1
|
Harris I, Immler S, Chapman T, Maklakov AA. Selection on the epigenome: small RNA inheritance in animal evolution. Trends Genet 2025:S0168-9525(25)00082-4. [PMID: 40379494 DOI: 10.1016/j.tig.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
The inheritance of small RNAs (sRNAs) is taxonomically widespread. Changing environments alter the production and presence of sRNAs in the germline, and this can in theory either increase offspring phenotypic variance as an evolutionary bet-hedging strategy or elicit predictive and adaptive phenotypic responses that increase offspring fitness. Nevertheless, the putative role of sRNA inheritance systems in adaptive evolution is still debated and it is currently unclear how selection acts on sRNAs. We outline two adaptive sRNA inheritance strategies - specialist and generalist - and discuss non-adaptive alternatives and the evolutionary implications of different strategies. Our review suggests that the role of natural selection in sRNA inheritance has been significantly overlooked, potentially leading to misinterpretations of the causal agents and the evolutionary implications of sRNA inheritance.
Collapse
Affiliation(s)
- Isaac Harris
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
2
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Lei L, Ikami K, Diaz Miranda EA, Ko S, Wilson F, Abbott H, Pandoy R, Jin S. The mouse Balbiani body regulates primary oocyte quiescence via RNA storage. Commun Biol 2024; 7:1247. [PMID: 39358443 PMCID: PMC11447053 DOI: 10.1038/s42003-024-06900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In mammalian females, the transition from dormancy in primordial follicles to follicular development is critical for maintaining ovarian function and reproductive longevity. In mice, the quiescent primary oocyte of the primordial follicle contains a Balbiani body (B-body), an organelle aggregate comprised of a spherical structure of Golgi complexes. Here we show that the structure of the B-body is maintained by microtubules and actin. The B-body stores mRNA-capping enzyme and 597 mRNAs associated with mRNA-decapping enzyme 1 A (DCP1A). Gene ontology analysis results indicate that proteins encoded by these mRNAs function in enzyme binding, cellular component organization and packing of telomere ends. Pharmacological depolymerization of microtubules or actin led to B-body disassociation and nascent protein synthesis around the dissociated B-bodies within three hours. An increased number of activated developing follicles were observed in ovaries with prolonged culture and the in vivo mouse model. Our results indicate that the mouse B-body is involved in the activation of dormant primordial follicles likely via translation of the B-body-associated RNAs in primary oocytes.
Collapse
Affiliation(s)
- Lei Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA.
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Buck Institute for Research on Aging, Novato, California, 94949, USA
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, 95616, USA
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Sooah Ko
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ronald Pandoy
- Buck Institute for Research on Aging, Novato, California, 94949, USA
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
5
|
Chen S, Phillips CM. HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1. Nat Commun 2024; 15:957. [PMID: 38302462 PMCID: PMC10834429 DOI: 10.1038/s41467-024-45245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
RNA interference (RNAi) is a conserved gene silencing process that exists in diverse organisms to protect genome integrity and regulate gene expression. In C. elegans, the majority of RNAi pathway proteins localize to perinuclear, phase-separated germ granules, which are comprised of sub-domains referred to as P granules, Mutator foci, Z granules, and SIMR foci. However, the protein components and function of the newly discovered SIMR foci are unknown. Here we demonstrate that HRDE-2 localizes to SIMR foci and interacts with the germline nuclear Argonaute HRDE-1 in its small RNA unbound state. In the absence of HRDE-2, HRDE-1 exclusively loads CSR-class 22G-RNAs rather than WAGO-class 22G-RNAs, resulting in inappropriate H3K9me3 deposition on CSR-target genes. Thus, our study demonstrates that the recruitment of unloaded HRDE-1 to germ granules, mediated by HRDE-2, is critical to ensure that the correct small RNAs are used to guide nuclear RNA silencing in the C. elegans germline.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Iwakawa HO, Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 2021; 82:30-43. [PMID: 34942118 DOI: 10.1016/j.molcel.2021.11.026] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
7
|
Kingston ER, Bartel DP. Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'- O-methylation. RNA (NEW YORK, N.Y.) 2021; 27:710-724. [PMID: 33853897 PMCID: PMC8127995 DOI: 10.1261/rna.078746.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/07/2021] [Indexed: 05/07/2023]
Abstract
Target-directed microRNA (miRNA) degradation (TDMD), which is mediated by the protein ZSWIM8, plays a widespread role in shaping miRNA abundances across bilateria. Some endogenous small interfering RNAs (siRNAs) of Drosophila cells have target sites resembling those that trigger TDMD, raising the question as to whether they too might undergo such regulation by Dora, the Drosophila ZSWIM8 homolog. Here, we find that some of these siRNAs are indeed sensitive to Dora when loaded into Ago1, the Argonaute paralog that preferentially associates with miRNAs. Despite this sensitivity when loaded into Ago1, these siRNAs are not detectably regulated by target-directed degradation because most molecules are loaded into Ago2, the Argonaute paralog that preferentially associates with siRNAs, and we find that siRNAs and miRNAs loaded into Ago2 are insensitive to Dora. One explanation for the protection of these small RNAs loaded into Ago2 is that these small RNAs are 2'-O-methylated at their 3' termini. However, 2'-O-methylation does not protect these RNAs from Dora-mediated target-directed degradation, which indicates that their protection is instead conferred by features of the Ago2 protein itself. Together, these observations clarify the requirements for regulation by target-directed degradation and expand our understanding of the role of 2'-O-methylation in small-RNA biology.
