaired translation initiation, and provide a mechanistic basis for the human disease due to partial loss of eIF2 function.
Collapse
Affiliation(s)
- Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Protein synthesis is a complex, tightly regulated process in eukaryotic cells and its deregulation is a hallmark of many cancers. Translational control occurs primarily at the rate-limiting initiation step, where ribosomal subunits are recruited to template mRNAs through the concerted action of several eukaryotic initiation factors (eIFs). One factor that interacts with both the mRNA and ribosomes, and appears limiting for translation is eIF4F, a complex composed of the cap-binding protein, eIF4E; the scaffold protein, eIF4G; and the ATP-dependent DEAD-box helicase, eIF4A. eIF4E appears to play an important role in tumor initiation and progression since its overexpression can cooperate with oncogenes to accelerate transformation in cell lines and animal models, and its levels are elevated in many human cancers. This, therefore, represents a vulnerability for transformed cells, and presents an opportunity for therapeutic intervention. In this review, we discuss approaches for targeting eIF4F activity.
Collapse
|
26
|
Abstract
A defining feature of many cancers is deregulated translational control. Typically, this occurs at the level of recruitment of the 40S ribosomes to the 5'-cap of cellular messenger RNAs (mRNAs), the rate-limiting step of protein synthesis, which is controlled by the heterotrimeric eukaryotic initiation complex eIF4F. Thus, eIF4F in particular, and translation initiation in general, represent an exploitable vulnerability and unique opportunity for therapeutic intervention in many transformed cells. In this article, we discuss the development, mode of action and biological activity of a number of small-molecule inhibitors that interrupt PI3K/mTOR signaling control of eIF4F assembly, as well as compounds that more directly block eIF4F activity.
Collapse
Affiliation(s)
- Abba Malina
- Department of Biochemistry and McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
27
|
Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons. Mol Cell Biol 2011; 31:4814-31. [PMID: 21930786 DOI: 10.1128/mcb.05819-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast eIF1 inhibits initiation at non-AUG triplets, but it was unknown whether it also discriminates against AUGs in suboptimal context. As in other eukaryotes, the yeast gene encoding eIF1 (SUI1) contains an AUG in poor context, which could underlie translational autoregulation. Previously, eIF1 mutations were identified that increase initiation at UUG codons (Sui(-) phenotype), and we obtained mutations with the opposite phenotype of suppressing UUG initiation (Ssu(-) phenotype). Remarkably, Sui(-) mutations in eukaryotic translation initiation factor 1 (eIF1), eIF1A, and eIF2β all increase SUI1 expression in a manner diminished by introducing the optimal context at the SUI1 AUG, whereas Ssu(-) mutations in eIF1 and eIF1A decrease SUI1 expression with the native, but not optimal, context present. Therefore, discrimination against weak context depends on specific residues in eIFs 1, 1A, and 2β that also impede selection of non-AUGs, suggesting that context nucleotides and AUG act coordinately to stabilize the preinitiation complex. Although eIF1 autoregulates by discriminating against poor context in yeast and mammals, this mechanism does not prevent eIF1 overproduction in yeast, accounting for the hyperaccuracy phenotype afforded by SUI1 overexpression.
Collapse
|
28
|
Wolf A, Caliebe A, Thomas NS, Ball EV, Mort M, Stenson PD, Krawczak M, Cooper DN. Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Hum Mutat 2011; 32:1137-43. [DOI: 10.1002/humu.21547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 11/05/2022]
|