1
|
Yang X, Yang J, Huang H, Yan X, Li X, Lin Z. Achieving robust synthetic tolerance in industrial E. coli through negative auto-regulation of a DsrA-Hfq module. Synth Syst Biotechnol 2024; 9:462-469. [PMID: 38634002 PMCID: PMC11021974 DOI: 10.1016/j.synbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
In industrial fermentation processes, microorganisms often encounter acid stress, which significantly impact their productivity. This study focused on the acid-resistant module composed of small RNA (sRNA) DsrA and the sRNA chaperone Hfq. Our previous study had shown that this module improved the cell growth of Escherichia coli MG1655 at low pH, but failed to obtain this desired phenotype in industrial strains. Here, we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode. We then assessed the potential of the CymR-based negative auto-regulation (NAR) circuit for industrial application, under different media, strains and pH levels. Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of E. coli MG1655. This circuit was robust and worked well in the industrial lysine-producing strain E. coli SCEcL3 at a starting pH of 6.8 and without pH control, resulting in a 250 % increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain. This study showed the practical application of NAR circuit in regulating DsrA-Hfq module, effectively and robustly improving the acid tolerance of industrial strains, which provides a new approach for breeding industrial strains with tolerance phenotype.
Collapse
Affiliation(s)
- Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jingduan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Haozheng Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- School of Biomedicine, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Rodgers ML, O'Brien B, Woodson SA. Small RNAs and Hfq capture unfolded RNA target sites during transcription. Mol Cell 2023; 83:1489-1501.e5. [PMID: 37116495 PMCID: PMC10176597 DOI: 10.1016/j.molcel.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/11/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
Small ribonucleoproteins (sRNPs) target nascent precursor RNAs to guide folding, modification, and splicing during transcription. Yet, rapid co-transcriptional folding of the RNA can mask sRNP sites, impeding target recognition and regulation. To examine how sRNPs target nascent RNAs, we monitored binding of bacterial Hfq⋅DsrA sRNPs to rpoS transcripts using single-molecule co-localization co-transcriptional assembly (smCoCoA). We show that Hfq⋅DsrA recursively samples the mRNA before transcription of the target site to poise it for base pairing with DsrA. We adapted smCoCoA to precisely measure when the target site is synthesized and revealed that Hfq⋅DsrA often binds the mRNA during target site synthesis close to RNA polymerase (RNAP). We suggest that targeting transcripts near RNAP allows an sRNP to capture a site before the transcript folds, providing a kinetic advantage over post-transcriptional targeting. We propose that other sRNPs may also use RNAP-proximal targeting to hasten recognition and regulation.
Collapse
Affiliation(s)
- Margaret L Rodgers
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Brett O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
King KA, Caudill MT, Caswell CC. A comprehensive review of small regulatory RNAs in Brucella spp. Front Vet Sci 2022; 9:1026220. [PMID: 36532353 PMCID: PMC9751625 DOI: 10.3389/fvets.2022.1026220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Brucella spp. are Gram-negative bacteria that naturally infect a variety of domesticated and wild animals, often resulting in abortions and sterility. Humans exposed to these animals or animal products can also develop debilitating, flu-like disease. The brucellae are intracellular pathogens that reside predominantly within immune cells, typically macrophages, where they replicate in a specialized compartment. This capacity of Brucella to survive and replicate within macrophages is essential to their ability to cause disease. In recent years, several groups have identified and characterized small regulatory RNAs (sRNAs) as critical factors in the control of Brucella physiology within macrophages and overall disease virulence. sRNAs are generally < 300 nucleotides in length, and these independent sRNA transcripts are encoded either next to (i.e., cis-encoded) or at a distant location to (i.e., trans-encoded) the genes that they regulate. Trans-encoded sRNAs interact with the mRNA transcripts through short stretches of imperfect base pairing that often require the RNA chaperone Hfq to facilitate sRNA-mRNA interaction. In many instances, these sRNA-mRNA interactions inhibit gene expression, usually by occluding the ribosome-binding site (RBS) and/or by decreasing the stability of the mRNA, leading to degradation of the transcript. A number of sRNAs have been predicted and authenticated in Brucella strains, and a variety of approaches, techniques, and means of validation have been employed in these efforts. Nonetheless, some important issues and considerations regarding the study of sRNA regulation in Brucella need to be addressed. For example, the lack of uniform sRNA nomenclature in Brucella has led to difficulty in comparisons of sRNAs across the different Brucella species, and there exist multiple names in the literature for what are functionally the same sRNA. Moreover, even though bona fide sRNAs have been discovered in Brucella, scant functional information is known about the regulatory activities of these sRNAs, or the extent to which these sRNAs are required for the intracellular life and/or host colonization by the brucellae. Therefore, this review summarizes the historical context of Hfq and sRNAs in Brucella; our current understanding of Brucella sRNAs; and some future perspectives and considerations for the field of sRNA biology in the brucellae.
Collapse
Affiliation(s)
| | | | - Clayton C. Caswell
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Cai H, Roca J, Zhao YF, Woodson SA. Dynamic Refolding of OxyS sRNA by the Hfq RNA Chaperone. J Mol Biol 2022; 434:167776. [PMID: 35934049 PMCID: PMC10044511 DOI: 10.1016/j.jmb.2022.167776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
The Sm protein Hfq chaperones small non-coding RNAs (sRNAs) in bacteria, facilitating sRNA regulation of target mRNAs. Hfq acts in part by remodeling the sRNA and mRNA structures, yet the basis for this remodeling activity is not understood. To understand how Hfq remodels RNA, we used single-molecule Förster resonance energy transfer (smFRET) to monitor conformational changes in OxyS sRNA upon Hfq binding. The results show that E. coli Hfq first compacts OxyS, bringing its 5' and 3 ends together. Next, Hfq destabilizes an internal stem-loop in OxyS, allowing the RNA to adopt a more open conformation that is stabilized by a conserved arginine on the rim of Hfq. The frequency of transitions between compact and open conformations depend on interactions with Hfqs flexible C-terminal domain (CTD), being more rapid when the CTD is deleted, and slower when OxyS is bound to Caulobacter crescentus Hfq, which has a shorter and more stable CTD than E. coli Hfq. We propose that the CTDs gate transitions between OxyS conformations that are stabilized by interaction with one or more arginines. These results suggest a general model for how basic residues and intrinsically disordered regions of RNA chaperones act together to refold RNA.