Collapse
Affiliation(s)
- Elena R Kingston
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Fridrich A, Modepalli V, Lewandowska M, Aharoni R, Moran Y. Unravelling the developmental and functional significance of an ancient Argonaute duplication. Nat Commun 2020; 11:6187. [PMID: 33273471 PMCID: PMC7713132 DOI: 10.1038/s41467-020-20003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this phylogenetic gap, we characterize the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulations, Argonaute-immunoprecipitations and high-throughput sequencing, we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
9
|
Gasparini S, Licursi V, Presutti C, Mannironi C. The Secret Garden of Neuronal circRNAs. Cells 2020; 9:E1815. [PMID: 32751850 PMCID: PMC7463782 DOI: 10.3390/cells9081815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
High-throughput transcriptomic profiling approaches have revealed that circular RNAs (circRNAs) are important transcriptional gene products, identified across a broad range of organisms throughout the eukaryotic tree of life. In the nervous system, they are particularly abundant, developmentally regulated, region-specific, and enriched in genes for neuronal proteins and synaptic factors. These features suggested that circRNAs are key components of an important layer of neuronal gene expression regulation, with known and anticipated functions. Here, we review major recognized aspects of circRNA biogenesis, metabolism and biological activities, examining potential new functions in the context of the nervous system.
Collapse
Affiliation(s)
- Silvia Gasparini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Carlo Presutti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
10
|
Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang S, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ. Structural Basis for Target-Directed MicroRNA Degradation. Mol Cell 2019; 75:1243-1255.e7. [PMID: 31353209 PMCID: PMC6754277 DOI: 10.1016/j.molcel.2019.06.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/08/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) broadly regulate gene expression through association with Argonaute (Ago), which also protects miRNAs from degradation. However, miRNA stability is known to vary and is regulated by poorly understood mechanisms. A major emerging process, termed target-directed miRNA degradation (TDMD), employs specialized target RNAs to selectively bind to miRNAs and induce their decay. Here, we report structures of human Ago2 (hAgo2) bound to miRNAs and TDMD-inducing targets. miRNA and target form a bipartite duplex with an unpaired flexible linker. hAgo2 cannot physically accommodate the RNA, causing the duplex to bend at the linker and display the miRNA 3' end for enzymatic attack. Altering 3' end display by changing linker flexibility, changing 3' end complementarity, or mutationally inducing 3' end release impacts TDMD efficiency, leading to production of distinct 3'-miRNA isoforms in cells. Our results uncover the mechanism driving TDMD and reveal 3' end display as a key determinant regulating miRNA activity via 3' remodeling and/or degradation.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Shannon M Klum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sonia Wang
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Nicole T Schirle Oakdale
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Target RNAs Strike Back on MicroRNAs. Front Genet 2018; 9:435. [PMID: 30333855 PMCID: PMC6175985 DOI: 10.3389/fgene.2018.00435] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell- or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3'-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3' end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Luciana E Giono
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Juan Pablo Fededa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel de la Mata
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
12
|
A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell 2018; 174:350-362.e17. [PMID: 29887379 DOI: 10.1016/j.cell.2018.05.022] [Citation(s) in RCA: 453] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 01/23/2023]
Abstract
Noncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs-a long ncRNA, a circular RNA, and two microRNAs-using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more effective than previously described examples of target-directed microRNA degradation, which come primarily from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7-targeted mRNAs and enables accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as in neurons, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network.
Collapse
|
13
|
Kandasamy SK, Zhu L, Fukunaga R. The C-terminal dsRNA-binding domain of Drosophila Dicer-2 is crucial for efficient and high-fidelity production of siRNA and loading of siRNA to Argonaute2. RNA (NEW YORK, N.Y.) 2017; 23:1139-1153. [PMID: 28416567 PMCID: PMC5473147 DOI: 10.1261/rna.059915.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/10/2017] [Indexed: 05/25/2023]
Abstract
Drosophila Dicer-2 efficiently and precisely produces 21-nucleotide (nt) siRNAs from long double-stranded RNA (dsRNA) substrates and loads these siRNAs onto the effector protein Argonaute2 for RNA silencing. The functional roles of each domain of the multidomain Dicer-2 enzyme in the production and loading of siRNAs are not fully understood. Here we characterized Dicer-2 mutants lacking either the N-terminal helicase domain or the C-terminal dsRNA-binding domain (CdsRBD) (ΔHelicase and ΔCdsRBD, respectively) in vivo and in vitro. We found that ΔCdsRBD Dicer-2 produces siRNAs with lowered efficiency and length fidelity, producing a smaller ratio of 21-nt siRNAs and higher ratios of 20- and 22-nt siRNAs in vivo and in vitro. We also found that ΔCdsRBD Dicer-2 cannot load siRNA duplexes to Argonaute2 in vitro. Consistent with these findings, we found that ΔCdsRBD Dicer-2 causes partial loss of RNA silencing activity in vivo. Thus, Dicer-2 CdsRBD is crucial for the efficiency and length fidelity in siRNA production and for siRNA loading. Together with our previously published findings, we propose that CdsRBD binds the proximal body region of a long dsRNA substrate whose 5'-monophosphate end is anchored by the phosphate-binding pocket in the PAZ domain. CdsRBD aligns the RNA to the RNA cleavage active site in the RNase III domain for efficient and high-fidelity siRNA production. This study reveals multifunctions of Dicer-2 CdsRBD and sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a high efficiency and fidelity for efficient RNA silencing.
