1
|
Agmon I. On the Re-Creation of Protoribosome Analogues in the Lab. Int J Mol Sci 2024; 25:4960. [PMID: 38732179 PMCID: PMC11084786 DOI: 10.3390/ijms25094960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.
Collapse
Affiliation(s)
- Ilana Agmon
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Agmon I. Three Biopolymers and Origin of Life Scenarios. Life (Basel) 2024; 14:277. [PMID: 38398786 PMCID: PMC10890401 DOI: 10.3390/life14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.
Collapse
Affiliation(s)
- Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Spirov A. Evolution of the RNA world: From signals to codes. Biosystems 2023; 234:105043. [PMID: 37852409 DOI: 10.1016/j.biosystems.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The accumulated material in evolutionary biology, greatly enhanced by the achievements of modern synthetic biology, allows us to envision certain key hypothetical stages of prebiotic (chemical) evolution. This is often understood as the further evolution in the RNA World towards the RNA-protein World. It is a path towards the emergence of translation and the genetic code (I), signaling pathways with signaling molecules (II), and the appearance of RNA-based components of future gene regulatory networks (III). We believe that these evolutionary paths can be constructively viewed from the perspective of the concept of biological codes (Barbieri, 2003). Crucial evolutionary events in these directions would involve the emergence of RNA-based adaptors. Such adaptors connect two families of functionally and chemically distinct molecules into one functional entity. The emergence of primitive translation processes is undoubtedly the major milestone in the evolutionary path towards modern life. The key aspect here is the appearance of adaptors between amino acids and their cognate triplet codons. The initial steps are believed to involve the emergence of proto-transfer RNAs capable of self-aminoacylation. The second significant evolutionary breakthrough is the development of biochemical regulatory networks based on signaling molecules of the RNA World (ribonucleotides and their derivatives), as well as receptors and effectors (riboswitches) for these messengers. Some authors refer to this as the "lost language of the RNA World." The third evolutionary step is the emergence of signal sequences for ribozymes on the molecules of their RNA targets. This level of regulation in the RNA World is comparable to the gene regulatory networks of modern organisms. We believe that the signal sequences on target molecules have been rediscovered and developed by evolution into the gene regulatory networks of modern cells. In conclusion, the immense diversity of modern biological codes, in some of its key characteristics, can be traced back to the achievements of prebiotic evolution.
Collapse
Affiliation(s)
- Alexander Spirov
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia.
| |
Collapse
|
4
|
Finkler M, Brandt J, Boutfol T, Grimm F, Hartz P, Ott A. Protocol to identify amino acids bound to tRNA by aminoacylation using mass spectrometry. STAR Protoc 2023; 4:102504. [PMID: 37585296 PMCID: PMC10436234 DOI: 10.1016/j.xpro.2023.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
tRNA-bound amino acids often need to be identified, for instance, in cases where different amino acids compete for binding to the same tRNA. Here, we present a mass-spectrometry-based protocol to determine the amino acids bound to tRNA by aminoacylation. We detail how to perform the aminoacylation reaction, the preparation of the aminoacyl-tRNA for measurement, and the mass spectrometric analysis. We use arginine acylation as an example; however, this protocol can be applied to any other amino acid.
Collapse
Affiliation(s)
- Marc Finkler
- Universität des Saarlandes, Biologische Experimentalphysik, Zentrum f. Biophysik, Naturwissenschaftlich-Technische Fakultät, B2 1, Campus, 66123 Saarbrücken, Germany.
| | - Joshua Brandt
- Universität des Saarlandes, Biologische Experimentalphysik, Zentrum f. Biophysik, Naturwissenschaftlich-Technische Fakultät, B2 1, Campus, 66123 Saarbrücken, Germany.
