1
|
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation. J Biochem 2023; 175:43-56. [PMID: 37844264 PMCID: PMC11640301 DOI: 10.1093/jb/mvad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
TrmH is a eubacterial tRNA methyltransferase responsible for formation of 2'-O-methylguaosine at position 18 (Gm18) in tRNA. In Escherichia coli cells, only 14 tRNA species possess the Gm18 modification. To investigate the substrate tRNA selection mechanism of E. coli TrmH, we performed biochemical and structural studies. Escherichia coli TrmH requires a high concentration of substrate tRNA for efficient methylation. Experiments using native tRNA SerCGA purified from a trmH gene disruptant strain showed that modified nucleosides do not affect the methylation. A gel mobility-shift assay reveals that TrmH captures tRNAs without distinguishing between relatively good and very poor substrates. Methylation assays using wild-type and mutant tRNA transcripts revealed that the location of G18 in the D-loop is very important for efficient methylation by E. coli TrmH. In the case of tRNASer, tRNATyrand tRNALeu, the D-loop structure formed by interaction with the long variable region is important. For tRNAGln, the short distance between G18 and A14 is important. Thus, our biochemical study explains all Gm18 modification patterns in E. coli tRNAs. The crystal structure of E. coli TrmH has also been solved, and the tRNA binding mode of E. coli TrmH is discussed based on the structure.
Collapse
Affiliation(s)
- Yoh Kohno
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Asako Ito
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Aya Okamoto
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social
Science, Tokushima University, 2-1 Minamijosanjimacho,
Tokushima, Tokushima 770-8506, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and
Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime
790-8577, Japan
| |
Collapse
|
2
|
Bathke J, Gauernack AS, Rupp O, Weber L, Preusser C, Lechner M, Rossbach O, Goesmann A, Evguenieva-Hackenberg E, Klug G. iCLIP analysis of RNA substrates of the archaeal exosome. BMC Genomics 2020; 21:797. [PMID: 33198623 PMCID: PMC7667871 DOI: 10.1186/s12864-020-07200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3′-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. Results To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17–19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5′ parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3′-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5′-ends of RNAs was detected. Conclusions In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5′-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3′-5′ direction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07200-x.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany.,Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - A Susann Gauernack
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Oliver Rupp
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Lennart Weber
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Christian Preusser
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology & Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Alexander Goesmann
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
3
|
Yang Z, Wang J, Huang L, Lilley DMJ, Ye K. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res 2020; 48:5094-5105. [PMID: 32297938 PMCID: PMC7229835 DOI: 10.1093/nar/gkaa247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Box C/D RNA protein complexes (RNPs) catalyze site-specific 2'-O-methylation of RNA with specificity determined by guide RNAs. In eukaryotic C/D RNP, the paralogous Nop58 and Nop56 proteins specifically associate with terminal C/D and internal C'/D' motifs of guide RNAs, respectively. We have reconstituted active C/D RNPs with recombinant proteins of the thermophilic yeast Chaetomium thermophilum. Nop58 and Nop56 could not distinguish between the two C/D motifs in the reconstituted enzyme, suggesting that the assembly specificity is imposed by trans-acting factors in vivo. The two C/D motifs are functionally independent and halfmer C/D RNAs can also guide site-specific methylation. Extensive pairing between C/D RNA and substrate is inhibitory to modification for both yeast and archaeal C/D RNPs. N6-methylated adenine at box D/D' interferes with the function of the coupled guide. Our data show that all C/D RNPs share the same functional organization and mechanism of action and provide insight into the assembly specificity of eukaryotic C/D RNPs.