Collapse
Affiliation(s)
- Suresh K Kandasamy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
14
|
Hung JH, Weng Z. Mapping Short Sequence Reads to a Reference Genome. Cold Spring Harb Protoc 2017; 2017:pdb.prot093161. [PMID: 27574204 DOI: 10.1101/pdb.prot093161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This protocol describes mapping short sequence reads to a reference genome using several programs. The example in this protocol starts with a ChIP-seq data set in FASTQ format, aligns the reads to the human genome using Bowtie, and uses some useful utilities of SAMtools and BEDTools. SAMtools and BEDTools are two collections of executables for manipulating the results of short-read aligners. By combining these tools, one can summarize and visualize alignments produced by Bowtie and perform basic analysis, such as determining the number of reads that are mapped to a certain gene. These tools can also be easily incorporated into computational pipelines of more complex analyses.
Collapse
|
15
|
Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production. Proc Natl Acad Sci U S A 2016; 113:14031-14036. [PMID: 27872309 DOI: 10.1073/pnas.1612393113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22-24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5'-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5'-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing.
Collapse
|
16
|
Kneitz S, Mishra RR, Chalopin D, Postlethwait J, Warren WC, Walter RB, Schartl M. Germ cell and tumor associated piRNAs in the medaka and Xiphophorus melanoma models. BMC Genomics 2016; 17:357. [PMID: 27183847 PMCID: PMC4869193 DOI: 10.1186/s12864-016-2697-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. Results To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. Conclusions Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2697-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Rasmi R Mishra
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - John Postlethwait
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR, 97403, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Blvd., St Louis, MO, 63108, USA
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Josef Schneider Straße 6, D-97074, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
17
|
Zhai L, Wang L, Teng F, Zhou L, Zhang W, Xiao J, Liu Y, Deng W. Argonaute and Argonaute-Bound Small RNAs in Stem Cells. Int J Mol Sci 2016; 17:208. [PMID: 26861290 PMCID: PMC4783940 DOI: 10.3390/ijms17020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Small RNAs are essential for a variety of cellular functions. Argonaute (AGO) proteins are associated with all of the different classes of small RNAs, and are indispensable in small RNA-mediated regulatory pathways. AGO proteins have been identified in various types of stem cells in diverse species from plants and animals. This review article highlights recent progress on how AGO proteins and AGO-bound small RNAs regulate the self-renewal and differentiation of distinct stem cell types, including pluripotent, germline, somatic, and cancer stem cells.
Collapse
Affiliation(s)
- Lihong Zhai
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lin Wang
- Xiangyang Oral Hospital, Xiangyang 441003, Hubei, China.
| | - Feng Teng
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Wenjing Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Ying Liu
- Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
18
|
Kobayashi H, Tomari Y. RISC assembly: Coordination between small RNAs and Argonaute proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:71-81. [DOI: 10.1016/j.bbagrm.2015.08.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
|
19
|
Ren G, Chen X, Yu B. Small RNAs meet their targets: when methylation defends miRNAs from uridylation. RNA Biol 2015; 11:1099-104. [PMID: 25483033 DOI: 10.4161/rna.36243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small RNAs are incorporated into Argonaute protein-containing complexes to guide the silencing of target RNAs in both animals and plants. The abundance of endogenous small RNAs is precisely controlled at multiple levels including transcription, processing and Argonaute loading. In addition to these processes, 3' end modification of small RNAs, the topic of a research area that has rapidly evolved over the last several years, adds another layer of regulation of their abundance, diversity and function. Here, we review our recent understanding of small RNA 3' end methylation and tailing.
Collapse
Affiliation(s)
- Guodong Ren
- a State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development; Institute of Plant Biology; School of Life Sciences; Fudan University ; Shanghai , China
| | | | | |
Collapse
|
20
|
Chou MT, Han BW, Hsiao CP, Zamore PD, Weng Z, Hung JH. Tailor: a computational framework for detecting non-templated tailing of small silencing RNAs. Nucleic Acids Res 2015; 43:e109. [PMID: 26007652 PMCID: PMC4632877 DOI: 10.1093/nar/gkv537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/10/2015] [Indexed: 12/19/2022] Open
Abstract
Small silencing RNAs, including microRNAs, endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), have been shown to play important roles in fine-tuning gene expression, defending virus and controlling transposons. Loss of small silencing RNAs or components in their pathways often leads to severe developmental defects, including lethality and sterility. Recently, non-templated addition of nucleotides to the 3′ end, namely tailing, was found to associate with the processing and stability of small silencing RNAs. Next Generation Sequencing has made it possible to detect such modifications at nucleotide resolution in an unprecedented throughput. Unfortunately, detecting such events from millions of short reads confounded by sequencing errors and RNA editing is still a tricky problem. Here, we developed a computational framework, Tailor, driven by an efficient and accurate aligner specifically designed for capturing the tailing events directly from the alignments without extensive post-processing. The performance of Tailor was fully tested and compared favorably with other general-purpose aligners using both simulated and real datasets for tailing analysis. Moreover, to show the broad utility of Tailor, we used Tailor to reanalyze published datasets and revealed novel findings worth further experimental validation. The source code and the executable binaries are freely available at https://github.com/jhhung/Tailor.