Collapse
Affiliation(s)
- Huahuan Cai
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA; Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Jorjethe Roca
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA
| | - Yu-Fen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sarah A Woodson
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA.
| |
Collapse
|
5
|
Silencing of Curlin Protein via M13 Phagemid-Mediated Synthetic sRNA Expression Reduces Virulence in the Avian Pathogenic E. coli (APEC). Curr Microbiol 2022; 79:105. [PMID: 35157141 DOI: 10.1007/s00284-022-02791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
Curli fimbriae, a virulent factor of the Avian Pathogenic Escherichia coli (APEC), is responsible for adhesion, biofilm formation, and colonization of pathogen. Major curli fimbriae protein is encoded by csgA gene. APEC is one of the leading causes of colibacillosis in poultry flocks and due to excessive use of antibiotics and vaccines in poultry, the emergence of various multi-drug resistant (MDR) bacterial strainsare is frequently reported. The growing concern of MDR bacterial strains necessitate novel antibacterial approaches to combat colibacillosis in poultry. RNA-based gene silencing is a very specific and robust strategy to target specific bacterial factors involved in pathogenicity and virulence. In this study, a phagemid-mediated sRNA expression system to target a vital gene, csgA, is employed. This comprises an M13 phagemid harboring a sRNA expression cassette and a pre-designed GUIDE sequences for the csgA target gene. To target the csgA gene at the mRNA level, a GUIDE sequence was computationally designed for pre-designed sRNA expression cassette. Online web tools were used to predict the binding energy, secondary structure, and off-target binding potential of the sRNA to optimize its expression. Results showed that the designed sRNA has a binding energy of - 29.60 kcal/mol with zero off-targets. After expression of the sRNA in the APEC cells, ̴ 45% reduction in the csgA level was observed via RT-PCR in the CS-APEC-O1 strains compared to the wt-APEC-O1. Similarly, the biofilm forming ability decreased by 40% in the CS-APEC-O1 strains. The swarming motility and hemagglutination efficiency were not affected by the sRNA expression. Future studies investigating the in vivo efficiency of M13 phagemid delivery are required to evaluate its candidacy in phage therapy.
Collapse
|
6
|
Binding of the RNA Chaperone Hfq on Target mRNAs Promotes the Small RNA RyhB-Induced Degradation in Escherichia coli. Noncoding RNA 2021; 7:ncrna7040064. [PMID: 34698252 PMCID: PMC8544716 DOI: 10.3390/ncrna7040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.
Collapse
|
7
|
Małecka EM, Woodson SA. Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Mol Cell 2021; 81:1988-1999.e4. [PMID: 33705712 PMCID: PMC8106647 DOI: 10.1016/j.molcel.2021.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.
Collapse
Affiliation(s)
- Ewelina M Małecka
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Engineering of the Small Noncoding RNA (sRNA) DsrA Together with the sRNA Chaperone Hfq Enhances the Acid Tolerance of Escherichia coli. Appl Environ Microbiol 2021; 87:AEM.02923-20. [PMID: 33674434 DOI: 10.1128/aem.02923-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/21/2021] [Indexed: 11/20/2022] Open
Abstract
Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In Escherichia coli, the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of E. coli IMPORTANCE Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.
Collapse
|
9
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
10
|
Bianchi DM, Brier TA, Poddar A, Azam MS, Vanderpool CK, Ha T, Luthey-Schulten Z. Stochastic Analysis Demonstrates the Dual Role of Hfq in Chaperoning E. coli Sugar Shock Response. Front Mol Biosci 2021; 7:593826. [PMID: 33425989 PMCID: PMC7786190 DOI: 10.3389/fmolb.2020.593826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression by silencing the translation of target mRNAs. SgrS is an sRNA that relieves glucose-phosphate stress, or "sugar shock" in E. coli. The power of single cell measurements is their ability to obtain population level statistics that illustrate cell-to-cell variation. Here, we utilize single molecule super-resolution microscopy in single E. coli cells coupled with stochastic modeling to analyze glucose-phosphate stress regulation by SgrS. We present a kinetic model that captures the combined effects of transcriptional regulation, gene replication and chaperone mediated RNA silencing in the SgrS regulatory network. This more complete kinetic description, simulated stochastically, recapitulates experimentally observed cellular heterogeneity and characterizes the binding of SgrS to the chaperone protein Hfq as a slow process that not only stabilizes SgrS but also may be critical in restructuring the sRNA to facilitate association with its target ptsG mRNA.
Collapse
Affiliation(s)
- David M Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Anustup Poddar
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.,HHMI Investigator Program, Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taekjip Ha
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.,HHMI Investigator Program, Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
11
|
The Small RNA PinT Contributes to PhoP-Mediated Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00312-19. [PMID: 31262841 DOI: 10.1128/jb.00312-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium induces inflammatory diarrhea and bacterial uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). HilA activates transcription of the SPI1 structural components and effector proteins. Expression of hilA is activated by HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. Many environmental signals and other regulators are integrated into this regulatory loop, primarily via HilD. After the invasion of Salmonella into host intestinal epithelial cells or during systemic replication in macrophages, the SPI T3SS is no longer required or expressed. We have shown that the two-component regulatory system PhoPQ, required for intracellular survival, represses the SPI1 T3SS mostly by controlling the transcription of hilA and hilD Here we show that PinT, one of the PhoPQ-regulated small RNAs (sRNAs), contributes to this regulation by repressing hilA and rtsA translation. PinT base pairs with both the hilA and rtsA mRNAs, resulting in translational inhibition of hilA, but also induces degradation of the rts transcript. PinT also indirectly represses expression of FliZ, a posttranslational regulator of HilD, and directly represses translation of ssrB, encoding the primary regulator of the SPI2 T3SS. Our in vivo mouse competition assays support the concept that PinT controls a series of virulence genes at the posttranscriptional level in order to adapt Salmonella from the invasion stage to intracellular survival.IMPORTANCE Salmonella is one of the most important food-borne pathogens, infecting over one million people in the United States every year. These bacteria use a needle-like device to interact with intestinal epithelial cells, leading to invasion of the cells and induction of inflammatory diarrhea. A complex regulatory network controls expression of the invasion system in response to numerous environmental signals. Here we explore the molecular mechanisms by which the small RNA PinT contributes to this regulation, facilitating inactivation of the system after invasion. PinT controls several important virulence systems in Salmonella, tuning the transition between different stages of infection.
Collapse
|
12
|
Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc Natl Acad Sci U S A 2019; 116:10978-10987. [PMID: 31076551 PMCID: PMC6561178 DOI: 10.1073/pnas.1814428116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many bacteria, the RNA chaperone protein Hfq binds to hundreds of small noncoding RNAs and improves their efficacy by aiding base pairing to target mRNAs. Hfq proteins contain a variable C-terminal domain (CTD), usually structurally disordered, which was recently demonstrated to inhibit Hfq from mediating nonspecific RNA annealing. We obtained a new structure that shows how this inhibition is achieved in Caulobacter crescentus Hfq. The structural data and chaperone assays provide an initial view of the little-known mechanism of small RNA regulation in Caulobacter. In addition, this work demonstrates how the Hfq CTD has evolved to meet the needs for species-specific selectivity in RNA binding and pairing of regulatory RNAs with cognate targets. We have solved the X-ray crystal structure of the RNA chaperone protein Hfq from the alpha-proteobacterium Caulobacter crescentus to 2.15-Å resolution, resolving the conserved core of the protein and the entire C-terminal domain (CTD). The structure reveals that the CTD of neighboring hexamers pack in crystal contacts, and that the acidic residues at the C-terminal tip of the protein interact with positive residues on the rim of Hfq, as has been recently proposed for a mechanism of modulating RNA binding. De novo computational models predict a similar docking of the acidic tip residues against the core of Hfq. We also show that C. crescentus Hfq has sRNA binding and RNA annealing activities and is capable of facilitating the annealing of certain Escherichia coli sRNA:mRNA pairs in vivo. Finally, we describe how the Hfq CTD and its acidic tip residues provide a mechanism to modulate annealing activity and substrate specificity in various bacteria.