| | - Timothée Boutfol
- Universität des Saarlandes, Biologische Experimentalphysik, Zentrum f. Biophysik, Naturwissenschaftlich-Technische Fakultät, B2 1, Campus, 66123 Saarbrücken, Germany
| | - Florent Grimm
- Universität des Saarlandes, Biologische Experimentalphysik, Zentrum f. Biophysik, Naturwissenschaftlich-Technische Fakultät, B2 1, Campus, 66123 Saarbrücken, Germany
| | - Philip Hartz
- Universität des Saarlandes, Institut für Biochemie, Naturwissenschaftlich-Technische Fakultät, B2 2, Campus, 66123 Saarbrücken, Germany
| | - Albrecht Ott
- Universität des Saarlandes, Biologische Experimentalphysik, Zentrum f. Biophysik, Naturwissenschaftlich-Technische Fakultät, B2 1, Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Prebiotic Assembly of Cloverleaf tRNA, Its Aminoacylation and the Origin of Coding, Inferred from Acceptor Stem Coding-Triplets. Int J Mol Sci 2022; 23:ijms232415756. [PMID: 36555394 PMCID: PMC9778954 DOI: 10.3390/ijms232415756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
tRNA is a key component in life's most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life.
Collapse
|
6
|
Banwell EF, Piette BMAG, Taormina A, Heddle JG. Reciprocal Nucleopeptides as the Ancestral Darwinian Self-Replicator. Mol Biol Evol 2019; 35:404-416. [PMID: 29126321 PMCID: PMC5850689 DOI: 10.1093/molbev/msx292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Even the simplest organisms are too complex to have spontaneously arisen fully formed, yet precursors to first life must have emerged ab initio from their environment. A watershed event was the appearance of the first entity capable of evolution: the Initial Darwinian Ancestor. Here, we suggest that nucleopeptide reciprocal replicators could have carried out this important role and contend that this is the simplest way to explain extant replication systems in a mathematically consistent way. We propose short nucleic acid templates on which amino-acylated adapters assembled. Spatial localization drives peptide ligation from activated precursors to generate phosphodiester-bond-catalytic peptides. Comprising autocatalytic protein and nucleic acid sequences, this dynamical system links and unifies several previous hypotheses and provides a plausible model for the emergence of DNA and the operational code.
Collapse
Affiliation(s)
- Eleanor F Banwell
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Anne Taormina
- Department for Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
A Vestige of an RNA Apparatus With Ribozyme Capabilities Embedded and Functions Within the Modern Ribosome. SOCIAL AND ECOLOGICAL INTERACTIONS IN THE GALAPAGOS ISLANDS 2013. [DOI: 10.1007/978-1-4614-6732-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Effects of long DNA folding and small RNA stem-loop in thermophoresis. Proc Natl Acad Sci U S A 2012; 109:17972-7. [PMID: 23071341 DOI: 10.1073/pnas.1215764109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In thermophoresis, with the fluid at rest, suspensions move along a gradient of temperature. In an aqueous solution, a PEG polymer suspension is depleted from the hot region and builds a concentration gradient. In this gradient, DNA polymers of different sizes can be separated. In this work the effect of the polymer structure for genomic DNA and small RNA is studied. For genome-size DNA, individual single T4 DNA is visualized and tracked in a PEG solution under a temperature gradient built by infrared laser focusing. We find that T4 DNA follows steps of depletion, ring-like localization, and accumulation patterns as the PEG volume fraction is increased. Furthermore, a coil-globule transition for DNA is observed for a large enough PEG volume fraction. This drastically affects the localization position of T4 DNA. In a similar experiment, with small RNA such as ribozymes we find that the stem-loop folding of such polymers has important consequences. The RNA polymers having a long and rigid stem accumulate, whereas a polymer with stem length less than 4 base pairs shows depletion. Such measurements emphasize the crucial contribution of the double-stranded parts of RNA for thermal separation and selection under a temperature gradient. Because huge temperature gradients are present around hydrothermal vents in the deep ocean seafloor, this process might be relevant, at the origin of life, in an RNA world hypothesis. Ribozymes could be selected from a pool of random sequences depending on the length of their stems.