Collapse
Affiliation(s)
- Min-Te Chou
- Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan, 300, Republic of China
| | - Bo W Han
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chiung-Po Hsiao
- Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan, 300, Republic of China
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jui-Hung Hung
- Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan, 300, Republic of China
| |
Collapse
|
21
|
Akbari OS, Chen CH, Marshall JM, Huang H, Antoshechkin I, Hay BA. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. ACS Synth Biol 2014; 3:915-28. [PMID: 23654248 DOI: 10.1021/sb300079h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.
Collapse
Affiliation(s)
- Omar S. Akbari
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| | - Chun-Hong Chen
- Institute of Molecular and Genomic
Medicine, National Heath Research Institutes, 35 Kayen Road Zhunan Mioali, Taiwan
| | - John M. Marshall
- MRC Center for Outbreak Analysis & Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, U.K
| | - Haixia Huang
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| | - Igor Antoshechkin
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| | - Bruce A. Hay
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| |
Collapse
|
22
|
ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 2014; 5:5468. [PMID: 25406978 PMCID: PMC4238042 DOI: 10.1038/ncomms6468] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 10/03/2014] [Indexed: 11/09/2022] Open
Abstract
Small RNAs (sRNAs) are loaded into ARGONAUTE (AGO) proteins to induce gene silencing. In plants, the 5′-terminal nucleotide is important for sRNA sorting into different AGOs. Here, we show that miRNA duplex structure also contributes to miRNA sorting. Base-pairing at the 15th nucleotide of a miRNA duplex is important for miRNA sorting in both Arabidopsis AGO1 and AGO2. AGO2 favors miRNA duplexes with no middle mismatches, whereas AGO1 tolerates, or prefers, duplexes with central mismatches. AGO structure modeling and mutational analyses reveal that the QF-V motif within the conserved PIWI domain contributes to recognition of base-pairing at the 15th nucleotide of a duplex, while the DDDE catalytic core of AtAGO2 is important for recognition of the central nucleotides. Finally, we rescued the adaxialized phenotype of ago1-12, which is largely due to miR165 loss-of-function, by changing miR165 duplex structure which we predict redirects it to AGO2.
Collapse
|
23
|
Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci U S A 2014; 111:6365-70. [PMID: 24733911 DOI: 10.1073/pnas.1405083111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In plants, methylation catalyzed by HEN1 (small RNA methyl transferase) prevents microRNAs (miRNAs) from degradation triggered by uridylation. How methylation antagonizes uridylation of miRNAs in vivo is not well understood. In addition, 5' RNA fragments (5' fragments) produced by miRNA-mediated RNA cleavage can be uridylated in plants and animals. However, the biological significance of this modification is unknown, and enzymes uridylating 5' fragments remain to be identified. Here, we report that in Arabidopsis, HEN1 suppressor 1 (HESO1, a miRNA nucleotidyl transferase) uridylates 5' fragments to trigger their degradation. We also show that Argonaute 1 (AGO1), the effector protein of miRNAs, interacts with HESO1 through its Piwi/Argonaute/Zwille and PIWI domains, which bind the 3' end of miRNA and cleave the target mRNAs, respectively. Furthermore, HESO1 is able to uridylate AGO1-bound miRNAs in vitro. miRNA uridylation in vivo requires a functional AGO1 in hen1, in which miRNA methylation is impaired, demonstrating that HESO1 can recognize its substrates in the AGO1 complex. On the basis of these results, we propose that methylation is required to protect miRNAs from AGO1-associated HESO1 activity that normally uridylates 5' fragments.
Collapse
|
24
|
Yang JS, Smibert P, Westholm JO, Jee D, Maurin T, Lai EC. Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Res 2014; 42:1987-2002. [PMID: 24220090 PMCID: PMC3919586 DOI: 10.1093/nar/gkt1038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/02/2023] Open
Abstract
Although Dicer is essential for general microRNA (miRNA) biogenesis, vertebrate mir-451 is Dicer independent. Instead, its short pre-miRNA hairpin is 'sliced' by Ago2, then 3'-resected into mature miRNAs. Here, we show that Drosophila cells and animals generate functional small RNAs from mir-451-type precursors. However, their bulk maturation arrests as Ago-cleaved pre-miRNAs, which mostly associate with the RNAi effector AGO2. Routing of pre-mir-451 hairpins to the miRNA effector AGO1 was inhibited by Dicer-1 and its partner Loqs. Loss of these miRNA factors promoted association of pre-mir-451 with AGO1, which sliced them and permitted maturation into ∼ 23-26 nt products. The difference was due to the 3' modification of single-stranded species in AGO2 by Hen1 methyltransferase, whose depletion permitted 3' trimming of Ago-cleaved pre-miRNAs in AGO2. Surprisingly, Nibbler, a 3'-5' exoribonuclease that trims 'long' mature miRNAs in AGO1, antagonized miR-451 processing. We used an in vitro reconstitution assay to identify a soluble, EDTA-sensitive activity that resects sliced pre-miRNAs in AGO1 complexes. Finally, we use deep sequencing to show that depletion of dicer-1 increases the diversity of small RNAs in AGO1, including some candidate mir-451-like loci. Altogether, we document unexpected aspects of miRNA biogenesis and Ago sorting, and provide insights into maturation of Argonaute-cleaved miRNA substrates.