Collapse
|
13
|
Kwiatkowska J, Wroblewska Z, Johnson KA, Olejniczak M. The binding of Class II sRNA MgrR to two different sites on matchmaker protein Hfq enables efficient competition for Hfq and annealing to regulated mRNAs. RNA (NEW YORK, N.Y.) 2018; 24:1761-1784. [PMID: 30217864 PMCID: PMC6239178 DOI: 10.1261/rna.067777.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 05/08/2023]
Abstract
MgrR is an Hfq-dependent sRNA, whose transcription is controlled by the level of Mg2+ ions in Escherichia coli MgrR belongs to Class II sRNAs because its stability in the cell is affected by mutations in Hfq differently than canonical, Class I sRNAs. Here, we examined the effect of mutations in RNA binding sites of Hfq on the kinetics of the annealing of MgrR to two different target mRNAs, eptB and ygdQ, by global data fitting of the reaction kinetics monitored by gel electrophoresis of intermediates and products. The data showed that the mutation on the rim of the Hfq ring trapped MgrR on Hfq preventing the annealing of MgrR to either mRNA. The mutation in the distal face slowed the ternary complex formation and affected the release of MgrR-mRNA complexes from Hfq, while the mutation in the proximal face weakened the MgrR binding to Hfq and in this way affected the annealing. Moreover, competition assays established that MgrR bound to both faces of Hfq and competed against other sRNAs. Further studies showed that uridine-rich sequences located in less structurally stable regions served as Hfq binding sites in each mRNA. Overall, the data show that the binding of MgrR sRNA to both faces of the Hfq ring enables it to efficiently anneal to target mRNAs. It also confers on MgrR a competitive advantage over other sRNAs, which could contribute to efficient cellular response to changes in magnesium homeostasis.
Collapse
Affiliation(s)
- Joanna Kwiatkowska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Kenneth A Johnson
- Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Mihailovic MK, Vazquez-Anderson J, Li Y, Fry V, Vimalathas P, Herrera D, Lease RA, Powell WB, Contreras LM. High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites. Nat Commun 2018; 9:4084. [PMID: 30287822 PMCID: PMC6172242 DOI: 10.1038/s41467-018-06207-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Herein we introduce a high-throughput method, INTERFACE, to reveal the capacity of contiguous RNA nucleotides to establish in vivo intermolecular RNA interactions for the purpose of functional characterization of intracellular RNA. INTERFACE enables simultaneous accessibility interrogation of an unlimited number of regions by coupling regional hybridization detection to transcription elongation outputs measurable by RNA-seq. We profile over 900 RNA interfaces in 71 validated, but largely mechanistically under-characterized, Escherichia coli sRNAs in the presence and absence of a global regulator, Hfq, and find that two-thirds of tested sRNAs feature Hfq-dependent regions. Further, we identify in vivo hybridization patterns that hallmark functional regions to uncover mRNA targets. In this way, we biochemically validate 25 mRNA targets, many of which are not captured by typically tested, top-ranked computational predictions. We additionally discover direct mRNA binding activity within the GlmY terminator, highlighting the information value of high-throughput RNA accessibility data. Mapping RNA accessibility is valuable for identifying functional/regulatory RNA regions. Here the authors introduce INTERFACE, an intracellular method that quantifies antisense hybridization efficacy of any number of RNA regions simultaneously via a transcriptional elongation output, measurable via RNA-seq
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Yan Li
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ, 08544, USA
| | - Victoria Fry
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Praveen Vimalathas
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Daniel Herrera
- Department of Computer Science, University of Texas at Austin, 2317 Speedway Stop D9500, Austin, TX, 78712, USA
| | - Richard A Lease
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, 100W. 18th Ave, Columbus, OH, 43210, USA
| | - Warren B Powell
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ, 08544, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Santiago-Frangos A, Woodson SA. Hfq chaperone brings speed dating to bacterial sRNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1475. [PMID: 29633565 PMCID: PMC6002925 DOI: 10.1002/wrna.1475] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/11/2022]
Abstract
Hfq is a ubiquitous, Sm-like RNA binding protein found in most bacteria and some archaea. Hfq binds small regulatory RNAs (sRNAs), facilitates base pairing between sRNAs and their mRNA targets, and directly binds and regulates translation of certain mRNAs. Because sRNAs regulate many stress response pathways in bacteria, Hfq is essential for adaptation to different environments and growth conditions. The chaperone activities of Hfq arise from multipronged RNA binding by three different surfaces of the Hfq hexamer. The manner in which the structured Sm core of Hfq binds RNA has been well studied, but recent work shows that the intrinsically disordered C-terminal domain of Hfq modulates sRNA binding, creating a kinetic hierarchy of RNA competition for Hfq and ensuring the release of double-stranded sRNA-mRNA complexes. A combination of structural, biophysical, and genetic experiments reveals how Hfq recognizes its RNA substrates and plays matchmaker for sRNAs and mRNAs in the cell. The interplay between structured and disordered domains of Hfq optimizes sRNA-mediated post-transcriptional regulation, and is a common theme in RNA chaperones. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
16
|
Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 2018; 53:335-355. [PMID: 29793351 DOI: 10.1080/10409238.2018.1473330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Carsten A Raabe
- b Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany.,c Brandenburg Medical School (MHB) , Neuruppin , Germany.,d Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany
| | - Li-Pin Lee
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Timofey S Rozhdestvensky
- e Medical Faculty, Transgenic Mouse and Genome Engineering Model Core Facility (TRAM) , University of Münster , Münster , Germany
| | - Marimuthu Citartan
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Siti Aminah Ahmed
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Thean-Hock Tang
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| |
Collapse
|
17
|
Sudo N, Soma A, Iyoda S, Oshima T, Ohto Y, Saito K, Sekine Y. Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. MICROBIOLOGY-SGM 2018; 164:821-834. [PMID: 29580371 DOI: 10.1099/mic.0.000652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a life-threatening human pathogen worldwide. The locus of enterocyte effacement (LEE) in EHEC encodes a type three secretion system and effector proteins, all of which are essential for bacterial adherence to host cells. When LEE expression is activated, flagellar gene expression is down-regulated because bacterial flagella induce the immune responses of host cells at the infection stage. Therefore, this inverse regulation is also important for EHEC infection. We report here that a small regulatory RNA (sRNA), Esr41, mediates LEE repression and flagellar gene activation. Multiple copies of esr41 abolished LEE expression by down-regulating the expression of ler and pch, which encode positive regulators of LEE. This regulation led to reduced EHEC adhesion to host cells. Translational gene-reporter fusion experiments revealed that Esr41 regulates ler expression at a post-transcriptional level, and pch transcription, probably via an unknown target of Esr41. Esr41-mediated ler and pch repression was not observed in cells lacking hfq, which encodes an RNA-binding protein essential for most sRNA functions, indicating that Esr41 acts in an Hfq-dependent manner. We previously reported an increase in cell motility induced by Esr41. This motility enhancement was also observed in EHEC lacking ler, showing that Esr41-mediated enhancement of cell motility is in a ler-independent manner. In addition, Esr41 activated the expression of flagellar Class 3 genes by indirectly inducing the transcription of fliA, which encodes the sigma factor for flagellar synthesis. These results suggest that Esr41 plays important roles in the inverse regulation of LEE and flagellar gene expression.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan.,Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yui Ohto
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| | - Kenta Saito
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| |
Collapse
|
18
|
Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene 2018; 656:60-72. [PMID: 29501814 DOI: 10.1016/j.gene.2018.02.068] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 11/23/2022]
Abstract
Small RNAs (sRNAs) in bacteria have evolved with diverse mechanisms to balance their target gene expression in response to changes in the environment. Accumulating studies on bacterial regulatory processes firmly established that sRNAs modulate their target gene expression generally at the posttranscriptional level. Identification of large number of sRNAs by advanced technologies, like deep sequencing, tilling microarray, indicates the existence of a plethora of distinctive sRNA-mediated regulatory mechanisms in bacteria. Types of the novel mechanisms are increasing with the discovery of new sRNAs. Complementary base pairing between sRNAs and target RNAs assisted by RNA chaperones like Hfq and ProQ, in many occasions, to regulate the cognate gene expression is prevalent in sRNA mechanisms. sRNAs, in most studied cases, can directly base pair with target mRNA to remodel its expression. Base pairing can happen either in the untranslated regions or in the coding regions of mRNA to activate/repress its translation. sRNAs also act as target mimic to titrate away different regulatory RNAs from its target. Other mechanism includes the sequestration of regulatory proteins, especially transcription factors, by sRNAs. Numerous sRNAs, following analogous mechanism, are widespread in bacteria, and thus, has drawn immense attention for the development of RNA-based technologies. Nevertheless, typical sRNA mechanisms are also discovered to be confined in some bacteria. Analysis of the sRNA mechanisms unravels their existence in both the single step processes and the complex regulatory networks with a global effect on cell physiology. This review deals with the diverse array of mechanisms, which sRNAs follow to maintain bacterial lifestyle.
