1
|
Michaeli S. Non-coding RNA and the complex regulation of the trypanosome life cycle. Curr Opin Microbiol 2014; 20:146-52. [DOI: 10.1016/j.mib.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
2
|
Ruda VM, Chandwani R, Sehgal A, Bogorad RL, Akinc A, Charisse K, Tarakhovsky A, Novobrantseva TI, Koteliansky V. The roles of individual mammalian argonautes in RNA interference in vivo. PLoS One 2014; 9:e101749. [PMID: 24992693 PMCID: PMC4081796 DOI: 10.1371/journal.pone.0101749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/28/2014] [Indexed: 11/26/2022] Open
Abstract
Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3′ untranslated region (3′UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3′UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3′UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3′UTR targeting as to harness the activity of several Ago proteins.
Collapse
Affiliation(s)
- Vera M. Ruda
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VMR); (VK)
| | - Rohit Chandwani
- Laboratory of Immune Cell Epigenetics and Signaling, Rockefeller University, New York, New York, United States of America
| | - Alfica Sehgal
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Roman L. Bogorad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Akin Akinc
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Klaus Charisse
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, Rockefeller University, New York, New York, United States of America
| | | | - Victor Koteliansky
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VMR); (VK)
| |
Collapse
|
3
|
Zheng LL, Wen YZ, Yang JH, Liao JY, Shao P, Xu H, Zhou H, Wen JZ, Lun ZR, Ayala FJ, Qu LH. Comparative transcriptome analysis of small noncoding RNAs in different stages of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:863-875. [PMID: 23704326 PMCID: PMC3683921 DOI: 10.1261/rna.035683.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Trypanosoma brucei, a pathogen of human and domestic animals, is an early evolved parasitic protozoan with a complex life cycle. Most genes of this parasite are post-transcriptionally regulated. However, the mechanisms and the molecules involved remain largely unknown. We have deep-sequenced the small RNAs of two life stages of this parasite--the bloodstream form and the procyclic form. Our results show that the small RNAs of T. brucei could derive from multiple sources, including NATs (natural antisense transcripts), tRNAs, and rRNAs. Most of these small RNAs in the two stages were found to share uniform characteristics. However, our results demonstrate that their variety and expression show significant differences between different stages, indicating possible functional differentiation. Dicer-knockdown evidence further proved that some of the small interfering RNAs (siRNAs) could regulate the expression of genes. Based on the genome-wide analysis of the small RNAs in the two stages of T. brucei, our results not only provide evidence to study their differentiation but also shed light on questions regarding the origins and evolution of small RNA-based mechanisms in early eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- Evolution, Molecular
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Genes, Protozoan
- High-Throughput Nucleotide Sequencing
- Molecular Sequence Data
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Ling-Ling Zheng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan-Zi Wen
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian-Hua Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-You Liao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Shao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Xu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Zhi Wen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Centre for Parasitology and Disease, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, United Kingdom
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Liang-Hu Qu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|
5
|
Vasudevan S. Posttranscriptional upregulation by microRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:311-30. [PMID: 22072587 DOI: 10.1002/wrna.121] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.
Collapse
|
6
|
Pseudogene-derived small interference RNAs regulate gene expression in African Trypanosoma brucei. Proc Natl Acad Sci U S A 2011; 108:8345-50. [PMID: 21531904 DOI: 10.1073/pnas.1103894108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudogenes have been shown to acquire unique regulatory roles from more and more organisms. We report the observation of a cluster of siRNAs derived from pseudogenes of African Trypanosoma brucei using high through-put analysis. We show that these pseudogene-derived siRNAs suppress gene expression through RNA interference. The discovery that siRNAs may originate from pseudogenes and regulate gene expression in a unicellular eukaryote provides insights into the functional roles of pseudogenes and into the origin of noncoding small RNAs.
Collapse
|
7
|
Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S. Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 2010; 38:7236-47. [PMID: 20601683 PMCID: PMC2978370 DOI: 10.1093/nar/gkq599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of dsRNA complementary to small nucleolar RNAs (snoRNAs) in Trypanosoma brucei results in snoRNA silencing, termed snoRNAi. Here, we demonstrate that snoRNAi requires the nuclear TbDCL2 protein, but not TbDCL1, which is involved in RNA interference (RNAi) in the cytoplasm. snoRNAi depends on Argonaute1 (Slicer), and on TbDCL2, suggesting that snoRNA dicing and slicing takes place in the nucleus, and further suggesting that AGO1 is active in nuclear silencing. snoRNAi was next utilized to elucidate the function of an abundant snoRNA, TB11Cs2C2 (92 nt), present in a cluster together with the spliced leader associated RNA (SLA1) and snR30, which are both H/ACA RNAs with special nuclear functions. Using AMT-UV cross-linking and RNaseH cleavage, we provide evidence for the interaction of TB11Cs2C2 with the small rRNAs, srRNA-2 and srRNA-6, which are part of the large subunit (LSU) rRNA. snoRNAi of TB11Cs2C2 resulted in defects in generating srRNA-2 and LSUβ rRNA. This is the first snoRNA described so far to engage in trypanosome-specific processing events.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | | | | | | | | | | |
Collapse
|
8
|
Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: role of the n-terminal RGG domain and the polyribosome association of argonaute. J Biol Chem 2009; 284:36511-36520. [PMID: 19880512 DOI: 10.1074/jbc.m109.073072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Argonaute proteins (AGOs) are central to RNA interference (RNAi) and related silencing pathways. At the core of the RNAi pathway in the ancient parasitic eukaryote Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in the destruction of potentially harmful retroposon transcripts. One notable feature of TbAGO1 is that a fraction sediments with polyribosomes, and this association is facilitated by an arginine/glycine-rich domain (RGG domain) at the N terminus of the protein. Here we report that reducing the size of the RGG domain and, in particular, mutating all arginine residues severely reduced the association of TbAGO1 with polyribosomes and RNAi-induced cleavage of mRNA. However, these mutations did not change the cellular localization of Argonaute and did not affect the accumulation of single-stranded siRNAs, an essential step in the activation of the RNA-induced silencing complex. We further show that mRNA on polyribosomes can be targeted for degradation, although this alliance is not a pre-requisite. Finally, sequestering tubulin mRNAs from translation with antisense morpholino oligonucleotides reduced the RNAi response indicating that mRNAs not engaged in translation may be less accessible to the RNAi machinery. We conclude that the association of the RNAi machinery and target mRNA on polyribosomes promotes an efficient RNAi response. This mechanism may represent an ancient adaptation to ensure that retroposon transcripts are efficiently destroyed, if they become associated with the translational apparatus.
