1
|
Hayashi Y, Takehira K, Nozawa K, Suzuki T, Masuta Y, Kato A, Ito H. ONSEN shows different transposition activities in RdDM pathway mutants. Genes Genet Syst 2020; 95:183-190. [PMID: 32893196 DOI: 10.1266/ggs.20-00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most transposable elements (TEs) are tightly regulated by epigenetic mechanisms such as DNA methylation. RNA-directed DNA methylation (RdDM) is a major control mechanism of TE silencing in plants. We analyzed the transposition activity of a heat-responsive retrotransposon, ONSEN, in Arabidopsis thaliana. Transgenerational transposition was observed in RdDM pathway-deficient mutants upon heat stress. The transposition frequency was higher in the mutants of the upstream processes, but lower in the mutants of the downstream steps, of RdDM. The transposition frequency was not associated with the number of extrachromosomal ONSEN copies. Constitutive heterochromatin of interphase nuclei was dispersed upon heat stress. The degree of decondensation was higher in the RdDM mutants than in wild-type plants subjected to heat stress. We discuss the possible role of RdDM in the regulation of ONSEN transposition upon heat stress.
Collapse
Affiliation(s)
- Yui Hayashi
- Graduate School of Life Science, Hokkaido University
| | | | - Kosuke Nozawa
- Graduate School of Life Science, Hokkaido University
| | | | | | | | | |
Collapse
|
3
|
Tramontano A, Donath A, Bernhart SH, Reiche K, Böhmdorfer G, Stadler PF, Bachmair A. Deletion analysis of the 3' long terminal repeat sequence of plant retrotransposon Tto1 identifies 125 base pairs redundancy as sufficient for first strand transfer. Virology 2011; 412:75-82. [PMID: 21262516 PMCID: PMC3061985 DOI: 10.1016/j.virol.2010.12.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/29/2010] [Accepted: 12/31/2010] [Indexed: 11/30/2022]
Abstract
Retroviruses and many retrotransposons are flanked by sequence repeats called long terminal repeats (LTRs). These sequences contain a promoter region, which is active in the 5′ LTR, and transcription termination signals, which are active in the LTR copy present at the 3′ end. A section in the middle of the LTR, called Redundancy region, occurs at both ends of the mRNA. Here we show that in the copia type retrotransposon Tto1, the promoter and terminator functions of the LTR can be supplied by heterologous sequences, thereby converting the LTR into a significantly shorter sub-terminal repeat. An engineered Tto1 element with 125 instead of the usual 574 base pairs repeated in the 5′ and 3′ region can still promote strand transfer during cDNA synthesis, defining a minimal Redundancy region for this element. Based on this finding, we propose a model for first strand transfer of Tto1.
Collapse
Affiliation(s)
- Andrea Tramontano
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Alexander Donath
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center of Bioinformatics, University of Leipzig, Härtelstrasse 16–18, D-04107 Leipzig, Germany
| | - Stephan H. Bernhart
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center of Bioinformatics, University of Leipzig, Härtelstrasse 16–18, D-04107 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Kristin Reiche
- RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstr. 1, D-04103 Leipzig, Germany
| | - Gudrun Böhmdorfer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center of Bioinformatics, University of Leipzig, Härtelstrasse 16–18, D-04107 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
- RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstr. 1, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
- Corresponding author. Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
4
|
Böhmdorfer G, Tramontano A, Luxa K, Bachmair A. A synthetic biology approach allows inducible retrotransposition in whole plants. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:133-8. [PMID: 20805932 PMCID: PMC2923297 DOI: 10.1007/s11693-010-9053-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/30/2022]
Abstract
Retrotransposons are mobile genetic elements that transpose by reverse transcription of element RNA, followed by insertion of the cDNA into new positions of the host genome. Although they are major constituents of eukaryotic genomes, many facets of their biology remain to be understood. Transposition is generally rare, suggesting that it is subject to tight regulation. However, only the first regulatory step (transcriptional induction) is currently amenable to investigation in higher eukaryotes. To investigate the complete life cycle of a long terminal repeat (LTR) retrotransposon in plants, we established a synthetic biology program on tobacco retrotransposon Tto1, and achieved transposition in whole plants triggered by an inducible promoter. The engineered element, iTto (inducible Tto1), is a novel tool for analysis of retrotransposition in plants. In addition, it allows to explore the potential of an inducible retrotransposon for insertional mutagenesis.
Collapse
|
5
|
Chang W, Schulman AH. BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:40-50. [PMID: 18547398 DOI: 10.1111/j.1365-313x.2008.03572.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The BARE retrotransposon family comprises more than 10(4) copies in the barley (Hordeum vulgare) genome. The element is bounded by long terminal repeats (LTRs, 1829 bp) containing promoters and RNA-processing motifs required for retrotransposon replication. Members of the BARE1 subfamily are transcribed, translated, and form virus-like particles. Very similar retrotransposons are expressed as RNA and protein in other cereals and grasses. The BARE2 subfamily is, however, non-autonomous because it cannot produce the GAG capsid protein. The pattern of plant development implies that inheritance of integrated copies should critically depend, in the first instance, on cell-specific and tissue-specific expression patterns. We examined transcription of BARE within different barley tissues and analyzed the promoter function of the BARE LTR. The two promoters of the LTR vary independently in activity by tissue. In embryos TATA1 was almost inactive, whereas transcription in callus appears to be less tightly regulated than in other tissues. Deletion analyses of the LTR uncovered strong positive and negative regulatory elements. The promoters produce multiple groups of transcripts that are distinct by their start and stop points, by their sequences, and by whether they are polyadenylated. Some of these groups do not share the common end structures needed for template switching during replication. Only about 15% of BARE transcripts are polyadenylated. The data suggest that distinct subfamilies of transcripts may play independent roles in providing the proteins and replication templates for the BARE retrotransposon life cycle.
Collapse
Affiliation(s)
- Wei Chang
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Helsinki, Finland
| | | |
Collapse
|
6
|
Böhmdorfer G, Luxa K, Frosch A, Garber K, Tramontano A, Jelenic S, Weber M, Bachmair A. Virus-like particle formation and translational start site choice of the plant retrotransposon Tto1. Virology 2008; 373:437-46. [PMID: 18191436 DOI: 10.1016/j.virol.2007.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 11/27/2007] [Indexed: 11/16/2022]
Abstract
Ty1/copia group retrotransposon Tto1 from tobacco was put under control of an inducible promoter for expression in Arabidopsis thaliana. The system was used to analyze intermediates of the transposition process. The Tto1 RNA 5' region has a complex structure and contains several AUG codons. We therefore sought to experimentally define the translation initiation site. Constructs starting at various positions within the structural gag region were expressed in planta and functionally characterized. We found that gag proteins starting at the first ATG of the gag-pol ORF (ATG1), but also those starting at the third ATG of the gag-pol ORF (ATG3), can form virus-like particles (VLPs). However, gag protein expressed by the inducible Tto1 element had a size similar to gag starting at ATG1, and mutation of ATG1 in the inducible element abolished reverse transcription. This suggested that translation initiation at ATG1 is essential for the Tto1 life cycle. To support this conjecture, gag protein starting at ATG1, or gag protein shortened amino-terminally by nine amino acids (starting at the second ATG of the gag region, ATG2), was co-expressed with Tto1 carrying mutations at ATG1 and ATG2. Trans-complementation of the defective Tto element by gag starting at ATG1, but not by gag starting at ATG2, defines ATG1 as the functional translation initiation site.
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|