Collapse
|
19
|
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF. Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 2018; 46:387-402. [PMID: 29136196 PMCID: PMC5758883 DOI: 10.1093/nar/gkx1083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022] Open
Abstract
The RNA degradosome is a multi-enzyme assembly that plays a central role in the RNA metabolism of Escherichia coli and numerous other bacterial species including pathogens. At the core of the assembly is the endoribonuclease RNase E, one of the largest E. coli proteins and also one that bears the greatest region predicted to be natively unstructured. This extensive unstructured region, situated in the C-terminal half of RNase E, is punctuated with conserved short linear motifs that recruit partner proteins, direct RNA interactions, and enable association with the cytoplasmic membrane. We have structurally characterized a subassembly of the degradosome-comprising a 248-residue segment of the natively unstructured part of RNase E, the DEAD-box helicase RhlB and the glycolytic enzyme enolase, and provide evidence that it serves as a flexible recognition centre that can co-recruit small regulatory RNA and the RNA chaperone Hfq. Our results support a model in which the degradosome captures substrates and regulatory RNAs through the recognition centre, facilitates pairing to cognate transcripts and presents the target to the ribonuclease active sites of the greater assembly for cooperative degradation or processing.
Collapse
Affiliation(s)
- Heather A Bruce
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijana Matak-Vinkovic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - R William Broadhurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Esther Martin
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Alexander V Shkumatov
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
20
|
Gans J, Osborne J, Cheng J, Djapgne L, Oglesby-Sherrouse AG. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells. Methods Mol Biol 2018; 1737:341-350. [PMID: 29484602 DOI: 10.1007/978-1-4939-7634-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.
Collapse
Affiliation(s)
- Jonathan Gans
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Jonathan Osborne
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Juliet Cheng
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Louise Djapgne
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | |
Collapse
|
21
|
|
22
|
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 2017; 6:27049. [PMID: 28826489 PMCID: PMC5606850 DOI: 10.7554/elife.27049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
23
|
Chen J, Gottesman S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 2017; 31:1382-1395. [PMID: 28794186 PMCID: PMC5580658 DOI: 10.1101/gad.302547.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Here, Chen et al. show an example of Hfq repressing translation in the absence of sRNAs via major remodeling of the mRNA. They demonstrate that, by interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis. Mismatch repair (MMR) is a conserved mechanism exploited by cells to correct DNA replication errors both in growing cells and under nongrowing conditions. Hfq (host factor for RNA bacteriophage Qβ replication), a bacterial Lsm family RNA-binding protein, chaperones RNA–RNA interactions between regulatory small RNAs (sRNAs) and target messenger RNAs (mRNAs), leading to alterations of mRNA translation and/or stability. Hfq has been reported to post-transcriptionally repress the DNA MMR gene mutS in stationary phase, possibly limiting MMR to allow increased mutagenesis. Here we report that Hfq deploys dual mechanisms to control mutS expression. First, Hfq binds directly to an (AAN)3 motif within the mutS 5′ untranslated region (UTR), repressing translation in the absence of sRNA partners both in vivo and in vitro. Second, Hfq acts in a canonical pathway, promoting base-pairing of ArcZ sRNA with the mutS leader to inhibit translation. Most importantly, using pathway-specific mutS chromosomal alleles that specifically abrogate either regulatory pathway or both, we demonstrate that tight control of MutS levels in stationary phase contributes to stress-induced mutagenesis. By interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
Olejniczak M, Storz G. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol 2017; 104:905-915. [PMID: 28370625 DOI: 10.1111/mmi.13679] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2017] [Indexed: 02/02/2023]
Abstract
Small RNAs (sRNAs), particularly those that act by limited base pairing with mRNAs, are part of most regulatory networks in bacteria. In many cases, the base-pairing interaction is facilitated by the RNA chaperone Hfq. However, not all bacteria encode Hfq and some base-pairing sRNAs do not require Hfq raising the possibility of other RNA chaperones. Candidates are proteins with homology to FinO, a factor that promotes base pairing between the FinP antisense sRNA and the traJ mRNA to control F plasmid transfer. Recent papers have shown that the Salmonella enterica FinO-domain protein ProQ binds a large suite of sRNAs, including the RaiZ sRNA, which represses translation of the hupA mRNA, and the Legionella pneumophila protein RocC binds the RocR sRNA, which blocks expression of competence genes. Here we discuss what is known about FinO-domain structures, including the recently solved Escherichia coli ProQ structure, as well as the RNA binding properties of this family of proteins and evidence they act as chaperones. We compare these properties with those of Hfq. We further summarize what is known about the physiological roles of FinO-domain proteins and enumerate outstanding questions whose answers will establish whether they constitute a second major class of RNA chaperones.
Collapse
Affiliation(s)
- Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, Bethesda, MD, 20892-4417, USA
| |
Collapse
|
25
|
Duval M, Marenna A, Chevalier C, Marzi S. Site-Directed Chemical Probing to map transient RNA/protein interactions. Methods 2016; 117:48-58. [PMID: 28027957 DOI: 10.1016/j.ymeth.2016.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022] Open
Abstract
RNA-protein interactions are at the bases of many biological processes, forming either tight and stable functional ribonucleoprotein (RNP) complexes (i.e. the ribosome) or transitory ones, such as the complexes involving RNA chaperone proteins. To localize the sites where a protein interacts on an RNA molecule, a common simple and inexpensive biochemical method is the footprinting technique. The protein leaves its footprint on the RNA acting as a shield to protect the regions of interaction from chemical modification or cleavages obtained with chemical or enzymatic nucleases. This method has proven its efficiency to study in vitro the organization of stable RNA-protein complexes. Nevertheless, when the protein binds the RNA very dynamically, with high off-rates, protections are very often difficult to observe. For the analysis of these transient complexes, we describe an alternative strategy adapted from the Site Directed Chemical Probing (SDCP) approach and we compare it with classical footprinting. SDCP relies on the modification of the RNA binding protein to tether an RNA probe (usually Fe-EDTA) to specific protein positions. Local cleavages on the regions of interaction can be used to localize the protein and position its domains on the RNA molecule. This method has been used in the past to monitor stable complexes; we provide here a detailed protocol and a practical example of its application to the study of Escherichia coli RNA chaperone protein S1 and its transitory complexes with mRNAs.
