1
|
Venu E, Ramya A, Babu PL, Srinivas B, Kumar S, Reddy NK, Babu YM, Majumdar A, Manik S. Exogenous dsRNA-Mediated RNAi: Mechanisms, Applications, Delivery Methods and Challenges in the Induction of Viral Disease Resistance in Plants. Viruses 2024; 17:49. [PMID: 39861836 PMCID: PMC11769437 DOI: 10.3390/v17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs). Key advancements in dsRNA production, including cost-effective microbial synthesis and in vitro methods, are examined alongside delivery techniques such as spray-induced gene silencing (SIGS) and nanocarrier-based systems. Strategies for enhancing dsRNA stability, including the use of nanomaterials like layered double hydroxide nanosheets and carbon dots, are discussed to address environmental degradation challenges. Practical applications of this technology against various plant viruses and its potential to ensure food security are emphasized. The review also delves into regulatory considerations, risk assessments, and the challenges associated with off-target effects and pathogen resistance. By evaluating both opportunities and limitations, this review underscores the role of exogenous dsRNA as a sustainable solution for achieving viral disease resistance in plants.
Collapse
Affiliation(s)
- Emmadi Venu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Akurathi Ramya
- Department of Plant Pathology, Junagadh Agricultural University, Junagadh 362001, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Bhukya Srinivas
- Department of Plant Pathology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Sathiyaseelan Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Namburi Karunakar Reddy
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, India;
| | - Yeluru Mohan Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Anik Majumdar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Suryakant Manik
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| |
Collapse
|
2
|
Pye HV, Krishnamurthi R, Cook R, Adriaenssens EM. Phage diversity in One Health. Essays Biochem 2024; 68:607-619. [PMID: 39475220 PMCID: PMC12055037 DOI: 10.1042/ebc20240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Revathy Krishnamurthi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Evelien M Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| |
Collapse
|
3
|
Jiang M, Laine L, Kolehmainen P, Kakkola L, Avelin V, Väisänen E, Poranen MM, Österlund P, Julkunen I. Virus-specific Dicer-substrate siRNA swarms inhibit SARS-CoV-2 infection in TMPRSS2-expressing Vero E6 cells. Front Microbiol 2024; 15:1432349. [PMID: 39611095 PMCID: PMC11602746 DOI: 10.3389/fmicb.2024.1432349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
After 4 years of the COVID-19 pandemic, SARS-CoV-2 continues to circulate with epidemic waves caused by evolving new variants. Although the rapid development of vaccines and approved antiviral drugs has reduced virus transmission and mitigated the symptoms of infection, the continuous emergence of new variants and the lack of simple-use (non-hospitalized, easy timing, local delivery, direct acting, and host-targeting) treatment modalities have limited the effectiveness of COVID-19 vaccines and drugs. Therefore, novel therapeutic approaches against SARS-CoV-2 infection are still urgently needed. As a positive-sense single-stranded RNA virus, SARS-CoV-2 is highly susceptible to RNA interference (RNAi). Accordingly, small interfering (si)RNAs targeting different regions of SARS-CoV-2 genome can effectively block the expression and replication of the virus. However, the rapid emergence of new SARS-CoV-2 variants with different genomic mutations has led to the problem of viral escape from the targets of RNAi strategy, which has increased the potential of off-target effects by siRNA and decreased the efficacy of long-term use of siRNA treatment. In our study, we enzymatically generated a set of Dicer-substrate (D)siRNA swarms containing DsiRNAs targeting single or multiple conserved sequences of SARS-CoV-2 genome by using in vitro transcription, replication and Dicer digestion system. Pre-transfection of these DsiRNA swarms into Vero E6-TMPRSS2 cells inhibited the replication of several SARS-CoV-2 variants, including the recent Omicron subvariants BQ.1.1 and XBB.1.5. This in vitro investigation of novel DsiRNA swarms provides solid evidence for the feasibility of this new RNAi strategy in the prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Miao Jiang
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Kolehmainen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Kakkola
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| | - Veera Avelin
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| |
Collapse
|
4
|
Fajardo C, De Donato M, Macedo M, Charoonnart P, Saksmerprome V, Yang L, Purton S, Mancera JM, Costas B. RNA Interference Applied to Crustacean Aquaculture. Biomolecules 2024; 14:1358. [PMID: 39595535 PMCID: PMC11592254 DOI: 10.3390/biom14111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
RNA interference (RNAi) is a powerful tool that can be used to specifically knock-down gene expression using double-stranded RNA (dsRNA) effector molecules. This approach can be used in aquaculture as an investigation instrument and to improve the immune responses against viral pathogens, among other applications. Although this method was first described in shrimp in the mid-2000s, at present, no practical approach has been developed for the use of dsRNA in shrimp farms, as the limiting factor for farm-scale usage in the aquaculture sector is the lack of cost-effective and simple dsRNA synthesis and administration procedures. Despite these limitations, different RNAi-based approaches have been successfully tested at the laboratory level, with a particular focus on shrimp. The use of RNAi technology is particularly attractive for the shrimp industry because crustaceans do not have an adaptive immune system, making traditional vaccination methods unfeasible. This review summarizes recent studies and the state-of-the-art on the mechanism of action, design, use, and administration methods of dsRNA, as applied to shrimp. In addition, potential constraints that may hinder the deployment of RNAi-based methods in the crustacean aquaculture sector are considered.
Collapse
Affiliation(s)
- Carlos Fajardo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
| | - Marcos De Donato
- Center for Aquaculture Technologies (CAT), San Diego, CA 92121, USA;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Querétaro 76130, Mexico
| | - Marta Macedo
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| | - Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
6
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
7
|
Yang J. In Vivo Production of dsRNA Using Bacteriophage ϕ6 in Pseudomonas syringae Cit7 Cells. Methods Mol Biol 2024; 2771:65-72. [PMID: 38285392 DOI: 10.1007/978-1-0716-3702-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA interference (RNAi), also known as post-transcriptional gene silencing (PTGS), is one of the emerging genetic engineering techniques to effectively silence or inhibit the expression of target genes. This chapter describes a method for in vivo production of dsRNA in non-pathogenic Pseudomonas syringae strains using phage ϕ6 RNA-dependent RNA polymerase, extraction and purification of dsRNA from bacterial solution, and the use of dsRNA to induce silencing of green fluorescent protein (GFP) in transgenic Nicotiana benthamiana.