Collapse
Affiliation(s)
- Jr-Shiuan Yang
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Jakub O. Westholm
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - David Jee
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Thomas Maurin
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
25
|
Fukunaga R, Colpan C, Han BW, Zamore PD. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain. EMBO J 2014; 33:371-84. [PMID: 24488111 DOI: 10.1002/embj.201387176] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5' terminal phosphate and a two-nucleotide, 3' overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5' terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme.
Collapse
Affiliation(s)
- Ryuya Fukunaga
- Howard Hughes Medical Institute RNA Therapeutics Institute University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | |
Collapse
|
26
|
Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 2013; 20:789-95. [PMID: 23708604 PMCID: PMC3702675 DOI: 10.1038/nsmb.2606] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 12/18/2022]
Abstract
Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used Drosophila and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core Drosophila miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within in vivo clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in Dicer-knockout cells and was rescued by proteasome blockade or introduction of either Dicer plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
Collapse
|
28
|
Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013; 14:523-34. [PMID: 23797853 DOI: 10.1038/nrg3495] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-RNA-guided gene regulation is a recurring theme in biology. Animal germ cells are characterized by an intriguing small-RNA-mediated gene-silencing mechanism known as the PIWI pathway. For a long time, both the biogenesis of PIWI-interacting RNAs (piRNAs) as well as their mode of gene silencing has remained elusive. A recent body of work is shedding more light on both aspects and implicates PIWI in the establishment of transgenerational epigenetic states. In fact, the epigenetic states imposed by PIWI on targets may actually drive piRNA production itself. These findings start to couple small RNA biogenesis with small-RNA-mediated epigenetics.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Abstract
Small-RNA-guided gene regulation has emerged as one of the fundamental principles in cell function, and the major protein players in this process are members of the Argonaute protein family. Argonaute proteins are highly specialized binding modules that accommodate the small RNA component - such as microRNAs (miRNAs), short interfering RNAs (siRNAs) or PIWI-associated RNAs (piRNAs) - and coordinate downstream gene-silencing events by interacting with other protein factors. Recent work has made progress in our understanding of classical Argonaute-mediated gene-silencing principles, such as the effects on mRNA translation and decay, but has also implicated Argonaute proteins in several other cellular processes, such as transcriptional regulation and splicing.
Collapse
|
30
|
De N, Young L, Lau PW, Meisner NC, Morrissey DV, MacRae IJ. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. Mol Cell 2013; 50:344-55. [PMID: 23664376 PMCID: PMC3746828 DOI: 10.1016/j.molcel.2013.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Abstract
Argonaute proteins use small RNAs to guide the silencing of complementary target RNAs in many eukaryotes. Although small RNA biogenesis pathways are well studied, mechanisms for removal of guide RNAs from Argonaute are poorly understood. Here we show that the Argonaute2 (Ago2) guide RNA complex is extremely stable, with a half-life on the order of days. However, highly complementary target RNAs destabilize the complex and significantly accelerate release of the guide RNA from Ago2. This "unloading" activity can be enhanced by mismatches between the target and the guide 5' end and attenuated by mismatches to the guide 3' end. The introduction of 3' mismatches leads to more potent silencing of abundant mRNAs in mammalian cells. These findings help to explain why the 3' ends of mammalian microRNAs (miRNAs) rarely match their targets, suggest a mechanism for sequence-specific small RNA turnover, and offer insights for controlling small RNAs in mammalian cells.