Collapse
Affiliation(s)
- Mélodie Duval
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Alessandra Marenna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Clément Chevalier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France.
| |
Collapse
|
26
|
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc Natl Acad Sci U S A 2016; 113:E6089-E6096. [PMID: 27681631 DOI: 10.1073/pnas.1613053113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA-mRNA interactions and rapidly cycle between competing targets in the cell.
Collapse
|
27
|
Wroblewska Z, Olejniczak M. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA (NEW YORK, N.Y.) 2016; 22:979-94. [PMID: 27154968 PMCID: PMC4911921 DOI: 10.1261/rna.055251.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5'-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5'-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs.
Collapse
Affiliation(s)
- Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
28
|
Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 2016; 35:991-1011. [PMID: 27044921 PMCID: PMC5207318 DOI: 10.15252/embj.201593360] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular roles of many RNA‐binding proteins in bacterial post‐transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP‐seq) have begun to revolutionize the transcriptome‐wide mapping of eukaryotic RNA‐binding protein target sites. We have applied CLIP‐seq to chart the target landscape of two major bacterial post‐transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single‐nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3′‐located Rho‐independent terminators as a universal motif involved in Hfq–RNA interactions. Additionally, Hfq preferentially binds 5′ to sRNA‐target sites in mRNAs, and 3′ to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA–mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA‐target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP‐seq approach will bring new insights into post‐transcriptional gene regulation by RNA‐binding proteins in diverse bacterial species.
Collapse
Affiliation(s)
- Erik Holmqvist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Lei Li
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Ellis MJ, Haniford DB. Riboregulation of bacterial and archaeal transposition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:382-98. [DOI: 10.1002/wrna.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Michael J. Ellis
- Department of Biochemistry; University of Western Ontario; London Canada
| | - David B. Haniford
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
30
|
Panja S, Santiago-Frangos A, Schu DJ, Gottesman S, Woodson SA. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing. J Mol Biol 2015. [PMID: 26196441 DOI: 10.1016/j.jmb.2015.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs.
Collapse
Affiliation(s)
- Subrata Panja
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Andrew Santiago-Frangos
- Cell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Daniel J Schu
- Laboratory of Molecular Biology, National Cancer Institute, Building 37, Room 5132, Bethesda, MD 20892 USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Building 37, Room 5132, Bethesda, MD 20892 USA
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Cell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
31
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Tian H, Liao Q, Liu M, Hou J, Zhang Y, Liu J. Antibacterial activity of silver nanoparticles target sara through srna-teg49, a key mediator of hfq, in staphylococcus aureus. Int J Clin Exp Med 2015; 8:5794-5799. [PMID: 26131167 PMCID: PMC4484010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED Attributed to its antimicrobial effect, Silver nanoparticles (AgNPs) is widely used in various fields, such as biomedicine, textiles, health care products and food, etc. However, the antibacterial mechanism of AgNPs in staphylococcus aureus (S. aureus) by regulating sRNA expression remains largely unknown. OBJECTIVES This study was performed to investigate the involvement of the antibacterial mechanism of AgNPs through sRNA-TEG49, a key mediator of Hfq, in S. aureus. METHODS Through the antimicrobial tests of AgNPs, its antibacterial laps and minimum inhibitory concentration was measured. A hierarchical cluster analysis of the differentially expressed sRNA in S. aureus was performed to investigate the relationship between AgNPs and sRNA. Expression of genes was analyzed by real-time PCR. RESULTS In the present study we found that at the concentrations higher than 1 mg/L, AgNPs could completely restrain bacteria growth, and the antibacterial activity of AgNPs apparently declined at the concentrations lower than 1 mg/L. S. aureus exposure to AgNPs, the expression of sRNA-TEG49, Hfq and sarA was significantly up-regulated in wild-type S. aureus. Moreover, Hfq loss-of-function inhibited the expression of sRNA-TEG49 in mutant-type S. aureus. Furthermore, sRNA-TEG49 loss-of-function associated with down-regulation the expression of sarA in mutant-type S. aureus. CONCLUSIONS It was reasonable that Hfq regulated a distinct underlying molecular and antibacterial mechanism of AgNPs by forming a positive feedback loop with sRNA-TEG49. These observations suggested that Hfq plays an important role in the antibacterial mechanism of AgNPs by regulating sRNA-TEG49 expression, via its target sarA.
Collapse
Affiliation(s)
- Hu Tian
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Qiande Liao
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Meizhou Liu
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Jianhong Hou
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Yangde Zhang
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong UniversityJinan 250014, Shandong, P. R. China
| |
Collapse
|
33
|
Ellis MJ, Trussler RS, Haniford DB. Hfq binds directly to the ribosome-binding site of IS10 transposase mRNA to inhibit translation. Mol Microbiol 2015; 96:633-50. [PMID: 25649688 PMCID: PMC5006887 DOI: 10.1111/mmi.12961] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
Hfq is a critical component of post‐transcriptional regulatory networks in most bacteria. It usually functions as a chaperone for base‐pairing small RNAs, although non‐canonical regulatory roles are continually emerging. We have previously shown that Hfq represses IS10/Tn10 transposase expression through both antisense RNA‐dependent and independent mechanisms. In the current work, we set out to define the regulatory role of Hfq in the absence of the IS10 antisense RNA. We show here that an interaction between the distal surface of Hfq and the ribosome‐binding site of transposase mRNA (RNA‐IN) is required for repressing translation initiation. Additionally, this interaction was critical for the in vivo association of Hfq and RNA‐IN. Finally, we present evidence that the small RNA ChiX activates transposase expression by titrating Hfq away from RNA‐IN. The current results are considered in the broader context of Hfq biology and implications for Hfq titration by ChiX are discussed.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
34
|
Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 2015; 6:141. [PMID: 25784899 PMCID: PMC4347634 DOI: 10.3389/fmicb.2015.00141] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.
Collapse
Affiliation(s)
- Elke Van Assche
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| |
Collapse
|
35
|
Abstract
ABSTRACT
The study of the bacterial transposons Tn
10
and Tn
5
has provided a wealth of information regarding steps in nonreplicative DNA transposition, transpososome dynamics and structure, as well as mechanisms employed to regulate transposition. The focus of ongoing research on these transposons is mainly on host regulation and the use of the Tn
10
antisense system as a platform to develop riboregulators for applications in synthetic biology. Over the past decade two new regulators of both Tn
10
and Tn
5
transposition have been identified, namely H-NS and Hfq proteins. These are both global regulators of gene expression in enteric bacteria with functions linked to stress-response pathways and virulence and potentially could link the Tn
10
and Tn
5
systems (and thus the transfer of antibiotic resistance genes) to environmental cues. Work summarized here is consistent with the H-NS protein working directly on transposition complexes to upregulate both Tn
10
and Tn
5
transposition. In contrast, evidence is discussed that is consistent with Hfq working at the level of transposase expression to downregulate both systems. With regard to Tn
10
and synthetic biology, some recent work that incorporates the Tn
10
antisense RNA into both transcriptional and translational riboswitches is summarized.