Collapse
|
9
|
Kumar P, Lehmann J, Libchaber A. Kinetics of bulge bases in small RNAs and the effect of pressure on it. PLoS One 2012; 7:e42052. [PMID: 22916118 PMCID: PMC3423399 DOI: 10.1371/journal.pone.0042052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
Due to their self-catalytic properties, small RNAs with bulge bases are hypothesized to be primordial molecules which could form elementary translation systems. Using molecular dynamics simulations, we study the binding propensity of small RNAs by calculating the free energy barrier corresponding to the looped out conformations of bulge bases, which presumably act as the binding sites for ligands in these small RNAs. We find that base flipping kinetics can proceed at atmospheric pressure but with a very small propensity. Furthermore, the free energy barrier associated with base flipping depends on the stacking with neighboring bases. Next, we studied the base flipping kinetics with pressure. We find that the free energy associated with base looping out increases monotonically as the pressure is increased. Furthermore, we calculate the mean first-passage time of conformational looping out of the bulge base using the diffusion of reaction coordinate associated with the base flipping on the underlying free energy surface. We find that the mean first-passage time associated with bulge looping out increases slowly upon increasing pressures up to atm but changes dramatically for atm. Finally, we discuss our results in the light of the role of hydration shell of water around RNA. Our results are relevant for the RNA world hypothesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York, USA.
| | | | | |
Collapse
|
10
|
Krupkin M, Matzov D, Tang H, Metz M, Kalaora R, Belousoff MJ, Zimmerman E, Bashan A, Yonath A. A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome. Philos Trans R Soc Lond B Biol Sci 2012; 366:2972-8. [PMID: 21930590 PMCID: PMC3158926 DOI: 10.1098/rstb.2011.0146] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on the presumed capability of a prebiotic pocket-like entity to accommodate substrates whose stereochemistry enables the creation of chemical bonds, it is suggested that a universal symmetrical region identified within all contemporary ribosomes originated from an entity that we term the ‘proto-ribosome’. This ‘proto-ribosome’ could have evolved from an earlier machine that was capable of performing essential tasks in the RNA world, called here the ‘pre-proto-ribosome’, which was adapted for producing proteins.
Collapse
Affiliation(s)
- Miri Krupkin
- Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Benz-Moy TL, Herschlag D. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 2011; 50:8733-55. [PMID: 21815635 PMCID: PMC3186870 DOI: 10.1021/bi2008245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The conserved catalytic core of the Tetrahymena group I ribozyme is encircled by peripheral elements. We have conducted a detailed structure-function study of the five long-range tertiary contacts that fasten these distal elements together. Mutational ablation of each of the tertiary contacts destabilizes the folded ribozyme, indicating a role of the peripheral elements in overall stability. Once folded, three of the five tertiary contact mutants exhibit defects in overall catalysis that range from 20- to 100-fold. These and the subsequent results indicate that the structural ring of peripheral elements does not act as a unitary element; rather, individual connections have distinct roles as further revealed by kinetic and thermodynamic dissection of the individual reaction steps. Ablation of P14 or the metal ion core/metal ion core receptor (MC/MCR) destabilizes docking of the substrate-containing P1 helix into tertiary interactions with the ribozyme's conserved core. In contrast, ablation of the L9/P5 contact weakens binding of the guanosine nucleophile by slowing its association, without affecting P1 docking. The P13 and tetraloop/tetraloop receptor (TL/TLR) mutations had little functional effect and small, local structural changes, as revealed by hydroxyl radical footprinting, whereas the P14, MC/MCR, and L9/P5 mutants show structural changes distal from the mutation site. These changes extended into regions of the catalytic core involved in docking or guanosine binding. Thus, distinct allosteric pathways couple the long-range tertiary contacts to functional sites within the conserved core. This modular functional specialization may represent a fundamental strategy in RNA structure-function interrelationships.
Collapse
Affiliation(s)
- Tara L. Benz-Moy
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Daniel Herschlag
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
12
|
Yonath A. Winterschlafende Bären, Antibiotika und die Evolution des Ribosoms (Nobel-Aufsatz). Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Yonath A. Hibernating Bears, Antibiotics, and the Evolving Ribosome (Nobel Lecture). Angew Chem Int Ed Engl 2010; 49:4341-54. [DOI: 10.1002/anie.201001297] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abstract
Structural analysis, supported by biochemical, mutagenesis and computational evidence, indicates that the peptidyltransferase centre of the contemporary ribosome is a universal symmetrical pocket composed solely of rRNA. This pocket seems to be a relic of the proto-ribosome, an ancient ribozyme, which was a dimeric RNA assembly formed from self-folded RNA chains of identical, similar or different sequences. This could have occurred spontaneously by gene duplication or gene fusion. This pocket-like entity was capable of autonomously catalysing various reactions, including peptide bond formation and non-coded or semi-coded amino acid polymerization. Efforts toward the structural definition of the early entity capable of genetic decoding involve the crystallization of the small ribosomal subunit of a bacterial organism harbouring a single functional rRNA operon.