Collapse
Affiliation(s)
- Nabanita De
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92121, USA
| | - Lisa Young
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avevnue, Cambridge, MA 02139, USA
| | - Pick-Wei Lau
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92121, USA
| | | | - David V. Morrissey
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avevnue, Cambridge, MA 02139, USA
| | - Ian J. MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92121, USA
| |
Collapse
|
31
|
Okamura K, Ladewig E, Zhou L, Lai EC. Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 2013; 27:778-92. [PMID: 23535236 PMCID: PMC3639418 DOI: 10.1101/gad.211698.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
In the canonical animal microRNA (miRNA) pathway, Drosha generates ∼60- to 70-nucleotide pre-miRNA hairpins that are cleaved by Dicer into small RNA duplexes that load into Argonaute proteins, which retain a single mature strand in the active complex. The terminal loops of some miRNA hairpins regulate processing efficiency, but once liberated by Dicer, they are generally considered nonfunctional by-products. Here, we show that specific miRNA loops accumulate in effector Argonaute complexes in Drosophila and mediate miRNA-type repression. This was unexpected, since endogenous loading of Argonaute proteins was believed to occur exclusively via small RNA duplexes. Using in vitro assays, which recapitulate Argonaute-specific loop loading from synthetic pre-miRNAs and even single-stranded oligoribonucleotides corresponding to miRNA loops, we reveal that the loop-loading mechanism is distinct from duplex loading. We also show that miRNA loops loaded into the miRNA effector AGO1 are subject to 3' resection, and structure-function analyses indicate selectivity of loop loading. Finally, we demonstrate that select miRNA loops in mammals are similarly loaded into Argonaute complexes and direct target repression. Altogether, we reveal a conserved mechanism that yields functional RNAs from miRNA loop regions, broadening the repertoire of Argonaute-dependent regulatory RNAs and providing evidence for functionality of endogenous ssRNA species.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604
| | - Erik Ladewig
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Li Zhou
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
32
|
Scott DD, Norbury CJ. RNA decay via 3' uridylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:654-65. [PMID: 23385389 DOI: 10.1016/j.bbagrm.2013.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The post-transcriptional addition of non-templated nucleotides to the 3' ends of RNA molecules can have a profound impact on their stability and biological function. Evidence accumulated over the past few decades has identified roles for polyadenylation in RNA stabilisation, degradation and, in the case of eukaryotic mRNAs, translational competence. By contrast, the biological significance of RNA 3' modification by uridylation has only recently started to become apparent. The evolutionary origin of eukaryotic RNA terminal uridyltransferases can be traced to an ancestral poly(A) polymerase. Here we review what is currently known about the biological roles of these enzymes, the ways in which their activity is regulated and the consequences of this covalent modification for the target RNA molecule, with a focus on those instances where uridylation has been found to contribute to RNA degradation. Roles for uridylation have been identified in the turnover of mRNAs, pre-microRNAs, piwi-interacting RNAs and the products of microRNA-directed mRNA cleavage; many mature microRNAs are also modified by uridylation, though the consequences in this case are currently less well understood. In the case of piwi-interacting RNAs, modification of the 3'-terminal nucleotide by the HEN1 methyltransferase blocks uridylation and so stabilises the small RNA. The extent to which other uridylation-dependent mechanisms of RNA decay are similarly regulated awaits further investigation. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Daniel D Scott
- University of Oxford, Sir William Dunn School of Pathology, Oxford, UK.
| | | |
Collapse
|
33
|
Nishida KM, Miyoshi K, Ogino A, Miyoshi T, Siomi H, Siomi MC. Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Mol Cell 2013; 49:680-91. [PMID: 23375501 DOI: 10.1016/j.molcel.2012.12.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/16/2012] [Accepted: 12/26/2012] [Indexed: 11/17/2022]
Abstract
Endogenous small interfering RNAs (endo-siRNAs) in Drosophila are processed by Dicer-2 (Dcr-2) and loaded onto Ago2 by the Dcr-2/R2D2 heterodimer. In r2d2 mutants, the level of endo-siRNAs is unchanged, but endo-siRNAs are misloaded onto Ago1. However, the mechanism underlying the control of endo-siRNA sorting by R2D2 remains unknown. Here, we show that R2D2 controls endo-siRNA sorting by localizing Dcr-2, and presumably endo-siRNA duplexes, to cytoplasmic foci, D2 bodies. Ago2, but not Ago1, localized to D2 bodies. dsRNA-binding-deficient mutant, but not wild-type, R2D2 failed to localize D2 bodies and caused endo-siRNA misdirection to Ago1 in R2D2-depleted cells. However, R2D2 was dispensable for sorting miRNAs and exogenous siRNAs onto Ago1 and Ago2, respectively, in vivo. Endo- and exo-siRNA guide selection also occurred R2D2 independently. The functions of R2D2 are required to avoid endo-siRNA misdirection to Ago1, because Ago1 is capable of loading incompletely complementary miRNA duplexes and endo-siRNA duplexes.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Horn T, Boutros M. Design of RNAi reagents for invertebrate model organisms and human disease vectors. Methods Mol Biol 2013; 942:315-346. [PMID: 23027059 DOI: 10.1007/978-1-62703-119-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNAi has become a very versatile tool to silence gene expression in a variety of organisms, in particular when classical genetic methods are missing. However, the application of this method in functional studies has raised new challenges in order to design RNAi reagents that minimize false positives and false negatives. Because the performance of reagents cannot be validated on a genome-wide scale, improved computational methods are required that consider experimentally derived quality measures. In this chapter, we describe computational methods for the design of RNAi reagents for invertebrate model organisms and human disease vectors, such as Anopheles. We describe procedures for designing short and long double-stranded RNAs for single genes, and evaluate their predicted specificity and efficiency. Using a bioinformatics pipeline we also describe how to design a genome-wide RNAi library for Anopheles gambiae.