Collapse
|
36
|
Małecka EM, Stróżecka J, Sobańska D, Olejniczak M. Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry 2015; 54:1157-70. [PMID: 25582129 DOI: 10.1021/bi500741d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial regulatory RNAs require the chaperone protein Hfq to enable their pairing to mRNAs. Recent data showed that there is a hierarchy among sRNAs in the competition for access to Hfq, which could be important for the tuning of sRNA-dependent translation regulation. Here, seven structurally different sRNAs were compared using filter-based competition assays. Moreover, chimeric sRNA constructs were designed to identify structure elements important for competition performance. The data showed that besides the 3'-terminal oligouridine sequences also the 5'-terminal structure elements of sRNAs were essential for their competition performance. When the binding of sRNAs to Hfq mutants was compared, the data showed the important role of the proximal and rim sites of Hfq for the binding of six out of seven sRNAs. However, ChiX sRNA, which was the most efficient competitor, bound Hfq in a unique way using the opposite-distal and proximal-faces of this ring-shaped protein. The data indicated that the simultaneous binding to the opposite faces of Hfq was enabled by separate adenosine-rich and uridine-rich sequences in the long, single-stranded region of ChiX. Overall, the results suggest that the individual structural composition of sRNAs serves to tune their performance to different levels resulting in a hierarchy of sRNAs in the competition for access to the Hfq protein.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań , Umultowska 89, 61-614 Poznań, Poland
| | | | | | | |
Collapse
|
37
|
Ellis MJ, Trussler RS, Ross JA, Haniford DB. Probing Hfq:RNA interactions with hydroxyl radical and RNase footprinting. Methods Mol Biol 2015; 1259:403-15. [PMID: 25579599 DOI: 10.1007/978-1-4939-2214-7_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA footprinting and structure probing techniques are used to characterize the interaction between RNA-binding proteins and RNAs in vitro. Hydroxyl radical footprinting results in the identification of protein binding site(s) in an RNA. Ribonuclease (RNase) structure probing is a complementary technique that also provides information about protein binding sites, as well as RNA structure and possible protein-directed RNA remodeling. Here we provide a comprehensive protocol for studying the interaction between Hfq and an mRNA or sRNA of interest using a combination of RNase A, T1, and V1 as well as hydroxyl radical footprinting techniques. Detailed protocols for in vitro synthesis of (32)P-labeled RNA; formation of Hfq:RNA binary complex(es), RNase, and hydroxyl radical footprinting; preparation and running of sequencing gels; and data analysis are provided.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5C1
| | | | | | | |
Collapse
|
38
|
Abstract
The Sm-like protein Hfq (host factor Q-beta phage) facilitates regulation by bacterial small noncoding RNAs (sRNAs) in response to stress and other environmental signals. Here, we present a low-resolution model of Escherichia coli Hfq bound to the rpoS mRNA, a bacterial stress response gene that is targeted by three different sRNAs. Selective 2'-hydroxyl acylation and primer extension, small-angle X-ray scattering, and Monte Carlo molecular dynamics simulations show that the distal face and lateral rim of Hfq interact with three sites in the rpoS leader, folding the RNA into a compact tertiary structure. These interactions are needed for sRNA regulation of rpoS translation and position the sRNA target adjacent to an sRNA binding region on the proximal face of Hfq. Our results show how Hfq specifically distorts the structure of the rpoS mRNA to enable sRNA base pairing and translational control.
Collapse
|
39
|
Sonnleitner E, Bläsi U. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet 2014; 10:e1004440. [PMID: 24945892 PMCID: PMC4063720 DOI: 10.1371/journal.pgen.1004440] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/30/2014] [Indexed: 01/10/2023] Open
Abstract
Carbon Catabolite repression (CCR) allows a fast adaptation of Bacteria to changing nutrient supplies. The Pseudomonas aeruginosa (PAO1) catabolite repression control protein (Crc) was deemed to act as a translational regulator, repressing functions involved in uptake and utilization of carbon sources. However, Crc of PAO1 was recently shown to be devoid of RNA binding activity. In this study the RNA chaperone Hfq was identified as the principle post-transcriptional regulator of CCR in PAO1. Hfq is shown to bind to A-rich sequences within the ribosome binding site of the model mRNA amiE, and to repress translation in vitro and in vivo. We further report that Crc plays an unknown ancillary role, as full-fledged repression of amiE and other CCR-regulated mRNAs in vivo required its presence. Moreover, we show that the regulatory RNA CrcZ, transcription of which is augmented when CCR is alleviated, binds to Hfq with high affinity. This study on CCR in PAO1 revealed a novel concept for Hfq function, wherein the regulatory RNA CrcZ acts as a decoy to abrogate Hfq-mediated translational repression of catabolic genes and thus highlights the central role of RNA based regulation in CCR of PAO1. Carbon assimilation in Bacteria is governed by a mechanism known as carbon catabolite repression (CCR). In contrast to several other bacterial clades CCR in Pseudomonas species appears to be primarily regulated at the post-transcriptional level. In this study, we have identified the RNA chaperone Hfq as the principle post-transcriptional regulator of CCR in P. aeruginosa (PAO1). Hfq is shown to act as a translational regulator and to prevent ribosome loading through binding to A-rich sequences within the ribosome binding site of mRNAs, which encode enzymes involved in carbon utilization. It has been previously shown that the synthesis of the RNA CrcZ is augmented in the presence of non-preferred carbon sources. Here, we show that the CrcZ RNA binds to and sequesters Hfq, which in turn abrogates Hfq-mediated translational repression of mRNAs, the encoded functions of which are required for the breakdown of non-preferred carbon sources. This novel mechanistic twist on Hfq function not only highlights the central role of RNA based regulation in CCR of PAO1 but also broadens the view of Hfq-mediated post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna, Austria
- * E-mail: (ES); (UB)
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna, Austria
- * E-mail: (ES); (UB)
| |
Collapse
|
40
|
Mika F, Hengge R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 2014; 11:494-507. [PMID: 25028968 PMCID: PMC4152358 DOI: 10.4161/rna.28867] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid curli fibers and cellulose are extracellular matrix components produced in the stationary phase top layer of E. coli macrocolonies, which confer physical protection, strong cohesion, elasticity, and wrinkled morphology to these biofilms. Curli and cellulose synthesis is controlled by a three-level transcription factor (TF) cascade with the RpoS sigma subunit of RNA polymerase at the top, the MerR-like TF MlrA, and the biofilm regulator CsgD, with two c-di-GMP control modules acting as key switching devices. Additional signal input and fine-tuning is provided by an entire series of small RNAs-ArcZ, DsrA, RprA, McaS, OmrA/OmrB, GcvB, and RydC--that differentially control all three TF modules by direct mRNA interaction. This review not only summarizes the mechanisms of action of these sRNAs, but also addresses the question of how these sRNAs and the regulators they target contribute to building the intriguing three-dimensional microarchitecture and macromorphology of these biofilms.