Collapse
Affiliation(s)
- Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
8
|
ARISAKA F. Isolation and grouping of RNA phages by Itaru Watanabe et al. (1967). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:253-263. [PMID: 38599846 PMCID: PMC11170027 DOI: 10.2183/pjab.100.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
I. Watanabe et al. isolated approximately 30 strains of RNA phages from various parts of Japan. To isolate RNA phages, they assessed the infection specificity of male Escherichia coli and RNase sensitivity. They found that the isolated strains of RNA phages could be serologically separated into three groups. Furthermore, most of them were serologically related, and the antiphage rabbit serum prepared by one of these phages neutralized most of the other phages. The only serologically unrelated phage was the RNA phage Qβ, which was isolated at the Institute for Virus Research, Kyoto University, in 1961.
Collapse
Affiliation(s)
- Fumio ARISAKA
- Emeritus Professor, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
9
|
Nguyen HM, Watanabe S, Sharmin S, Kawaguchi T, Tan XE, Wannigama DL, Cui L. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses. Int J Mol Sci 2023; 24:17029. [PMID: 38069353 PMCID: PMC10707117 DOI: 10.3390/ijms242317029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
RNA and single-stranded DNA (ssDNA) phages make up an understudied subset of bacteriophages that have been rapidly expanding in the last decade thanks to advancements in metaviromics. Since their discovery, applications of genetic engineering to ssDNA and RNA phages have revealed their immense potential for diverse applications in healthcare and biotechnology. In this review, we explore the past and present applications of this underexplored group of phages, particularly their current usage as therapeutic agents against multidrug-resistant bacteria. We also discuss engineering techniques such as recombinant expression, CRISPR/Cas-based genome editing, and synthetic rebooting of phage-like particles for their role in tailoring phages for disease treatment, imaging, biomaterial development, and delivery systems. Recent breakthroughs in RNA phage engineering techniques are especially highlighted. We conclude with a perspective on challenges and future prospects, emphasizing the untapped diversity of ssDNA and RNA phages and their potential to revolutionize biotechnology and medicine.
Collapse
Affiliation(s)
- Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Sultana Sharmin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Yamagata, Japan;
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| |
Collapse
|
10
|
Gottlieb P, Alimova A. Discovery and Classification of the φ6 Bacteriophage: An Historical Review. Viruses 2023; 15:1308. [PMID: 37376608 DOI: 10.3390/v15061308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The year 2023 marks the fiftieth anniversary of the discovery of the bacteriophage φ6. The review provides a look back on the initial discovery and classification of the lipid-containing and segmented double-stranded RNA (dsRNA) genome-containing bacteriophage-the first identified cystovirus. The historical discussion describes, for the most part, the first 10 years of the research employing contemporary mutation techniques, biochemical, and structural analysis to describe the basic outline of the virus replication mechanisms and structure. The physical nature of φ6 was initially controversial as it was the first bacteriophage found that contained segmented dsRNA, resulting in a series of early publications that defined the unusual genomic quality. The technology and methods utilized in the initial research (crude by current standards) meant that the first studies were quite time-consuming, hence the lengthy period covered by this review. Yet when the data were accepted, the relationship to the reoviruses was apparent, launching great interest in cystoviruses, research that continues to this day.
Collapse
Affiliation(s)
- Paul Gottlieb
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| | - Aleksandra Alimova
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| |
Collapse
|
11
|
He L, Huang Y, Tang X. RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol 2022; 10:1080576. [PMID: 36524052 PMCID: PMC9744970 DOI: 10.3389/fbioe.2022.1080576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 10/21/2023] Open
Abstract
The limitations of conventional pesticides have raised the demand for innovative and sustainable solutions for plant protection. RNA Interference (RNAi) triggered by dsRNA has evolved as a promising strategy to control insects in a species-specific manner. In this context, we review the methods for mass production of dsRNA, the approaches of exogenous application of dsRNA in the field, and the fate of dsRNA after application. Additionally, we describe the opportunities and challenges of using nanoparticles as dsRNA carriers to control insects. Furthermore, we provide future directions to improve pest management efficiency by utilizing the synergistic effects of multiple target genes. Meanwhile, the establishment of a standardized framework for assessment and regulatory consensus is critical to the commercialization of RNA pesticides.
Collapse
Affiliation(s)
- Li He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
13
|
Gottlieb P, Alimova A. Heterologous RNA Recombination in the Cystoviruses φ6 and φ8: A Mechanism of Viral Variation and Genome Repair. Viruses 2022; 14:v14112589. [PMID: 36423198 PMCID: PMC9697746 DOI: 10.3390/v14112589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recombination and mutation of viral genomes represent major mechanisms for viral evolution and, in many cases, moderate pathogenicity. Segmented genome viruses frequently undergo reassortment of the genome via multiple infection of host organisms, with influenza and reoviruses being well-known examples. Specifically, major genomic shifts mediated by reassortment are responsible for radical changes in the influenza antigenic determinants that can result in pandemics requiring rapid preventative responses by vaccine modifications. In contrast, smaller mutational changes brought about by the error-prone viral RNA polymerases that, for the most part, lack a replication base mispairing editing function produce small mutational changes in the RNA genome during replication. Referring again to the influenza example, the accumulated mutations-known as drift-require yearly vaccine updating and rapid worldwide distribution of each new formulation. Coronaviruses with a large positive-sense RNA genome have long been known to undergo intramolecular recombination likely mediated by copy choice of the RNA template by the viral RNA polymerase in addition to the polymerase-based mutations. The current SARS-CoV-2 origin debate underscores the importance of understanding the plasticity of viral genomes, particularly the mechanisms responsible for intramolecular recombination. This review describes the use of the cystovirus bacteriophage as an experimental model for recombination studies in a controlled manner, resulting in the development of a model for intramolecular RNA genome alterations. The review relates the sequence of experimental studies from the laboratory of Leonard Mindich, PhD at the Public Health Research Institute-then in New York City-and covers a period of approximately 12 years. Hence, this is a historical scientific review of research that has the greatest relevance to current studies of emerging RNA virus pathogens.
Collapse
|
14
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
15
|
Analysis and purification of ssRNA and dsRNA molecules using asymmetrical flow field flow fractionation. J Chromatogr A 2022; 1683:463525. [DOI: 10.1016/j.chroma.2022.463525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
16
|
Kalke K, Lund LM, Nyman MC, Levanova AA, Urtti A, Poranen MM, Hukkanen V, Paavilainen H. Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells. PLoS Pathog 2022; 18:e1010688. [PMID: 35793357 PMCID: PMC9292126 DOI: 10.1371/journal.ppat.1010688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/18/2022] [Accepted: 06/19/2022] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2’-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms. Herpes simplex virus type 1 (HSV-1) is a common virus carried approximately by half of the global population. Though it is mostly known by causing cold sores, it also causes herpes keratitis, which is the leading cause of infectious blindness in the world. The treatment for herpes keratitis and other severe disease forms of herpes infection is insufficient, as resistant variants arise upon long-term prophylactic treatments. We have earlier developed an anti-HSV siRNA swarm, which has proven safe and effective in many cell types, in animal models, and against variants resistant to current first-in-line treatment. Most recently, we added modifications to the anti-HSV siRNA swarm, which increased its efficacy and stability. In this study, we show the efficacy and safety of the modified anti-HSV siRNA swarm in a cell line representing the treatment target tissue in herpes keratitis. Our results show that our modified anti-HSV siRNA swarm is a possibility for future therapy for herpes keratitis. The results encourage further research in an animal model of herpes keratitis in order to uncover the potential of our modified anti-HSV siRNA swarm.