Collapse
Affiliation(s)
- Thomas Horn
- Department of Cell and Molecular Biology, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
35
|
Forte E, Luftig MA. Use of viral systems to study miRNA-mediated regulation of gene expression in human cells. Methods Mol Biol 2013; 936:143-156. [PMID: 23007506 DOI: 10.1007/978-1-62703-083-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are a class of small ∼22 nt regulatory RNAs that modulate mRNA expression in all multicellular eukaryotic organisms. Interestingly, viruses also encode miRNAs and these viral miRNAs target cellular and viral mRNAs to regulate virus replication and latent infection. In particular, herpesviruses encode a large number of miRNAs. Herpesvirus infection also changes the normal expression profile of cellular miRNAs. New genetic tools have recently been generated to study the function of viral and cellular miRNAs in virus-infected cells. The creation of these reagents and use in Epstein-Barr virus-infected lymphoblastoid cell lines are discussed as a model viral system for the investigation of miRNA function.
Collapse
Affiliation(s)
- Eleonora Forte
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
36
|
Maurin T, Cazalla D, Yang JS, Bortolamiol-Becet D, Lai EC. RNase III-independent microRNA biogenesis in mammalian cells. RNA (NEW YORK, N.Y.) 2012; 18:2166-73. [PMID: 23097423 PMCID: PMC3504669 DOI: 10.1261/rna.036194.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/04/2012] [Indexed: 05/29/2023]
Abstract
RNase III enzymes are fundamental to the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs) in all species studied. Although alternative miRNA pathways independent of Drosha or Dicer exist, each still requires one RNase III-type enzyme. Here, we describe two strategies that marry either RNase Z or the Integrator complex with the slicing activity of Argonaute2 to generate highly functional mature miRNAs. We provide stringent validation of their RNase III independence by demonstrating efficient miRNA biogenesis and activity in Drosha and Dicer knockout cells. These data provide proof-of-principle evidence for additional mechanistic possibilities for efficient generation of small regulatory RNAs, and represent novel silencing triggers that may be exploited for technical purposes.
Collapse
Affiliation(s)
- Thomas Maurin
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Demián Cazalla
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Jr-Shiuan Yang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
37
|
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 2012; 8:e1002702. [PMID: 22829772 PMCID: PMC3400576 DOI: 10.1371/journal.pgen.1002702] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/21/2012] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi)–related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA) co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3′ ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA–methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3′-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1–bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4–bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways. Small RNAs (sRNAs) have been shown to be potent regulators of gene expression in many different systems. They act by providing sequence specificity to Argonaute (Ago) proteins that in turn affect the expression and/or stability of mRNAs, or affect chromatin structures through recognition of nascent transcripts. Stability of sRNAs can be regulated by methylation of their 3′ end. This modification prevents addition of uridine residues that can destabilize the sRNA. The enzyme that catalyzes the methylation of sRNAs has been identified in Arabidopsis: HEN1. We describe studies on the C. elegans homolog of Hen1, henn-1. Our findings show that HENN-1 protein does not stably associate with the Ago proteins binding methylated sRNAs, but that HENN-1 does localize to subcellular regions known to host these factors. We find that the two known methylated sRNA species in C. elegans (21U and 26G) respond differently to loss of henn-1. While HENN-1 is required for 26G RNA stability in the germline, it has limited impact on 21U RNAs. In addition, we demonstrate that only ERGO-1–bound 26G RNAs are methylated, while those bound by ALG-3/4, are not. Our findings further refine the general understanding of 21U and 26G RNA pathways and identify two separable effects of HENN-1 on these RNAi–related mechanisms.
Collapse
|
38
|
The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet 2012; 8:e1002617. [PMID: 22548001 PMCID: PMC3330095 DOI: 10.1371/journal.pgen.1002617] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/03/2012] [Indexed: 01/01/2023] Open
Abstract
Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2'-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.
Collapse
|
39
|
Han BW, Hung JH, Weng Z, Zamore PD, Ameres SL. The 3'-to-5' exoribonuclease Nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 2011; 21:1878-87. [PMID: 22055293 DOI: 10.1016/j.cub.2011.09.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are ~22 nucleotide (nt) small RNAs that control development, physiology, and pathology in animals and plants. Production of miRNAs involves the sequential processing of primary hairpin-containing RNA polymerase II transcripts by the RNase III enzymes Drosha in the nucleus and Dicer in the cytoplasm. miRNA duplexes then assemble into Argonaute proteins to form the RNA-induced silencing complex (RISC). In mature RISC, a single-stranded miRNA directs the Argonaute protein to bind partially complementary sequences, typically in the 3' untranslated regions of messenger RNAs, repressing their expression. RESULTS Here, we show that after loading into Argonaute1 (Ago1), more than a quarter of all Drosophila miRNAs undergo 3' end trimming by the 3'-to-5' exoribonuclease Nibbler (CG9247). Depletion of Nibbler by RNA interference (RNAi) reveals that miRNAs are frequently produced by Dicer-1 as intermediates that are longer than ~22 nt. Trimming of miRNA 3' ends occurs after removal of the miRNA* strand from pre-RISC and may be the final step in RISC assembly, ultimately enhancing target messenger RNA repression. In vivo, depletion of Nibbler by RNAi causes developmental defects. CONCLUSIONS We provide a molecular explanation for the previously reported heterogeneity of miRNA 3' ends and propose a model in which Nibbler converts miRNAs into isoforms that are compatible with the preferred length of Ago1-bound small RNAs.