Collapse
Affiliation(s)
- Zuxiao Yang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Åsman AKM, Curtis BA, Archibald JM. Nucleomorph Small RNAs in Cryptophyte and Chlorarachniophyte Algae. Genome Biol Evol 2019; 11:1117-1134. [PMID: 30949682 PMCID: PMC6461891 DOI: 10.1093/gbe/evz064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
The regulation of gene expression and RNA maturation underlies fundamental processes such as cell homeostasis, development, and stress acclimation. The biogenesis and modification of RNA is tightly controlled by an array of regulatory RNAs and nucleic acid-binding proteins. While the role of small RNAs (sRNAs) in gene expression has been studied in-depth in select model organisms, little is known about sRNA biology across the eukaryotic tree of life. We used deep sequencing to explore the repertoires of sRNAs encoded by the miniaturized, endosymbiotically derived “nucleomorph” genomes of two single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. A total of 32.3 and 35.3 million reads were generated from G. theta and B. natans, respectively. In G. theta, we identified nucleomorph U1, U2, and U4 spliceosomal small nuclear RNAs (snRNAs) as well as 11 C/D box small nucleolar RNAs (snoRNAs), five of which have potential plant and animal homologs. The snoRNAs are predicted to perform 2′-O methylation of rRNA (but not snRNA). In B. natans, we found the previously undetected 5S rRNA as well as six orphan sRNAs. Analysis of chlorarachniophyte snRNAs shed light on the removal of the miniature 18–21 nt introns found in B. natans nucleomorph genes. Neither of the nucleomorph genomes appears to encode RNA pseudouridylation machinery, and U5 snRNA cannot be found in the cryptophyte G. theta. Considering the central roles of U5 snRNA and RNA modifications in other organisms, cytoplasm-to-nucleomorph RNA shuttling in cryptophyte algae is a distinct possibility.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada.,Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
5
|
Tomkuvienė M, Ličytė J, Olendraitė I, Liutkevičiūtė Z, Clouet-d'Orval B, Klimašauskas S. Archaeal fibrillarin-Nop5 heterodimer 2'- O-methylates RNA independently of the C/D guide RNP particle. RNA (NEW YORK, N.Y.) 2017; 23:1329-1337. [PMID: 28576826 PMCID: PMC5558902 DOI: 10.1261/rna.059832.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/19/2017] [Indexed: 06/01/2023]
Abstract
Archaeal fibrillarin (aFib) is a well-characterized S-adenosyl methionine (SAM)-dependent RNA 2'-O-methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'-O-methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'-O-methylated positions in the 16S rRNA of P. abyssi, positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution.
Collapse
MESH Headings
- Archaea/genetics
- Archaea/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Methylation
- Nucleic Acid Conformation
- Protein Binding
- Protein Multimerization
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Ingrida Olendraitė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Zita Liutkevičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et Génétique Moléculaires UMR 5100, CNRS, Université de Toulouse, F-31062 Toulouse, France
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
6
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
7
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Dennis PP, Tripp V, Lui L, Lowe T, Randau L. C/D box sRNA-guided 2'-O-methylation patterns of archaeal rRNA molecules. BMC Genomics 2015; 16:632. [PMID: 26296872 PMCID: PMC4644070 DOI: 10.1186/s12864-015-1839-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/13/2015] [Indexed: 11/26/2022] Open
Abstract
Background In archaea and eukaryotes, ribonucleoprotein complexes containing small C/D box s(no)RNAs use base pair complementarity to target specific sites within ribosomal RNA for 2'-O-ribose methylation. These modifications aid in the folding and stabilization of nascent rRNA molecules and their assembly into ribosomal particles. The genomes of hyperthermophilic archaea encode large numbers of C/D box sRNA genes, suggesting an increased necessity for rRNA stabilization at extreme growth temperatures. Results We have identified the complete sets of C/D box sRNAs from seven archaea using RNA-Seq methodology. In total, 489 C/D box sRNAs were identified, each containing two guide regions. A combination of computational and manual analyses predicts 719 guide interactions with 16S and 23S rRNA molecules. This first pan-archaeal description of guide sequences identifies (i) modified rRNA nucleotides that are frequently conserved between species and (ii) regions within rRNA that are hotspots for 2'-O-methylation. Gene duplication, rearrangement, mutational drift and convergent evolution of sRNA genes and guide sequences were observed. In addition, several C/D box sRNAs were identified that use their two guides to target locations distant in the rRNA sequence but close in the secondary and tertiary structure. We propose that they act as RNA chaperones and facilitate complex folding events between distant sequences. Conclusions This pan-archaeal analysis of C/D box sRNA guide regions identified conserved patterns of rRNA 2'-O-methylation in archaea. The interaction between the sRNP complexes and the nascent rRNA facilitates proper folding and the methyl modifications stabilize higher order rRNA structure within the assembled ribosome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1839-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick P Dennis
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043, Marburg, Germany. .,Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, VA, 20147, USA.
| | - Vanessa Tripp
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043, Marburg, Germany.
| | - Lauren Lui
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Todd Lowe
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Lennart Randau
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043, Marburg, Germany.
| |
Collapse
|
9
|
Ribonucleoproteins in archaeal pre-rRNA processing and modification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:614735. [PMID: 23554567 PMCID: PMC3608112 DOI: 10.1155/2013/614735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.