Collapse
Affiliation(s)
- Kiira Kalke
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Liisa M. Lund
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marie C. Nyman
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (MMP); (HP)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Henrik Paavilainen
- Institute of Biomedicine, University of Turku, Turku, Finland
- * E-mail: (MMP); (HP)
| |
Collapse
|
17
|
RNA Interference-Based Pesticides and Antiviral Agents: Microbial Overproduction Systems for Double-Stranded RNA for Applications in Agriculture and Aquaculture. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi)-based pesticides are pest control agents that use RNAi mechanisms as the basis of their action. They are regarded as environmentally friendly and are a promising alternative to conventional chemical pesticides. The effective substance in RNAi-based pesticides is double-stranded RNA (dsRNA) designed to match the nucleotide sequence of a target essential gene of the pest of concern. When taken up by the pest, this exerts an RNAi effect and inhibits some vital biochemical/biological process in the pest. dsRNA products are also expected to be applied for the control of viral diseases in aquaculture by RNAi, especially in shrimp farming. A critical issue in the practical application of RNAi agents is that production of the dsRNA must be low-cost. Here, we review recent methods for microbial production of dsRNAs using representative microorganisms (Escherichia coli, Pseudomonas syringae, Corynebacterium glutamicum, Chlamydomonas reinhardtii, and others) as host strains. The characteristics of each dsRNA production system are discussed.
Collapse
|
18
|
Levanova AA, Lampi M, Kalke K, Hukkanen V, Poranen MM, Eskelin K. Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation. Pharmaceuticals (Basel) 2022; 15:261. [PMID: 35215370 PMCID: PMC8876226 DOI: 10.3390/ph15020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Mirka Lampi
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| |
Collapse
|
19
|
Sundaresha S, Bairwa A, Tomar M, Kumar R, Venkatasalam EP, Sagar V, Bhardwaj V, Sharma S. In Vitro Method for Synthesis of Large-Scale dsRNA Molecule as a Novel Plant Protection Strategy. Methods Mol Biol 2022; 2408:211-226. [PMID: 35325425 DOI: 10.1007/978-1-0716-1875-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Double-stranded RNA (dsRNAs) molecules are the precursors and effective triggers of RNAi in most organisms. RNAi can be induced by the direct introduction of dsRNAs in plants, fungi, insects, and nematodes. Until now RNAi is usually established by transformation of the plant with a construct that produces hairpin RNAs. Alternatively, advances in RNA biology demonstrated efficiently the in vitro method of large-scale synthesis of dsRNA molecule. Here we describe the de novo synthesis of dsRNA molecule targeting the specific gene of interest for functional application. Selection of off-target effective siRNA regions, flanking of T7 promoter sequences, T7 polymerase reaction, and maintenance of the stability of dsRNA molecules are the main criteria of this method to obtain pure and effective yield for functional applications. IPTG (isopropyl-β-D-thiogalactopyranoside) induced, T7 express E. coli cells, could be used for large scale synthesis of dsRNA molecule are also described in this method.
Collapse
Affiliation(s)
| | - Aarti Bairwa
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Maharishi Tomar
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, India
| | - Ravinder Kumar
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - E P Venkatasalam
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Central Potato Research Station, Udhagamandalam, India
| | - Vinay Sagar
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinay Bhardwaj
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanjeev Sharma
- Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
20
|
Levanova AA, Vainio EJ, Hantula J, Poranen MM. RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro. Viruses 2021; 13:v13091738. [PMID: 34578320 PMCID: PMC8473416 DOI: 10.3390/v13091738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| | - Eeva J. Vainio
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Jarkko Hantula
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| |
Collapse
|
21
|
Konakalla NC, Bag S, Deraniyagala AS, Culbreath AK, Pappu HR. Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses 2021; 13:662. [PMID: 33921345 PMCID: PMC8069313 DOI: 10.3390/v13040662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) continues to be a constraint to peanut, pepper, tobacco, and tomato production in Georgia and elsewhere. TSWV is being managed by an integrated disease management strategy that includes a combination of cultural practices, vector management, and growing virus-resistant varieties where available. We used a non-transgenic strategy to induce RNA interference (RNAi)-mediated resistance in tobacco (Nicotiana tabacum) plants against TSWV. Double-stranded RNA (dsRNA) molecules for the NSs (silencing suppressor) and N (nucleoprotein) genes were produced by a two-step PCR approach followed by in vitro transcription. When topically applied to tobacco leaves, both molecules elicited a resistance response. Host response to the treatments was measured by determining the time to symptom expression, and the level of resistance by absolute quantification of the virus. We also show the systemic movement of dsRNA_N from the inoculated leaves to younger, non-inoculated leaves. Post-application, viral siRNAs were detected for up to nine days in inoculated leaves and up to six days in non-inoculated leaves. The topical application of dsRNAs to induce RNAi represents an environmentally safe and efficient way to manage TSWV in tobacco crops and could be applicable to other TSWV-susceptible crops.
Collapse
Affiliation(s)
- Naga Charan Konakalla
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
| | | | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA;
| |
Collapse
|
22
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|
23
|
Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens 2021; 10:pathogens10030320. [PMID: 33803131 PMCID: PMC8001667 DOI: 10.3390/pathogens10030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.