Collapse
Affiliation(s)
- Bo W Han
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
40
|
Johnston M, Hutvagner G. Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation. SILENCE 2011; 2:5. [PMID: 21943311 PMCID: PMC3199228 DOI: 10.1186/1758-907x-2-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022]
Abstract
Shortly after their discovery, repertoires of miRNA were identified, together with proteins involved in their biogenesis and action. It is now obvious that miRNA-mediated gene regulation itself is regulated at multiple levels. Identifying the regulatory mechanisms that underpin small RNA homeostasis by modulation of their biogenesis and action has become a key issue, which can be partly resolved by identifying mediators of Argonautes turnover. An emerging theme in the control of Argonaute stability and activity is through posttranslational modifications, which are the focus of this review.
Collapse
Affiliation(s)
- Michael Johnston
- RNA Biology, Department of Biology, Swiss Federal Institute of Technology Zurich, LFW D18,1 Universitätstrasse 2, 8092, Zürich, Switzerland.
| | | |
Collapse
|
41
|
Seitz H, Tushir JS, Zamore PD. A 5'-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. SILENCE 2011; 2:4. [PMID: 21649885 PMCID: PMC3127740 DOI: 10.1186/1758-907x-2-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022]
Abstract
Background MicroRNA (miRNA) are diverse in sequence and have a single known sequence bias: they tend to start with uridine (U). Results Our analyses of fly, worm and mouse miRNA sequence data reveal that the 5′-U is recognized after miRNA production. Only one of the two strands can be assembled into Argonaute protein from a single miRNA/miRNA* molecule: in fly embryo lysate, a 5′-U promotes miRNA loading while decreasing the loading of the miRNA*. Conclusion We suggest that recognition of the 5′-U enhances Argonaute loading by a mechanism distinct from its contribution to weakening base pairing at the 5′-end of the prospective miRNA and, as recently proposed in Arabidopsis and in humans, that it improves miRNA precision by excluding incorrectly processed molecules bearing other 5′-nt.
Collapse
Affiliation(s)
- Hervé Seitz
- Laboratoire de Biologie Moléculaire Eucaryote, 118 route de Narbonne, Université Toulouse III Paul Sabatier (UPS), F-31000 Toulouse, France.
| | | | | |
Collapse
|
42
|
Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD. Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol Cell 2011; 42:172-84. [PMID: 21419681 PMCID: PMC3115569 DOI: 10.1016/j.molcel.2011.03.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 01/26/2011] [Accepted: 03/03/2011] [Indexed: 12/29/2022]
Abstract
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.
Collapse
Affiliation(s)
- Elif Sarinay Cenik
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ryuya Fukunaga
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Gang Lu
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robert Dutcher
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yeming Wang
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M. Tanaka Hall
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Phillip D. Zamore
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
43
|
Hartig JV, Förstemann K. Loqs-PD and R2D2 define independent pathways for RISC generation in Drosophila. Nucleic Acids Res 2011; 39:3836-51. [PMID: 21245036 PMCID: PMC3089465 DOI: 10.1093/nar/gkq1324] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Drosophila, siRNAs are classified as endo- or exo-siRNAs based on their origin. Both are processed from double-stranded RNA precursors by Dcr-2 and then loaded into the Argonaute protein Ago2. While exo-siRNAs serve to defend the cell against viruses, endo-siRNAs restrict the spread of selfish DNA in somatic cells, analogous to piRNAs in the germ line. Endo- and exo-siRNAs display a differential requirement for double-stranded RNA binding domain proteins (dsRBPs): R2D2 is needed to load exo-siRNAs into Ago2 while the PD isoform of Loquacious (Loqs-PD) stimulates Dcr-2 during the nucleolytic processing of hairpin-derived endo-siRNAs. In cell culture assays, R2D2 antagonizes Loqs-PD in endo-siRNA silencing and Loqs-PD is an inhibitor of RNA interference. Loqs-PD can interact via the C-terminus unique to this isoform with the DExH/D-helicase domain of Drosophila Dcr-2, where binding of R2D2 has also been localized. Separation of the two pathways is not complete; rather, the dicing and Ago2-loading steps appear uncoupled, analogous to the corresponding steps in miRNA biogenesis. Analysis of deep sequencing data further demonstrates that in r2d2 mutant flies, siRNAs can be loaded into Ago2 but not all siRNA classes are equally proficient for this. Thus, the canonical Ago2-RISC loading complex can be bypassed under certain circumstances.
Collapse
Affiliation(s)
- Julia V Hartig
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
44
|
Abstract
Small RNAs directly or indirectly impact nearly every biological process in eukaryotic cells. To perform their myriad roles, not only must precise small RNA species be generated, but they must also be loaded into specific effector complexes called RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs and different members of this large family have specific expression patterns, protein binding partners and biochemical capabilities. In this Review, we explore the mechanisms that pair specific small RNA strands with their partner proteins, with an eye towards the substantial progress that has been recently made in understanding the sorting of the major small RNA classes - microRNAs (miRNAs) and small interfering RNAs (siRNAs) - in plants and animals.
Collapse
Affiliation(s)
- Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|