Collapse
|
10
|
Maaty WS, Steffens JD, Heinemann J, Ortmann AC, Reeves BD, Biswas SK, Dratz EA, Grieco PA, Young MJ, Bothner B. Global analysis of viral infection in an archaeal model system. Front Microbiol 2012; 3:411. [PMID: 23233852 PMCID: PMC3518317 DOI: 10.3389/fmicb.2012.00411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/14/2012] [Indexed: 12/18/2022] Open
Abstract
The origin and evolutionary relationship of viruses is poorly understood. This makes archaeal virus-host systems of particular interest because the hosts generally root near the base of phylogenetic trees, while some of the viruses have clear structural similarities to those that infect prokaryotic and eukaryotic cells. Despite the advantageous position for use in evolutionary studies, little is known about archaeal viruses or how they interact with their hosts, compared to viruses of bacteria and eukaryotes. In addition, many archaeal viruses have been isolated from extreme environments and present a unique opportunity for elucidating factors that are important for existence at the extremes. In this article we focus on virus-host interactions using a proteomics approach to study Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2. Using cultures grown from the ATCC cell stock, a single cycle of STIV infection was sampled six times over a 72 h period. More than 700 proteins were identified throughout the course of the experiments. Seventy one host proteins were found to change their concentration by nearly twofold (p < 0.05) with 40 becoming more abundant and 31 less abundant. The modulated proteins represent 30 different cell pathways and 14 clusters of orthologous groups. 2D gel analysis showed that changes in post-translational modifications were a common feature of the affected proteins. The results from these studies showed that the prokaryotic antiviral adaptive immune system CRISPR-associated proteins (CAS proteins) were regulated in response to the virus infection. It was found that regulated proteins come from mRNAs with a shorter than average half-life. In addition, activity-based protein profiling (ABPP) profiling on 2D-gels showed caspase, hydrolase, and tyrosine phosphatase enzyme activity labeling at the protein isoform level. Together, this data provides a more detailed global view of archaeal cellular responses to viral infection, demonstrates the power of quantitative two-dimensional differential gel electrophoresis and ABPP using 2D gel compatible fluorescent dyes.
Collapse
Affiliation(s)
- Walid S Maaty
- Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
You XY, Liu C, Wang SY, Jiang CY, Shah SA, Prangishvili D, She Q, Liu SJ, Garrett RA. Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles. Extremophiles 2011; 15:487-97. [PMID: 21607549 PMCID: PMC3119797 DOI: 10.1007/s00792-011-0379-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
The Acidianus hospitalis W1 genome consists of a minimally sized chromosome of about 2.13 Mb and a conjugative plasmid pAH1 and it is a host for the model filamentous lipothrixvirus AFV1. The chromosome carries three putative replication origins in conserved genomic regions and two large regions where non-essential genes are clustered. Within these variable regions, a few orphan orfB and other elements of the IS200/607/605 family are concentrated with a novel class of MITE-like repeat elements. There are also 26 highly diverse vapBC antitoxin–toxin gene pairs proposed to facilitate maintenance of local chromosomal regions and to minimise the impact of environmental stress. Complex and partially defective CRISPR/Cas/Cmr immune systems are present and interspersed with five vapBC gene pairs. Remnants of integrated viral genomes and plasmids are located at five intron-less tRNA genes and several non-coding RNA genes are predicted that are conserved in other Sulfolobus genomes. The putative metabolic pathways for sulphur metabolism show some significant differences from those proposed for other Acidianus and Sulfolobus species. The small and relatively stable genome of A. hospitalis W1 renders it a promising candidate for developing the first Acidianus genetic systems.