Collapse
|
24
|
Rego-Machado CM, Nakasu EYT, Silva JMF, Lucinda N, Nagata T, Inoue-Nagata AK. siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Sci Rep 2020; 10:22277. [PMID: 33335295 PMCID: PMC7746768 DOI: 10.1038/s41598-020-79360-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
A non-transgenic approach based on RNA interference was employed to induce protection against tomato mosaic virus (ToMV) infection in tomato plants. dsRNA molecules targeting the cp gene of ToMV were topically applied on plants prior to virus inoculation. Protection was dose-dependent and sequence-specific. While no protection was achieved when 0-16 µg dsRNA were used, maximum rates of resistance (60 and 63%) were observed in doses of 200 and 400 µg/plant, respectively. Similar rates were also obtained against potato virus Y when targeting its cp gene. The protection was quickly activated upon dsRNA application and lasted for up to 4 days. In contrast, no detectable antiviral response was triggered by the dsRNA from a begomovirus genome, suggesting the method is not effective against phloem-limited DNA viruses. Deep sequencing was performed to analyze the biogenesis of siRNA populations. Although long-dsRNA remained in the treated leaves for at least 10 days, its systemic movement was not observed. Conversely, dsRNA-derived siRNA populations (mainly 21- and 22-nt) were detected in non-treated leaves, which indicates endogenous processing and transport through the plant. Altogether, this study provides critical information for the development of novel tools against plant viruses; strengths and limitations inherent to the systems are discussed.
Collapse
Affiliation(s)
- Camila M Rego-Machado
- Department of Plant Pathology, University of Brasília, Federal District, Brazil
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil
| | - Erich Y T Nakasu
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil.
| | - João M F Silva
- Department of Molecular Biology, University of Brasília, Federal District, Brazil
| | - Natália Lucinda
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil
- Department of Plant Pathology, University of Florida, Florida, USA
| | - Tatsuya Nagata
- Department of Molecular Biology, University of Brasília, Federal District, Brazil
| | - Alice K Inoue-Nagata
- Department of Plant Pathology, University of Brasília, Federal District, Brazil.
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil.
| |
Collapse
|
25
|
In vitro production of synthetic viral RNAs and their delivery into mammalian cells and the application of viral RNAs in the study of innate interferon responses. Methods 2020; 183:21-29. [PMID: 31682923 DOI: 10.1016/j.ymeth.2019.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5'mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.
Collapse
|
26
|
Ge HL, Tan K, Shi LL, Sun R, Wang WM, Li YH. Comparison of effects of dsRNA and siRNA RNA interference on insulin-like androgenic gland gene (IAG) in red swamp crayfish Procambarus clarkii. Gene 2020; 752:144783. [PMID: 32428699 DOI: 10.1016/j.gene.2020.144783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
RNA interference (RNAi), which employs double-strand RNA (dsRNA) or small interference RNA (siRNA), is a popular reverse genetic manipulation tool to study gene function. Presently, there is few reports on the implementation of RNAi on the insulin-like androgenic gland gene (IAG) in red swamp crayfish Procambarus clarkii. In this study, the effective sequence of siRNA and optimal injection dose were determined, and the effects of RNAi using dsRNA, siRNA, and long-term RNAi were investigated. The results showed that the doses of 0.5 and 1 µg/g of body weight of IAG-siRNA3 produced significantly better inhibition than 0.1 µg/g. qPCR assays showed that both dsRNA and siRNA silenced the IAG expression in five tissues (brain, ventral nerve cord, androgenic gland, testis, and vas deferens) in adult P. clarkii, with the effectiveness decreasing over time, inhibiting the production of spermatid. dsRNA exhibited a longer interference effect than siRNA in adults. For long-term interference (P. clarkii juveniles were injected 7 times with 1 µg/g of body weight of IAG-dsRNA), and found that the secondary sexual characteristics of juveniles were affected, while the control group developed normally. The results of this study could lay the foundation for crayfish sex reversal with IAG RNAi, and provide the reference for those studies in which the technique of RNAi was used.
Collapse
Affiliation(s)
- Hai-Lun Ge
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Kianann Tan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Lin-Lin Shi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Rong Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Yan-He Li
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| |
Collapse
|
27
|
Kumaran N, Choudhary A, Legros M, Sheppard AW, Barrett LG, Gardiner DM, Raghu S. Gene technologies in weed management: a technical feasibility analysis. CURRENT OPINION IN INSECT SCIENCE 2020; 38:6-14. [PMID: 32070816 DOI: 10.1016/j.cois.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
With the advent of new genetic technologies such as gene silencing and gene drive, efforts to develop additional management tools for weed management is gaining significant momentum. These technologies promise novel ways to develop sustainable weed control options because gene silencing can switch-off genes mediating adaptation (e.g. growth, herbicide resistance), and gene drive can be used to spread modified traits and to engineer wild populations with reduced fitness. However, applying gene silencing and/or gene drive is expected to be inherently complex as their application is constrained by several methodological and technological difficulties. In this review we explore the challenges of these technologies, and discuss strategies and resources accessible to accelerate the development of gene-tech based tools for weed management. We also highlight how gene technologies can be integrated into existing management tactics such as classical biological control, and their possible interactions.
Collapse
Affiliation(s)
- Nagalingam Kumaran
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Health and Biosecurity, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Anupma Choudhary
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Health and Biosecurity, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Mathieu Legros
- CSIRO Agriculture and Food, GPO BOX 1700, Canberra, ACT 2601, Australia; CSIRO Synthetic Biology Future Science Platform, Australia
| | - Andy W Sheppard
- CSIRO Health and Biosecurity, GPO BOX 1700, Canberra, ACT 2601, Australia
| | - Luke G Barrett
- CSIRO Agriculture and Food, GPO BOX 1700, Canberra, ACT 2601, Australia; CSIRO Synthetic Biology Future Science Platform, Australia
| | - Donald M Gardiner
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Carmody Road, St Lucia, QLD 4067, Australia
| | - S Raghu
- CSIRO Synthetic Biology Future Science Platform, Australia
| |
Collapse
|
28
|
Hashiro S, Mitsuhashi M, Yasueda H. Overexpression system for recombinant RNA in Corynebacterium glutamicum using a strong promoter derived from corynephage BFK20. J Biosci Bioeng 2019; 128:255-263. [PMID: 31076339 DOI: 10.1016/j.jbiosc.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 01/16/2023]
Abstract
In recent years, it has been shown that recombinant RNA molecules have a great potential in mRNA therapy and as novel agricultural pesticides. We developed a fundamental system for efficient production of target RNA molecules in Corynebacterium glutamicum, composed of a strong promoter named F1 and a terminator derived from corynephage BFK20 in a high-copy number plasmid vector. As a target model RNA for overexpression, we designed and used an RNA molecule [designated U1A*-RNA, ∼160 nucleotides (nt) long] containing a stem/loop II (SL-II, hairpin-II) structure from U1 small nuclear RNA (snRNA), which binds to U1A protein, forming a U1 sn-ribonucleoprotein, which is essential in the pre-mRNA splicing process. C. glutamicum strains harboring the U1A*-RNA expression plasmid were cultured and the total RNA was analyzed. We observed prominent expression of RNA corresponding to the U1A*-RNA transcript along with lower expression of a 3'-region-truncated form of the transcript (∼110 nt) in an rnc (encoding RNase III)-deficient strain. We also found that the produced U1A*-RNA bound to the U1A RNA-binding domain protein, which was separately prepared with C. glutamicum. In a batch cultivation using a fermentor, the total accumulated amount of the target RNA reached about 300 mg/L by 24 h. Thus, our results indicated that our system can serve as an efficient platform for large-scale preparation of an RNA of interest.