Collapse
Affiliation(s)
- Franziska Mika
- Institut für Biologie/Mikrobiologie; Humboldt Universität zu Berlin; Berlin, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie; Humboldt Universität zu Berlin; Berlin, Germany
| |
Collapse
|
41
|
Bordeau V, Felden B. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res 2014; 42:4682-96. [PMID: 24489123 PMCID: PMC3985669 DOI: 10.1093/nar/gku098] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RydC pseudoknot aided by Hfq is a dynamic regulatory module. We report that RydC reduces
expression of curli-specific gene D
transcription factor required for adhesion and biofilm production in enterobacteria.
During curli formation, csgD messenger RNA (mRNA) synthesis increases
when endogenous levels of RydC are lacking. In Escherichia coli and
Salmonella enterica, stimulation of RydC expression also reduces
biofilm formation by impairing curli synthesis. Inducing RydC early on in growth lowers
CsgA, -B and -D protein and mRNA levels. RydC’s 5′-domain interacts with
csgD mRNA translation initiation signals to prevent initiation.
Translation inhibition occurs by an antisense mechanism, blocking the translation
initiation signals through pairing, and that mechanism is facilitated by Hfq. Although Hfq
represses csgD mRNA translation without a small RNA (sRNA), it forms a
ternary complex with RydC and facilitates pseudoknot unfolding to interact with the
csgD mRNA translation initiation signals. RydC action implies
Hfq-assisted unfolding and mRNA rearrangements, but once the pseudoknot is disrupted, Hfq
is unnecessary for regulation. RydC is the sixth sRNA that negatively controls CsgD
synthesis. Hfq induces structural changes in the mRNA domains targeted by these six sRNAs.
What we describe is an ingenious process whereby pseudoknot opening is orchestrated by a
chaperone to allow RNA control of gene expression.
Collapse
Affiliation(s)
- Valérie Bordeau
- Biochimie Pharmaceutique, Rennes University, Inserm U835-UPRES EA2311, 2 avenue du Prof. Léon, Bernard, 35043 Rennes, France
| | | |
Collapse
|
42
|
Künne T, Swarts DC, Brouns SJJ. Planting the seed: target recognition of short guide RNAs. Trends Microbiol 2014; 22:74-83. [PMID: 24440013 DOI: 10.1016/j.tim.2013.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 12/23/2022]
Abstract
Small guide RNAs play important roles in cellular processes such as regulation of gene expression and host defense against invading nucleic acids. The mode of action of small RNAs relies on protein-assisted base pairing of the guide RNA with target mRNA or DNA to interfere with their transcription, translation, or replication. Several unrelated classes of small noncoding RNAs have been identified including eukaryotic RNA silencing-associated small RNAs, prokaryotic small regulatory RNAs (sRNAs), and prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats) RNAs (crRNAs). All three groups identify their target sequence by base pairing after finding it in a pool of millions of other nucleotide sequences in the cell. In this complicated target search process, a region of 6-12 nucleotides (nt) of the small RNA termed the 'seed' plays a critical role. We review the concept of seed sequences and discuss its importance for initial target recognition and interference.
Collapse
Affiliation(s)
- Tim Künne
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| |
Collapse
|
43
|
Peng Y, Soper TJ, Woodson SA. Positional effects of AAN motifs in rpoS regulation by sRNAs and Hfq. J Mol Biol 2014; 426:275-85. [PMID: 24051417 PMCID: PMC3947347 DOI: 10.1016/j.jmb.2013.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 12/23/2022]
Abstract
The Escherichia coli stationary phase transcription factor RpoS is translated in response to small noncoding RNAs (sRNAs), which base pair with the rpoS mRNA leader. The bacterial Sm-like protein Hfq anneals sRNAs with their mRNA targets by simultaneously binding the mRNA and sRNA. Intriguingly, Hfq is recruited to the rpoS leader via AAN motifs far upstream of the sRNA. SHAPE (selective 2'-hydroxyl acylation and primer extension) chemical footprinting showed that the rpoS leader is divided into a far upstream domain, an Hfq binding domain, and a downstream inhibitory stem-loop containing the sRNA and ribosome binding sites. To investigate how Hfq promotes sRNA-mRNA base pairing from a distance, we deleted the natural AAN Hfq binding site, and we inserted artificial AAN binding sites at various positions in the rpoS leader. All the relocated AAN motifs restored tight Hfq binding in vitro, but only insertion at the natural position restored Hfq-dependent sRNA annealing in vitro and sRNA regulation of rpoS translation in vivo. Furthermore, U-rich motifs in the downstream inhibitory domain stabilized the rpoS mRNA-Hfq complex and contributed to regulation of rpoS expression. We propose that the natural Hfq binding domain is optimal for positive regulation because it recruits Hfq to the mRNA and allows it to act on incoming sRNAs without opening the inhibitory stem-loop when sRNA is absent.
Collapse
Affiliation(s)
- Yi Peng
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Toby J Soper
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
44
|
The importance of regulatory RNAs in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2014; 21:616-26. [DOI: 10.1016/j.meegid.2013.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
|
45
|
Hämmerle H, Večerek B, Resch A, Bläsi U. Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature. RNA Biol 2013; 10:1834-41. [PMID: 24448230 DOI: 10.4161/rna.27100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At low temperatures the Escherichia coli rpoS mRNA, encoding the stationary phase sigma factor RpoS, forms an intramolecular secondary structure (iss) that impedes translation initiation. Under these conditions the small RNA DsrA, which is stabilzed by Hfq, forms a duplex with rpoS mRNA sequences opposite of the ribosome-binding site (rbs). Both the DEAD box helicase CsdA and Hfq have been implicated in DsrA·rpoS duplex formation. Hfq binding to A-rich sequences in the rpoS leader has been suggested to restructure the mRNA, and thereby to accelerate DsrA·rpoS duplex formation, which, in turn, was deemed to free the rpoS rbs and to permit ribosome loading on the mRNA. Several experiments designed to elucidate the role of Hfq in DsrA-mediated translational activation of rpoS mRNA have been conducted in vitro. Here, we assessed RpoS synthesis in vivo to further study the role of Hfq in rpoS regulation. We show that RpoS synthesis was reduced when DsrA was ectopically overexpressed at 24 °C in the absence of Hfq despite of DsrA·rpoS duplex formation. This observation indicated that DsrA·rpoS annealing may not be sufficient for efficient ribosome loading on rpoS mRNA. In addition, a HfqG29A mutant protein was employed, which is deficient in binding to A-rich sequences present in the rpoS leader but proficient in DsrA binding. We show that DsrA·rpoS duplex formation occurs in the presence of the HfqG29A mutant protein at low temperature, whereas synthesis of RpoS was greatly diminished. RNase T1 footprinting studies of DsrA·rpoS duplexes in the absence and presence of Hfq or HfqG29A indicated that Hfq is required to resolve a stem-loop structure in the immediate coding region of rpoS mRNA. These in vivo studies corroborate the importance of the A-rich sequences in the rpoS leader and strongly suggest that Hfq, besides stabilizing DsrA and accelerating DsrA·rpoS duplex formation, is also required to convert the rpoS mRNA into a translationally competent form.