Collapse
Affiliation(s)
- Xiao-Yan You
- State Key Laboratory of Microbial Resources and Center for Environmental Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Bei-Chen-Xi-Lu No. Chao-Yang District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J Mol Biol 2011; 408:99-117. [PMID: 21333656 DOI: 10.1016/j.jmb.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/28/2023]
Abstract
In Gram-positive bacteria, the RNA transcripts of many amino acid biosynthetic and aminoacyl tRNA synthetase genes contain 5' untranslated regions, or leader RNAs, that function as riboswitches. These T-box riboswitches bind cognate tRNA molecules and regulate gene expression by a transcription attenuation mechanism. The Specifier Loop domain of the leader RNA contains nucleotides that pair with nucleotides in the tRNA anticodon loop and is flanked on one side by a kink-turn (K-turn), or GA, sequence motif. We have determined the solution NMR structure of the K-turn sequence element within the context of the Specifier Loop domain. The K-turn sequence motif has several noncanonical base pairs typical of K-turn structures but adopts an extended conformation. The Specifier Loop domain contains a loop E structural motif, and the single-strand Specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. Mg(2+) leads to a significant bending of the helix axis at the base of the Specifier Loop domain, but does not alter the K-turn. Isothermal titration calorimetry indicates that the K-turn sequence causes a small enhancement of the interaction between the tRNA anticodon arm and the Specifier Loop domain. One possibility is that the K-turn structure is formed and stabilized when tRNA binds the T-box riboswitch and interacts with Stem I and the antiterminator helix. This motif in turn anchors the orientation of Stem I relative to the 3' half of the leader RNA, further stabilizing the tRNA-T box complex.
Collapse
|
13
|
Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, Ye K. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature 2011; 469:559-63. [PMID: 21270896 DOI: 10.1038/nature09688] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/19/2010] [Indexed: 11/09/2022]
Abstract
Box C/D RNA protein complexes (RNPs) direct site-specific 2'-O-methylation of RNA and ribosome assembly. The guide RNA in C/D RNP forms base pairs with complementary substrates and selects the modification site using a molecular ruler. Despite many studies of C/D RNP structure, the fundamental questions of how C/D RNAs assemble into RNPs and how they guide modification remain unresolved. Here we report the crystal structure of an entire catalytically active archaeal C/D RNP consisting of a bipartite C/D RNA associated with two substrates and two copies each of Nop5, L7Ae and fibrillarin at 3.15-Å resolution. The substrate pairs with the second through the eleventh nucleotide of the 12-nucleotide guide, and the resultant duplex is bracketed in a channel with flexible ends. The methyltransferase fibrillarin binds to an undistorted A-form structure of the guide-substrate duplex and specifically loads the target ribose into the active site. Because interaction with the RNA duplex alone does not determine the site specificity, fibrillarin is further positioned by non-specific and specific protein interactions. Compared with the structure of the inactive C/D RNP, extensive domain movements are induced by substrate loading. Our results reveal the organization of a monomeric C/D RNP and the mechanism underlying its site-specific methylation activity.
Collapse
Affiliation(s)
- Jinzhong Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies. J Bacteriol 2011; 193:1672-80. [PMID: 21278296 DOI: 10.1128/jb.01487-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad host range for exceptional crenarchaeal viruses and conjugative plasmids and was selected for studying their life cycles and host interactions. The genomes of strains REY15A and HVE10/4 are 2.5 and 2.7 Mb, respectively, and each genome carries a variable region of 0.5 to 0.7 Mb where major differences in gene content and gene order occur. These include gene clusters involved in specific metabolic pathways, multiple copies of VapBC antitoxin-toxin gene pairs, and in strain HVE10/4, a 50-kb region rich in glycosyl transferase genes. The variable region also contains most of the insertion sequence (IS) elements and high proportions of the orphan orfB elements and SMN1 miniature inverted-repeat transposable elements (MITEs), as well as the clustered regular interspaced short palindromic repeat (CRISPR)-based immune systems, which are complex and diverse in both strains, consistent with them having been mobilized both intra- and intercellularly. In contrast, the remainder of the genomes are highly conserved in their protein and RNA gene syntenies, closely resembling those of other S. islandicus and Sulfolobus solfataricus strains, and they exhibit only minor remnants of a few genetic elements, mainly conjugative plasmids, which have integrated at a few tRNA genes lacking introns. This provides a possible rationale for the presence of the introns.