Collapse
Affiliation(s)
- Shuhei Hashiro
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Mayu Mitsuhashi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Hisashi Yasueda
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan.
| |
Collapse
|
29
|
Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J Virol 2019; 93:JVI.01916-18. [PMID: 30463970 DOI: 10.1128/jvi.01916-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.
Collapse
|
30
|
Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses 2019; 11:E76. [PMID: 30669250 PMCID: PMC6356626 DOI: 10.3390/v11010076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of "viral lineages", postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
Collapse
Affiliation(s)
- Sari Mäntynen
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| | - Lotta-Riina Sundberg
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
31
|
Chen Z, He J, Luo P, Li X, Gao Y. Production of functional double-stranded RNA using a prokaryotic expression system in Escherichia coli. Microbiologyopen 2018; 8:e00787. [PMID: 30592182 PMCID: PMC6612555 DOI: 10.1002/mbo3.787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023] Open
Abstract
RNA interference (RNAi) is a nucleic acid metabolism system utilized for the post-translational regulation of endogenous genes or for defense against exogenous RNA or transposable elements. Double-stranded RNA (dsRNA)-mediated RNAi shows broad application prospects to improve existing plant traits and combat invading pathogens or pests. To improve dsRNA transcriptional efficiency using a prokaryotic expression system, Trxz gene, an essential gene for the early development of chloroplasts in Arabidopsis thaliana, was chosen for a functional study. Two types of recombinant expression vectors, pDP-Trxz and phP-Trxz-N/L, were constructed to generate dsTrxz, the dsRNA which specifically induces Trxz gene silencing. Gel electrophoresis tests showed that phP vectors performed better and produced more dsRNA than the pDP vector under the same conditions. Purification of dsTrxz by enzymatic digestion indicated that highly purified dsRNA can be obtained through the use of DNase enzymatic hydrolysis assay. To confirm the knockdown effect of the dsRNA, a root immersion assay was performed, and we found that the root immersion culture could continue to affect the growth and development of A. thaliana. This included inhibiting the development of new leaves, causing weak plant development, leaf whitening, and other symptoms. This indicated that in vitro expressed dsRNA can be absorbed through Arabidopsis roots and can continue to trigger Trxz gene silencing. To delay dsRNA degradation and extend the effectiveness of RNAi, nanomaterial layered double hydroxide (LDH)-mediated BioClay was performed. We found that LDH-mediated BioClay alleviates the degree of dsRNA degradation, which provides a new idea for the storage and transportation of dsRNA.
Collapse
Affiliation(s)
- Zhengjun Chen
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Jindian He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, College of Life SciencesLanzhou UniversityLanzhouChina
| | - Pan Luo
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, College of Life SciencesLanzhou UniversityLanzhouChina
| | - Yuan Gao
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
32
|
Levanova A, Poranen MM. RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Front Microbiol 2018; 9:2151. [PMID: 30254624 PMCID: PMC6141738 DOI: 10.3389/fmicb.2018.02151] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived from viral genome or its replicative intermediates, is a natural antiviral defense in plants, fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection in mammals. The current review critically evaluates the production of antiviral siRNAs, delivery techniques to the infection sites, as well as provides an overview of antiviral siRNAs in clinical trials.
Collapse
Affiliation(s)
- Alesia Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Application of steric exclusion chromatography on monoliths for separation and purification of RNA molecules. J Chromatogr A 2018; 1574:50-59. [PMID: 30195858 DOI: 10.1016/j.chroma.2018.08.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
Steric exclusion chromatography (SXC) is a method for separation of large target solutes based on their association with a hydrophilic stationary phase through mutual steric exclusion of polyethylene glycol (PEG). Selectivity in SXC is determined by the size or shape (or both) of the solutes alongside the size and concentration of PEG molecules. Elution is achieved by decreasing the PEG concentration. In this study, SXC applicability for the separation and purification of single-stranded (ss) and double-stranded (ds) RNA molecules was evaluated for the first time. The retention of ssRNA and dsRNA molecules of different lengths on convective interaction media (CIM) monolithic columns was systematically studied under variable PEG-6000 and NaCl concentrations. We determined that over 90% of long ssRNAs (700-6374 nucleotides) and long dsRNAs (500-6374 base pairs) are retained on the stationary phase in 15% PEG-6000 and ≥0.4 M NaCl. dsDNA and dsRNA molecules of the same length were partially separated by SXC. Separation of RNA molecules below 100 nucleotides from longer RNA species is easily achieved by SXC. Furthermore, SXC has the potential to separate dsRNAs from ssRNAs of the same length. We also demonstrated that SXC is suitable for the enrichment of ssRNA (PRR1 bacteriophage) and dsRNA (Phi6 bacteriophage) viral genomes from contaminating cellular RNA species. In summary, SXC on CIM monolithic columns is an appropriate tool for rapid RNA separation and concentration.
Collapse
|
34
|
Kaur G, Cheung HC, Xu W, Wong JV, Chan FF, Li Y, McReynolds L, Huang L. Milligram scale production of potent recombinant small interfering RNAs in Escherichia coli. Biotechnol Bioeng 2018; 115:2280-2291. [PMID: 29873060 DOI: 10.1002/bit.26740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Small interfering RNAs (siRNAs) are invaluable research tools for studying gene functions in mammalian cells. siRNAs are mainly produced by chemical synthesis or by enzymatic digestion of double-stranded RNA (dsRNA) produced in vitro. Recently, bacterial cells, engineered with ectopic plant viral siRNA binding protein p19, have enabled the production of "recombinant" siRNAs (pro-siRNAs). Here, we describe an optimized methodology for the production of milligram amount of highly potent recombinant pro-siRNAs from Escherichia coli cells. We first optimized bacterial culture medium and tested new designs of pro-siRNA production plasmid. Through the exploration of multiple pro-siRNA related factors, including the expression of p19 protein, (dsRNA) generation method, and the level of RNase III, we developed an optimal pro-siRNA production plasmid. Together with a high-cell density fed-batch fermentation method in a bioreactor, we have achieved a yield of ~10 mg purified pro-siRNA per liter of bacterial culture. The pro-siRNAs produced by the optimized method can achieve high efficiency of gene silencing when used at low nanomolar concentrations. This new method enables fast, economical, and renewable production of pure and highly potent bioengineered pro-siRNAs at the milligram level. Our study also provides important insights into the strategies for optimizing the production of RNA products in bacteria, which is an under-explored field.