Collapse
Affiliation(s)
- Huafang Shi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Nathalie Chamond
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Appolinaire Djikeng
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Christian Tschudi
- Department of Epidemiology and Public Health, Yale University Medical School, New Haven, Connecticut 06536-8012.
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012; Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06536-8012
| |
Collapse
|
9
|
Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci U S A 2009; 106:17933-8. [PMID: 19815526 DOI: 10.1073/pnas.0907766106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei is one of the most ancient eukaryotes where RNA interference (RNAi) is operational and is the only single-cell pathogen where RNAi has been extensively studied and used as a tool for functional analyses. Here, we report that the T. brucei RNAi pathway, although relying on a single Argonaute protein (AGO1), is initiated by the activities of two distinct Dicer-like enzymes. Both TbDCL1, a mostly cytoplasmic protein, and the previously undescribed nuclear enzyme TbDCL2 contribute to the biogenesis of siRNAs from retroposons. However, TbDCL2 has a predominant role in generating siRNAs from chromosomal internal repeat transcripts that accumulate at the nucleolus in RNAi-deficient cells and in initiating the endogenous RNAi response against retroposons and repeats alike. Moreover, siRNAs generated by both TbDCL1 and TbDCL2 carry a 5'-monophosphate and a blocked 3' terminus, suggesting that 3' end modification is an ancient trait of siRNAs. We thus propose a model whereby TbDCL2 fuels the T. brucei nuclear RNAi pathway and TbDCL1 patrols the cytoplasm, posttranscriptionally silencing potentially harmful nucleic acid parasites that may access the cytoplasm. Nevertheless, we also provide evidence for cross-talk between the two Dicer-like enzymes, because TbDCL2 is implicated in the generation of 35- to 65-nucleotide intermediate transcripts that appear to be substrates for TbDCL1. Our finding that dcl2KO cells are more sensitive to RNAi triggers than wild-type cells has significant implications for reverse genetic analyses in this important human pathogen.
Collapse
|
10
|
Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. EUKARYOTIC CELL 2009; 8:916-9. [PMID: 19377039 PMCID: PMC2698301 DOI: 10.1128/ec.00041-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
Abstract
We used translation-blocking morpholinos to reduce protein levels in Giardia intestinalis. Twenty-four hours after electroporation with morpholinos targeting either green fluorescent protein or kinesin-2b, levels of these proteins were reduced by 60%. An epitope-tagged transgene can also be used as a reporter for morpholino efficacy with targets lacking specific antibodies.
Collapse
Affiliation(s)
- Meredith L Carpenter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
11
|
Huang WT, Hsieh JC, Chiou MJ, Chen JY, Wu JL, Kuo CM. Application of RNAi technology to the inhibition of zebrafish GtHalpha, FSHbeta, and LHbeta expression and to functional analyses. Zoolog Sci 2008; 25:614-21. [PMID: 18624572 DOI: 10.2108/zsj.25.614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 03/31/2008] [Indexed: 11/17/2022]
Abstract
Zebrafish (Danio rerio) were used as a model fish, and the technique of RNA interference (RNAi) was employed to knockdown three subunits of the gonadotropin alpha (GtHalpha, common alpha), follicle-stimulating hormone beta (FSHbeta), and luteinizing hormone beta (LHbeta) genes. Three short-hairpin RNA (shRNA) expression vectors and three mismatched shRNA expression vectors as controls for each subunit gene were constructed, and the depression efficiency was tested in vivo by microinjection; the RNA or protein expression levels of the GtH genes were monitored by RT-PCR, Southern blotting, and green fluorescent protein (GFP) analyses. Expression of GtH mRNA was obviously and more efficiently depressed by GtHalpha RNAi expression compared with the other two subunits. A GtHalpha morpholino analysis showed that the GtHalpha morpholino led to suppression of embryonic development and the production of embryonic mutants as a result of an injection of GtHalpha -shRNA. Taken together, these results show that GtHalpha-shRNA, which more efficiently targets RNAi, may have an essential role in the further development of sterility technology of transgenic fish for biosafety purposes.
Collapse
Affiliation(s)
- Wei-Tung Huang
- Institute of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Kang S, Hong YS. RNA interference in infectious tropical diseases. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:1-15. [PMID: 18344671 DOI: 10.3347/kjp.2008.46.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.
Collapse
Affiliation(s)
- Seokyoung Kang
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | | |
Collapse
|