Collapse
|
15
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
16
|
Abstract
Electrophoretic mobility shift assay, or EMSA, is a well-established technique for separating macromolecules under native conditions based on a combination of shape, size, and charge. The use of EMSA can provide both general and specific information concerning the interaction between two macromolecules such as RNA and protein. Here we present a protocol for the practical use of EMSA to assess protein-RNA interactions and ribonucleoprotein (RNP) assembly. The conceptual framework of the assay is discussed along with a step-by-step procedure for the binding of archaeal ribosomal protein L7Ae to a box C/D sRNA. Potential pitfalls and common mistakes to avoid are emphasized with technical tips and a notes section. This protocol provides a starting point for the design and implementation of EMSA in studying a wide variety of RNP complexes.
Collapse
|
17
|
Bleichert F, Baserga SJ. Dissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function. Nucleic Acids Res 2010; 38:8295-305. [PMID: 20693534 PMCID: PMC3001065 DOI: 10.1093/nar/gkq690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In all three kingdoms of life, nucleotides in ribosomal RNA (rRNA) are post-transcriptionally modified. One type of chemical modification is 2'-O-ribose methylation, which is, in eukaryotes and archaea, performed by box C/D small ribonucleoproteins (box C/D sRNPs in archaea) and box C/D small nucleolar ribonucleoproteins (box C/D snoRNPs in eukaryotes), respectively. Recently, the first structure of any catalytically active box C/D s(no)RNP determined by electron microscopy and single particle analysis surprisingly demonstrated that they are dimeric RNPs. Mutational analyses of the Nop5 protein interface suggested that di-sRNP formation is also required for the in vitro catalytic activity. We have now analyzed the functional relevance of the second interface, the sRNA interface, within the box C/D di-sRNP. Mutations in conserved sequence elements of the sRNA, which allow sRNP assembly but which severely interfere with the catalytic activity of box C/D sRNPs, prevent formation of the di-sRNP. In addition, we can observe the dimeric box C/D sRNP architecture with a different box C/D sRNP, suggesting that this architecture is conserved. Together, these results provide further support for the functional relevance of the di-sRNP architecture and also provide a structural explanation for the observed defects in catalysis of 2'-O-ribose methylation.
Collapse
|
18
|
Weisel J, Wagner S, Klug G. The Nop5-L7A-fibrillarin RNP complex and a novel box C/D containing sRNA of Halobacterium salinarum NRC-1. Biochem Biophys Res Commun 2010; 394:542-7. [PMID: 20206603 DOI: 10.1016/j.bbrc.2010.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
RNA 2'O-methylation is a frequent modification of rRNA and tRNA and supposed to influence RNA folding and stability. Ribonucleoprotein (RNP) complexes, containing the proteins Nop5, L7A, fibrillarin, and a box C/D sRNA, are guided for 2'O-methylation by interactions of their RNA component with their target RNA. In vitro complex assembly was analyzed for several thermophilic Archaea but in vivo studies are rare, even unavailable for halophilic Archaea. To analyze the putative box C/D RNP complex in the extremely halophilic Halobacterium salinarum NRC-1 we performed pull-down analysis and identified the proteins Nop5, L7A, and fibrillarin and the tRNA(Trp) intron, as a typical box C/D sRNA of this RNP complex in vivo. We show for the first time a ribonucleolytic activity of the purified RNP complex proteins, as well as for the RNP complex containing pull-down fractions. Furthermore, we identified a novel RNA (OE4630R-3'sRNA) as part of the complex, containing the typical boxes C/D and C'/D' sequence motifs and being twice as abundant as the tRNA(Trp) intron.