Collapse
Affiliation(s)
- Guneet Kaur
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Present address: Sino-Forest Applied Research Centre for Pearl River Delta Environment & Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hung-Chi Cheung
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Wei Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jun Vic Wong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - For Fan Chan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yingxue Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Larry McReynolds
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts
| | - Linfeng Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
35
|
Niehl A, Soininen M, Poranen MM, Heinlein M. Synthetic biology approach for plant protection using dsRNA. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1679-1687. [PMID: 29479789 PMCID: PMC6097125 DOI: 10.1111/pbi.12904] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 05/05/2023]
Abstract
Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production. Using components of the bacteriophage phi6, we engineered a stable and accurate in vivo dsRNA production system in Pseudomonas syringae bacteria. Unlike other in vitro or in vivo dsRNA production systems that rely on DNA transcription and postsynthetic alignment of single-stranded RNA molecules, the phi6 system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, thus allowing production of high-quality, long dsRNA molecules. The phi6 replication complex was reprogrammed to multiply dsRNA sequences homologous to tobacco mosaic virus (TMV) by replacing the coding regions within two of the three phi6 genome segments with TMV sequences and introduction of these constructs into P. syringae together with the third phi6 segment, which encodes the components of the phi6 replication complex. The stable production of TMV dsRNA was achieved by combining all the three phi6 genome segments and by maintaining the natural dsRNA sizes and sequence elements required for efficient replication and packaging of the segments. The produced TMV-derived dsRNAs inhibited TMV propagation when applied to infected Nicotiana benthamiana plants. The established dsRNA production system enables the broad application of dsRNA molecules as an efficient, highly flexible, nontransgenic and environmentally friendly approach for protecting crops against viruses and other pathogens.
Collapse
Affiliation(s)
- Annette Niehl
- Université de StrasbourgCNRSIBMP UPR 2357StrasbourgFrance
- Present address:
Julius Kühn‐Institute (JKI)BraunschweigGermany
| | - Marjukka Soininen
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | |
Collapse
|
36
|
Maheshwari R, Tekade M, Gondaliya P, Kalia K, D'Emanuele A, Tekade RK. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine (Lond) 2017; 12:2653-2675. [PMID: 28960165 DOI: 10.2217/nnm-2017-0210] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) therapeutics (siRNA, miRNA, etc.) represent an emerging medicinal remedy for a variety of ailments. However, their low serum stability and low cellular uptake significantly restrict their clinical applications. Exosomes are biologically derived nanodimensional vesicle ranging from a few nanometers to a hundred. In the last few years, several reports have been published demonstrating the emerging applications of these exogenous membrane vesicles, particularly in carrying different RNAi therapeutics to adjacent or distant targeted cells. In this report, we explored the numerous aspects of exosomes from structure to clinical implications with special emphasis on their application in delivering RNAi-based therapeutics. siRNA and miRNA have attracted great interest in recent years due to their specific application in treating many complex diseases including cancer. We highlight strategies to obviate the challenges of their low bioavailability for gene therapy.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology Campus, Anand Nagar, Raisen Road, Bhopal 462021, Madhya Pradesh, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Antony D'Emanuele
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
37
|
Sun G, Riggs AD. A Simple and Cost-Effective Approach for In Vitro Production of Sliced siRNAs as Potent Triggers for RNAi. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:345-355. [PMID: 28918034 PMCID: PMC5537206 DOI: 10.1016/j.omtn.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022]
Abstract
We have studied the molecular properties of in-vitro-transcribed sliced small interfering RNAs (tsli-siRNAs) as an alternative RNAi agent for chemically synthesized siRNA. We describe here a simple and cost-effective procedure for high-purity production of tsli-siRNA using bacteriophage T7 RNA polymerases. tsli-siRNAs exhibit potent gene knockdown effects, with efficacy comparable with that of chemically synthesized sli-siRNAs and classical siRNAs. Furthermore, we found that it is very easy to prepare potent tsli-siRNAs with modified bases, such as 2′-fluorine- or biotin-16-modified tsli-siRNAs. tsli-siRNAs can cause a mild innate immune response, which can be easily eliminated by alkaline phosphatase treatment. On the other hand, this feature, which can be useful as a trigger of the innate immune response, can be enhanced by polynucleotide kinase treatment. Because of the simplicity of preparation and purification, the procedure presented here could be useful for the production of RNAi or immunostimulatory reagents.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Diabetes Complications & Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Arthur D Riggs
- Department of Diabetes Complications & Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
38
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
39
|
Nwokeoji AO, Kung AW, Kilby PM, Portwood DE, Dickman MJ. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry. J Chromatogr A 2016; 1484:14-25. [PMID: 28088361 PMCID: PMC5267946 DOI: 10.1016/j.chroma.2016.12.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022]
Abstract
rapid purification of dsRNA in a single step protocol. high throughput purification and analysis of a wide range of dsRNAs. developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. developed a novel method utilising RNase T1 for RNase mass mapping of dsRNA.
RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficial insects. The potential to synthesise large quantities of dsRNA by in-vitro transcription or in bacterial systems for RNA interference applications has generated significant demand for the development and application of high throughput analytical tools for the rapid extraction, purification and analysis of dsRNA. Here we have developed analytical methods that enable the rapid purification of dsRNA from associated impurities from bacterial cells in conjunction with downstream analyses. We have optimised TRIzol extractions in conjunction with a single step protocol to remove contaminating DNA and ssRNA, using RNase T1/DNase I digestion under high-salt conditions in combination with solid phase extraction to purify the dsRNA. In addition, we have utilised and developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. Furthermore, we have optimised base-specific cleavage of dsRNA by RNase A and developed a novel method utilising RNase T1 for RNase mass mapping approaches to further characterise the dsRNA using liquid chromatography interfaced with mass spectrometry.