Collapse
Affiliation(s)
- Hermann Hämmerle
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Branislav Večerek
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria; Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4-Krč, Czech Republic
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
46
|
Henderson CA, Vincent HA, Casamento A, Stone CM, Phillips JO, Cary PD, Sobott F, Gowers DM, Taylor JE, Callaghan AJ. Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS. RNA (NEW YORK, N.Y.) 2013; 19:1089-104. [PMID: 23804244 PMCID: PMC3708529 DOI: 10.1261/rna.034595.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 05/15/2013] [Indexed: 05/26/2023]
Abstract
OxyS and RprA are two small noncoding RNAs (sRNAs) that modulate the expression of rpoS, encoding an alternative sigma factor that activates transcription of multiple Escherichia coli stress-response genes. While RprA activates rpoS for translation, OxyS down-regulates the transcript. Crucially, the RNA binding protein Hfq is required for both sRNAs to function, although the specific role played by Hfq remains unclear. We have investigated RprA and OxyS interactions with Hfq using biochemical and biophysical approaches. In particular, we have obtained the molecular envelopes of the Hfq-sRNA complexes using small-angle scattering methods, which reveal key molecular details. These data indicate that Hfq does not substantially change shape upon complex formation, whereas the sRNAs do. We link the impact of Hfq binding, and the sRNA structural changes induced, to transcript stability with respect to RNase E degradation. In light of these findings, we discuss the role of Hfq in the opposing regulatory functions played by RprA and OxyS in rpoS regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Biophysical Phenomena
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Structure, Quaternary
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Scattering, Small Angle
- Sigma Factor/genetics
- Sigma Factor/metabolism
Collapse
Affiliation(s)
- Charlotte A. Henderson
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Helen A. Vincent
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Alessandra Casamento
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Carlanne M. Stone
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Jack O. Phillips
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Peter D. Cary
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Frank Sobott
- Biochemistry Department, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Darren M. Gowers
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - James E.N. Taylor
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Anastasia J. Callaghan
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| |
Collapse
|
47
|
Zhao X, Koestler BJ, Waters CM, Hammer BK. Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol Microbiol 2013; 89:989-1002. [PMID: 23841714 DOI: 10.1111/mmi.12325] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
Abstract
Biofilms promote attachment of Vibrio cholerae in aquatic ecosystems and aid in transmission. Intracellular c-di-GMP levels that control biofilm development positively correlate with expression of Qrr sRNAs, which are transcribed when quorum sensing (QS) autoinducer levels are low. The Qrr sRNAs base-pair with and repress translation of hapR encoding the QS 'master regulator', hence increased c-di-GMP and biofilm development at low density were believed to be solely a consequence of Qrr/hapR pairing. We show that Qrr sRNAs also base-pair with and activate translation of the mRNA of a diguanylate cyclase (DGC), Vca0939; relieving an inhibitory structure in vca0939 that occludes the ribosome binding site. A nucleotide substitution in vca0939 disrupted sRNA/mRNA base-pairing and prevented vca0939 translation, while a compensating Qrr sRNA substitution restored pairing and Vca0939 levels. Qrr-dependent DGC activation led to c-di-GMP accumulation and biofilm development in V. cholerae. This represents the first description of (1) a DGC post-transcriptionally activated by direct pairing with an Hfq-dependent sRNA, and (2) control of a V. cholerae QS phenotype, independent of HapR. Thus, direct interactions of the same sRNAs with two mRNAs promote c-di-GMP-dependent biofilm formation by complementary mechanisms in V. cholerae; by negatively regulating HapR, and positively regulating the DGC Vca0939.
Collapse
Affiliation(s)
- Xiaonan Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | | | | | | |
Collapse
|
48
|
Panja S, Schu DJ, Woodson SA. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 2013; 41:7536-46. [PMID: 23771143 PMCID: PMC3753642 DOI: 10.1093/nar/gkt521] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Sm-like protein Hfq is required for gene regulation by small RNAs (sRNAs) in bacteria and facilitates base pairing between sRNAs and their mRNA targets. The proximal and distal faces of the Hfq hexamer specifically bind sRNA and mRNA targets, but they do not explain how Hfq accelerates the formation and exchange of RNA base pairs. Here, we show that conserved arginines on the outer rim of the hexamer that are known to interact with sRNA bodies are required for Hfq’s chaperone activity. Mutations in the arginine patch lower the ability of Hfq to act in sRNA regulation of rpoS translation and eliminate annealing of natural sRNAs or unstructured oligonucleotides, without preventing binding to either the proximal or distal face. Stopped-flow FRET and fluorescence anisotropy show that complementary RNAs transiently form a ternary complex with Hfq, but the RNAs are not released as a double helix in the absence of rim arginines. RNAs bound to either face of Hfq quench the fluorescence of a tryptophan adjacent to the arginine patch, demonstrating that the rim can simultaneously engage two RNA strands. We propose that the arginine patch overcomes entropic and electrostatic barriers to helix nucleation and constitutes the active site for Hfq’s chaperone function.
Collapse
Affiliation(s)
- Subrata Panja
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA and Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-5430, USA
| | | | | |
Collapse
|
49
|
Faner MA, Feig AL. Identifying and characterizing Hfq-RNA interactions. Methods 2013; 63:144-59. [PMID: 23707622 DOI: 10.1016/j.ymeth.2013.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/15/2022] Open
Abstract
To regulate stress responses and virulence, bacteria use small regulatory RNAs (sRNAs). These RNAs can up or down regulate target mRNAs through base pairing by influencing ribosomal access and RNA decay. A large class of these sRNAs, called trans-encoded sRNAs, requires the RNA binding protein Hfq to facilitate base pairing between the regulatory RNA and its target mRNA. The resulting network of regulation is best characterized in Escherichia coli and Salmonella typhimurium, but the importance of Hfq dependent sRNA regulation is recognized in a diverse population of bacteria. In this review we present the approaches and methods used to discover Hfq binding RNAs, characterize their interactions and elucidate their functions.
Collapse
Affiliation(s)
- M A Faner
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI, United States
| | | |
Collapse
|
50
|
Ross JA, Ellis MJ, Hossain S, Haniford DB. Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA (NEW YORK, N.Y.) 2013; 19:670-84. [PMID: 23510801 PMCID: PMC3677282 DOI: 10.1261/rna.037747.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/11/2013] [Indexed: 05/23/2023]
Abstract
Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base-pairing of mRNAs and trans-encoded sRNAs that share partial sequence complementarity. It is less clear if Hfq is required for pairing of cis-encoded RNAs (i.e., antisense RNAs) with their target mRNAs. In the current work, we have characterized the interactions between Escherichia coli Hfq and the components of the Tn10/IS10 antisense system, RNA-IN and RNA-OUT. We show that Hfq interacts with RNA-OUT through its proximal RNA-binding surface, as is typical for Hfq and trans-encoded sRNAs. In contrast, RNA-IN binds both proximal and distal RNA-binding surfaces in Hfq with a higher affinity for the latter, as is typical for mRNA interactions in canonical sRNA-mRNA pairs. Importantly, an amino acid substitution in Hfq that interferes with RNA binding to the proximal site negatively impacts RNA-IN:OUT pairing in vitro and suppresses the ability of Hfq to negatively regulate IS10 transposition in vivo. We also show that Hfq binding to RNA-IN and RNA-OUT alters secondary structure elements in both of these RNAs and speculate that this could be important in how Hfq facilitates RNA-IN:OUT pairing. Based on the results presented here, we suggest that Hfq could be involved in regulating RNA pairing in other antisense systems, including systems encoded by other transposable elements.
Collapse
|