Collapse
Affiliation(s)
- Jasmin Weisel
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|
19
|
Bleichert F, Gagnon KT, Brown BA, Maxwell ES, Leschziner AE, Unger VM, Baserga SJ. A dimeric structure for archaeal box C/D small ribonucleoproteins. Science 2009; 325:1384-7. [PMID: 19745151 DOI: 10.1126/science.1176099] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA. We determined the structure of a reconstituted and catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particle electron microscopy. We found that archaeal box C/D sRNPs unexpectedly formed a dimeric structure with an alternative organization of their RNA and protein components that challenges the conventional view of their architecture. Mutational analysis demonstrated that this di-sRNP structure was relevant for the enzymatic function of archaeal box C/D sRNPs.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Structural organization of box C/D RNA-guided RNA methyltransferase. Proc Natl Acad Sci U S A 2009; 106:13808-13. [PMID: 19666563 DOI: 10.1073/pnas.0905128106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Box C/D guide RNAs are abundant noncoding RNAs that primarily function to direct the 2'-O-methylation of specific nucleotides by base-pairing with substrate RNAs. In archaea, a bipartite C/D RNA assembles with L7Ae, Nop5, and the methyltransferase fibrillarin into a modification enzyme with unique substrate specificity. Here, we determined the crystal structure of an archaeal C/D RNA-protein complex (RNP) composed of all 3 core proteins and an engineered half-guide RNA at 4 A resolution, as well as 2 protein substructures at higher resolution. The RNP structure reveals that the C-terminal domains of Nop5 in the dimeric complex provide symmetric anchoring sites for 2 L7Ae-associated kink-turn motifs of the C/D RNA. A prominent protrusion in Nop5 seems to be important for guide RNA organization and function and for discriminating the structurally related U4 snRNA. Multiple conformations of the N-terminal domain of Nop5 and its associated fibrillarin in different structures indicate the inherent flexibility of the catalytic module, suggesting that a swinging motion of the catalytic module is part of the enzyme mechanism. We also built a model of a native C/D RNP with substrate and fibrillarin in an active conformation. Our results provide insight into the overall organization and mechanism of action of C/D RNA-guided RNA methyltransferases.
Collapse
|
21
|
Abstract
In recent years, sRNAs (small non-coding RNAs) have been found to be abundant in eukaryotes and bacteria and have been recognized as a novel class of gene expression regulators. In contrast, much less is known about sRNAs in archaea, except for snoRNAs (small nucleolar RNAs) that are involved in the modification of bases in stable RNAs. Therefore bioinformatic and experimental RNomics approaches were undertaken to search for the presence of sRNAs in the model archaeon Haloferax volcanii, resulting in more than 150 putative sRNA genes being identified. Northern blot analyses were used to study (differential) expression of sRNA genes. Several chromosomal deletion mutants of sRNA genes were generated and compared with the wild-type. It turned out that two sRNAs are essential for growth at low salt concentrations and high temperatures respectively, and one is involved in the regulation of carbon metabolism. Taken together, it could be shown that sRNAs are as abundant in H. volcanii as they are in well-studied bacterial species and that they fulfil important biological roles under specific conditions.
Collapse
|
22
|
Auernik KS, Cooper CR, Kelly RM. Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Curr Opin Biotechnol 2008; 19:445-53. [PMID: 18760359 DOI: 10.1016/j.copbio.2008.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/24/2008] [Accepted: 08/01/2008] [Indexed: 02/08/2023]
Abstract
The extremely thermoacidophilic archaea are a particularly intriguing group of microorganisms that must simultaneously cope with biologically extreme pHs (< or = 4) and temperatures (Topt > or = 60 degrees C) in their natural environments. Their expanding biotechnological significance relates to their role in biomining of base and precious metals and their unique mechanisms of survival in hot acid, at both the cellular and biomolecular levels. Recent developments, such as advances in understanding of heavy metal tolerance mechanisms, implementation of a genetic system, and discovery of a new carbon fixation pathway, have been facilitated by the availability of genome sequence data and molecular genetic systems. As a result, new insights into the metabolic pathways and physiological features that define extreme thermoacidophily have been obtained, in some cases suggesting prospects for biotechnological opportunities.