Collapse
Affiliation(s)
- Alison O Nwokeoji
- Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK
| | - An-Wen Kung
- Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK
| | - Peter M Kilby
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - David E Portwood
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK.
| |
Collapse
|
40
|
Itsathitphaisarn O, Thitamadee S, Weerachatyanukul W, Sritunyalucksana K. Potential of RNAi applications to control viral diseases of farmed shrimp. J Invertebr Pathol 2016; 147:76-85. [PMID: 27867019 DOI: 10.1016/j.jip.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Viral pathogens pose a primary threat to global shrimp aquaculture. Despite the urgent industry need for them, practical anti-viral control methods are unavailable due, in part, to lack of an adaptive immune response in crustaceans that renders conventional vaccination methods ineffective. One currently studied method of high interest for protecting shrimp against viral infection relies on the post-transcriptional gene silencing mechanism called RNA interference (RNAi) that is induced by gene-specific constructs of double stranded RNA (dsRNA). Although this approach was first described for successful protection of shrimp against white spot disease (WSD) by injecting dsRNA specific to genes of white spot syndrome virus (WSSV) into shrimp in the laboratory in 2005 no practical method for use of dsRNA in shrimp farms has been developed to date. The apparent bottleneck for farm-scale applications of RNAi-mediated viral control in shrimp aquaculture is the lack of simple and cost-effective delivery methods. This review summarizes recent studies on use and delivery of dsRNA to shrimp via injection and oral routes in hatcheries and on farms and it discusses the research directions that might lead to development of practical methods for applications with farmed shrimp. Oral delivery methods tested so far include use of dsRNA-expressing bacteria as a component of dry feed pellets or use of living brine shrimp (Artemia) pre-fed with dsRNA before they are fed to shrimp. Also tested have been dsRNA enclosed in nanocontainers including chitosan, liposomes and viral-like particles (VLP) before direct injection or use as components of feed pellets for hatchery or pond-reared shrimp.
Collapse
Affiliation(s)
- Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Siripong Thitamadee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy and Structural Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kallaya Sritunyalucksana
- Shrimp-Pathogen Interaction (SPI) Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
41
|
Nwokeoji AO, Kilby PM, Portwood DE, Dickman MJ. RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform. Anal Biochem 2016; 512:36-46. [DOI: 10.1016/j.ab.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
|
42
|
Konakalla NC, Kaldis A, Berbati M, Masarapu H, Voloudakis AE. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. PLANTA 2016; 244:961-9. [PMID: 27456838 DOI: 10.1007/s00425-016-2567-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION External application of dsRNA molecules from Tobacco mosaic virus (TMV) p126 and CP genes confers significant resistance against TMV infection. Exogenously applied dsRNA exhibits a rapid systemic trafficking in planta , and it is processed successfully by DICER-like proteins producing small interfering RNAs. RNA interference (RNAi) is a sequence-specific, post-transcriptional gene silencing mechanism, induced by double-stranded RNA (dsRNA), which protects eukaryotic cells against invasive nucleic acids like viruses and transposons. In the present study, we used a non-transgenic strategy to induce RNAi in Nicotiana tabacum cv. Xanthi plants against TMV. DsRNA molecules for the p126 (TMV silencing suppressor) and coat protein (CP) genes were produced by a two-step PCR approach followed by in vitro transcription. The application of TMV p126 dsRNA onto tobacco plants induced greater resistance against TMV infection as compared to CP dsRNA (65 vs. 50 %). This study also reported the fast systemic spread of TMV p126 dsRNA from the treated (local) to non-treated (systemic) leaves beginning from 1 h post-application, confirmed by both conventional and real-time RT-PCR. Furthermore, we employed a stem-loop RT-PCR and confirmed the presence of a putative viral siRNA for up to 9 days in local leaves and up to 6 days in systemic leaves post-application. The approach employed could represent a simple and environmentally safe way for the control of plant viruses in future agriculture.
Collapse
Affiliation(s)
- Naga Charan Konakalla
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece
| | - Margarita Berbati
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India.
| | - Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
43
|
Paavilainen H, Lehtinen J, Romanovskaya A, Nygårdas M, Bamford DH, Poranen MM, Hukkanen V. Inhibition of clinical pathogenic herpes simplex virus 1 strains with enzymatically created siRNA pools. J Med Virol 2016; 88:2196-2205. [PMID: 27191509 DOI: 10.1002/jmv.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/11/2022]
Abstract
Herpes simplex virus (HSV) is a common human pathogen causing severe diseases such as encephalitis, keratitis, and neonatal herpes. There is no vaccine against HSV and the current antiviral chemotherapy fails to treat certain forms of the disease. Here, we evaluated the antiviral activity of enzymatically created small interfering (si)RNA pools against various pathogenic HSV strains as potential candidates for antiviral therapies. Pools of siRNA targeting 0.5-0.8 kbp of essential HSV genes UL54, UL29, or UL27 were enzymatically synthesized. Efficacy of inhibition of each siRNA pool was evaluated against multiple clinical isolates and laboratory wild type HSV-1 strains using three cell lines representing host tissues that support HSV-1 replication: epithelial, ocular, and cells that originated from the nervous system. The siRNA pools targeting UL54, UL29, and UL27, as well as their equimolar mixture, inhibited HSV replication, with the pool targeting UL29 having the most prominent antiviral effect. In contrast, the non-specific control siRNA pool did not have such an effect. Moreover, the UL29 pool elicited only a minimal innate immune response in the HSV-infected cells, thus evidencing the safety of its potential clinical use. These results are promising for the development of a topical RNA interference approach for clinical treatment of HSV infection. J. Med. Virol. 88:2196-2205, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henrik Paavilainen
- Department of Virology, University of Turku, Turku, Finland.
- Drug Research Doctoral Program, University of Turku, Turku, Finland.
| | - Jenni Lehtinen
- Department of Virology, University of Turku, Turku, Finland
- Drug Research Doctoral Program, University of Turku, Turku, Finland
| | | | | | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
44
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 34:44-69. [PMID: 28392618 PMCID: PMC5381822 DOI: 10.14356/kona.2017005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system can be used to overcome the barriers of pulmonary delivery, such as anatomical barriers, mucociliary clearance, cough clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems include those of lipidic, polymeric, peptide, or inorganic origin. These delivery systems can achieve pulmonary delivery through the generation of an aerosol via an inhaler or nebulizer. The preparation methodologies for these siRNA nanocarrier systems will be discussed herein. The use of inhalable nanocarrier siRNA delivery systems have barriers to their effective delivery, but overcoming these constraints while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, The Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
45
|
Raba M, Palgi J, Lehtivaara M, Arumäe U. Microarray Analysis Reveals Increased Transcriptional Repression and Reduced Metabolic Activity but Not Major Changes in the Core Apoptotic Machinery during Maturation of Sympathetic Neurons. Front Cell Neurosci 2016; 10:66. [PMID: 27013977 PMCID: PMC4792887 DOI: 10.3389/fncel.2016.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023] Open
Abstract
Postnatal maturation of the neurons whose main phenotype and basic synaptic contacts are already established includes neuronal growth, refinement of synaptic contacts, final steps of differentiation, programmed cell death period (PCD) etc. In the sympathetic neurons, postnatal maturation includes permanent end of the PCD that occurs with the same time schedule in vivo and in vitro suggesting that the process could be genetically determined. Also many other changes in the neuronal maturation could be permanent and thus based on stable changes in the genome expression. However, postnatal maturation of the neurons is poorly studied. Here we compared the gene expression profiles of immature and mature sympathetic neurons using Affymetrix microarray assay. We found 1310 significantly up-regulated and 1151 significantly down-regulated genes in the mature neurons. Gene ontology analysis reveals up-regulation of genes related to neuronal differentiation, chromatin and epigenetic changes, extracellular factors and their receptors, and cell adhesion, whereas many down-regulated genes were related to metabolic and biosynthetic processes. We show that termination of PCD is not related to major changes in the expression of classical genes for apoptosis or cell survival. Our dataset is deposited to the ArrayExpress database and is a valuable source to select candidate genes in the studies of neuronal maturation. As an example, we studied the changes in the expression of selected genes Igf2bp3, Coro1A, Zfp57, Dcx, and Apaf1 in the young and mature sympathetic ganglia by quantitative PCR and show that these were strongly downregulated in the mature ganglia.