Collapse
Affiliation(s)
- Kathryne S Auernik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | |
Collapse
|
23
|
Singh SK, Gurha P, Gupta R. Dynamic guide-target interactions contribute to sequential 2'-O-methylation by a unique archaeal dual guide box C/D sRNP. RNA (NEW YORK, N.Y.) 2008; 14:1411-23. [PMID: 18515549 PMCID: PMC2441990 DOI: 10.1261/rna.1003308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/16/2008] [Indexed: 05/05/2023]
Abstract
Assembly and guide-target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNA(Trp) were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C'/D' motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D'-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target-guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide-target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2'-O-methylations of the target RNA.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | | | | |
Collapse
|
24
|
Jöchl C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, Schrettl M, Haas H, Hüttenhofer A. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 2008; 36:2677-89. [PMID: 18346967 PMCID: PMC2377427 DOI: 10.1093/nar/gkn123] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Small non-protein-coding RNAs (ncRNAs) have systematically been studied in various model organisms from Escherichia coli to Homo sapiens. Here, we analyse the small ncRNA transcriptome from the pathogenic filamentous fungus Aspergillus fumigatus. To that aim, we experimentally screened for ncRNAs, expressed under various growth conditions or during specific developmental stages, by generating a specialized cDNA library from size-selected small RNA species. Our screen revealed 30 novel ncRNA candidates from known ncRNA classes such as small nuclear RNAs (snRNAs) and C/D box-type small nucleolar RNAs (C/D box snoRNAs). Additionally, several candidates for H/ACA box snoRNAs could be predicted by a bioinformatical screen. We also identified 15 candidates for ncRNAs, which could not be assigned to any known ncRNA class. Some of these ncRNA species are developmentally regulated implying a possible novel function in A. fumigatus development. Surprisingly, in addition to full-length tRNAs, we also identified 5′- or 3′-halves of tRNAs, only, which are likely generated by tRNA cleavage within the anti-codon loop. We show that conidiation induces tRNA cleavage resulting in tRNA depletion within conidia. Since conidia represent the resting state of A. fumigatus we propose that conidial tRNA depletion might be a novel mechanism to down-regulate protein synthesis in a filamentous fungus.
Collapse
Affiliation(s)
- Christoph Jöchl
- Innsbruck Biocenter, Division of Genomics and RNomics - Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Reichow SL, Hamma T, Ferré-D'Amaré AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35:1452-64. [PMID: 17284456 PMCID: PMC1865073 DOI: 10.1093/nar/gkl1172] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes and archaea use two sets of specialized ribonucleoproteins (RNPs) to carry out sequence-specific methylation and pseudouridylation of RNA, the two most abundant types of modifications of cellular RNAs. In eukaryotes, these protein–RNA complexes localize to the nucleolus and are called small nucleolar RNPs (snoRNPs), while in archaea they are known as small RNPs (sRNP). The C/D class of sno(s)RNPs carries out ribose-2′-O-methylation, while the H/ACA class is responsible for pseudouridylation of their RNA targets. Here, we review the recent advances in the structure, assembly and function of the conserved C/D and H/ACA sno(s)RNPs. Structures of each of the core archaeal sRNP proteins have been determined and their assembly pathways delineated. Furthermore, the recent structure of an H/ACA complex has revealed the organization of a complete sRNP. Combined with current biochemical data, these structures offer insight into the highly homologous eukaryotic snoRNPs.
Collapse
Affiliation(s)
- Steve L. Reichow
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Tomoko Hamma
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Adrian R. Ferré-D'Amaré
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
- *To whom correspondence should be addressed. +(206) 543 1610+(206) 685 8665
| |
Collapse
|
26
|
Hardin JW, Batey RT. The bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity. Nucleic Acids Res 2006; 34:5039-51. [PMID: 16984968 PMCID: PMC1635284 DOI: 10.1093/nar/gkl644] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The archaeal box C/D sRNP, the enzyme responsible for 2'-O-methylation of rRNA and tRNA, possesses a nearly perfect axis of symmetry and bipartite structure. This RNP contains two platforms for the assembly of protein factors, the C/D and C'/D' motifs, acting in conjunction with two guide sequences to direct methylation of a specific 2'-hydroxyl group in a target RNA. While this suggests that a functional asymmetric single-site complex complete with guide sequence and a single box C/D motif should be possible, previous work has demonstrated such constructs are not viable. To understand the basis for a bipartite RNP, we have designed and assayed the activity and specificity of a series of synthetic RNPs that represent a systematic reduction of the wild-type RNP to a fully single-site enzyme. This reduced RNP is active and exhibits all of the characteristics of wild-type box C/D RNPs except it is nonspecific with respect to the site of 2'-O-methylation. Our results demonstrate that protein-protein crosstalk through Nop5p dimerization is not required, but that architecture plays a crucial role in directing methylation activity with both C/D and C'/D' motifs being required for specificity.
Collapse
Affiliation(s)
| | - Robert T. Batey
- To whom correspondence should be addressed. Tel: +1 303 735 2159; Fax: +1 303 735 1347;
| |
Collapse
|