Collapse
Affiliation(s)
- Mikk Raba
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Jaan Palgi
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Maria Lehtivaara
- Biomedicum Functional Genomics Unit, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Urmas Arumäe
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia; Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
46
|
Paavilainen H, Romanovskaya A, Nygårdas M, Bamford DH, Poranen MM, Hukkanen V. Innate responses to small interfering RNA pools inhibiting herpes simplex virus infection in astrocytoid and epithelial cells. Innate Immun 2015; 21:349-57. [PMID: 24996409 DOI: 10.1177/1753425914537921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/29/2014] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus (HSV) is a human pathogen that can cause severe diseases such as encephalitis, keratitis and neonatal herpes. Control of HSV infection may be achieved by using small interfering (si)RNAs. We have designed and enzymatically produced pools of siRNAs targeting HSV. In addition to the target-specific effects, such siRNAs may induce innate immunity responses that may contribute to antiviral effects. HSV has versatile ways of modulating innate immunity, and it remains unclear whether HSV-specific antiviral treatment would benefit from the potential immunostimulatory effects of siRNAs. To address this, cell lines derived from epithelium and nervous system were studied for innate immunity reactions to HSV infection, to siRNA treatment, and to a combination of treatment and infection. In addition, the outcome of HSV infection was quantitated. We show that innate immunity reactions vary drastically between the cell lines. Moreover, our findings indicate only a minimal relation between the antiviral effect and the treatment-induced innate immunity responses. Thus, the antiviral effect is mainly sequence specific and the inhibition of HSV infection is not ascribed to the slight innate immunity induction.
Collapse
Affiliation(s)
| | | | | | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Voloudakis AE, Holeva MC, Sarin LP, Bamford DH, Vargas M, Poranen MM, Tenllado F. Efficient double-stranded RNA production methods for utilization in plant virus control. Methods Mol Biol 2015; 1236:255-74. [PMID: 25287509 DOI: 10.1007/978-1-4939-1743-3_19] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Double-stranded RNA (dsRNA) is an inducer molecule of the RNA silencing (RNA interference, RNAi) pathway that is present in all higher eukaryotes and controls gene expression at the posttranscriptional level. This mechanism allows the cell to recognize aberrant genetic material in a highly sequence specific manner. This ultimately leads to degradation of the homologous target sequence, rendering the plant cell resistant to subcellular pathogens. Consequently, dsRNA-mediated resistance has been exploited in transgenic plants to convey resistance against viruses. In addition, it has been shown that enzymatically synthesized specific dsRNA molecules can be applied directly onto plant tissue to induce resistance against the cognate virus. This strongly implies that dsRNA molecules are applicable as efficacious agents in crop protection, which will fuel the demand for cost-effective dsRNA production methods. In this chapter, the different methods for dsRNA production-both in vitro and in vivo-are described in detail.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece,
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
We recently invented a method to produce highly potent siRNAs in Escherichia coli, based on the serendipitous discovery that ectopic expression of p19, a plant viral siRNA-binding protein, stabilizes otherwise unstable bacterial siRNAs, which we named pro-siRNAs for prokaryotic siRNAs. We present a detailed protocol describing how to produce pro-siRNAs for efficiently knocking down any gene, beginning with the design of a pro-siRNA expression plasmid and ending with siRNA purification. This protocol uses one plasmid to co-express a recombinant His-tagged p19 protein and a long hairpin RNA containing sense and antisense sequences of the target gene. pro-siRNAs are isolated and purified using nickel beads and HPLC, using methods used to produce recombinant proteins. Once a pro-siRNA plasmid is obtained, production of purified pro-siRNAs takes a few days. The pro-siRNA technique provides a reliable and renewable source of siRNAs, and it can be implemented in any laboratory whose members are skilled in routine molecular biology techniques.
Collapse
|
49
|
McGinnis AC, Cummings BS, Bartlett MG. Ion exchange liquid chromatography method for the direct determination of small ribonucleic acids. Anal Chim Acta 2013; 799:57-67. [DOI: 10.1016/j.aca.2013.08.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
|
50
|
Romanovskaya A, Sarin LP, Bamford DH, Poranen MM. High-throughput purification of double-stranded RNA molecules using convective interaction media monolithic anion exchange columns. J Chromatogr A 2012; 1278:54-60. [PMID: 23332782 DOI: 10.1016/j.chroma.2012.12.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 11/15/2022]
Abstract
Recent advances in the field of RNA interference and new cost-effective approaches for large-scale double-stranded RNA (dsRNA) synthesis have fuelled the demand for robust high-performance purification techniques suitable for dsRNA molecules of various lengths. To address this issue, we developed an improved dsRNA purification method based on anion exchange chromatography utilizing convective interaction media (CIM) monolithic columns. To evaluate column performance we synthesized a selection of dsRNA molecules (58-1810 bp) in a one-step enzymatic reaction involving bacteriophage T7 DNA-dependent RNA polymerase and phi6 RNA-dependent RNA polymerase. In addition, small interfering RNAs (siRNAs) of 25-27 bp were generated by Dicer digestion of the genomic dsRNA of bacteriophage phi6. We demonstrated that linearly scalable CIM monolithic quaternary amine (QA) columns can be used as a fast and superior alternative to standard purification methods (e.g. LiCl precipitation) to obtain highly pure dsRNA preparations. The impurities following Dicer treatment were quickly and efficiently removed with the QA CIM monolithic column, yielding siRNA molecules of high purity suitable for potential therapeutic applications. Moreover, baseline separation of dsRNA molecules up to 1 kb in non-denaturing conditions was achieved.
Collapse
Affiliation(s)
- Alesia Romanovskaya
- Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|