Collapse
|
15
|
Chu VB, Lipfert J, Bai Y, Pande VS, Doniach S, Herschlag D. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA (NEW YORK, N.Y.) 2009; 15:2195-205. [PMID: 19850914 PMCID: PMC2779674 DOI: 10.1261/rna.1747509] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/03/2009] [Indexed: 05/20/2023]
Abstract
Structured RNAs must fold into their native structures and discriminate against a large number of alternative ones, an especially difficult task given the limited information content of RNA's nucleotide alphabet. The simplest motifs within structured RNAs are two helices joined by nonhelical junctions. To uncover the fundamental behavior of these motifs and to elucidate the underlying physical forces and challenges faced by structured RNAs, we computationally and experimentally studied a tethered duplex model system composed of two helices joined by flexible single- or double-stranded polyethylene glycol tethers, whose lengths correspond to those typically observed in junctions from structured RNAs. To dissect the thermodynamic properties of these simple motifs, we computationally probed how junction topology, electrostatics, and tertiary contact location influenced folding stability. Small-angle X-ray scattering was used to assess our predictions. Single- or double-stranded junctions, independent of sequence, greatly reduce the space of allowed helical conformations and influencing the preferred location and orientation of their adjoining helices. A double-stranded junction guides the helices along a hinge-like pathway. In contrast, a single-stranded junction samples a broader set of conformations and has different preferences than the double-stranded junction. In turn, these preferences determine the stability and distinct specificities of tertiary structure formation. These sequence-independent effects suggest that properties as simple as a junction's topology can generally define the accessible conformational space, thereby stabilizing desired structures and assisting in discriminating against misfolded structures. Thus, junction topology provides a fundamental strategy for transcending the limitations imposed by the low information content of RNA primary sequence.
Collapse
Affiliation(s)
- Vincent B Chu
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yonath A. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. J R Soc Interface 2009; 6 Suppl 5:S575-85. [PMID: 19656820 DOI: 10.1098/rsif.2009.0167.focus] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Well-focused X-ray beams, generated by advanced synchrotron radiation facilities, yielded high-resolution diffraction data from crystals of ribosomes, the cellular nano-machines that translate the genetic code into proteins. These structures revealed the decoding mechanism, localized the mRNA path and the positions of the tRNA molecules in the ribosome and illuminated the interactions of the ribosome with initiation, release and recycling factors. They also showed that the ribosome is a ribozyme whose active site is situated within a universal symmetrical region that is embedded in the otherwise asymmetric ribosome structure. As this highly conserved region provides the machinery required for peptide bond formation and for ribosome polymerase activity, it may be the remnant of the proto-ribosome, a dimeric pre-biotic machine that formed peptide bonds and non-coded polypeptide chains. Synchrotron radiation also enabled the determination of structures of complexes of ribosomes with antibiotics targeting them, which revealed the principles allowing for their clinical use, revealed resistance mechanisms and showed the bases for discriminating pathogens from hosts, hence providing valuable structural information for antibiotics improvement.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel.
| |
Collapse
|
17
|
Davidovich C, Belousoff M, Bashan A, Yonath A. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 2009; 160:487-92. [PMID: 19619641 DOI: 10.1016/j.resmic.2009.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/02/2009] [Accepted: 07/04/2009] [Indexed: 11/25/2022]
Abstract
Structural analysis supported by biochemical, mutagenesis and computational evidence, revealed that the contemporary ribosome's active site is a universal symmetrical pocket made of ribosomal RNA. This pocket seems to be the remnant of the proto-ribosome, a dimeric RNA assembly evolved by gene duplication, capable of autonomously catalyzing peptide bond formation and non-coded amino acid polymerization.
Collapse
Affiliation(s)
- Chen Davidovich
- The Department of Structural Biology, Weizmann Institute, Rehovot, Israel
| | | | | | | |
Collapse
|
18
|
Lehmann J, Cibils M, Libchaber A. Emergence of a code in the polymerization of amino acids along RNA templates. PLoS One 2009; 4:e5773. [PMID: 19492048 PMCID: PMC2685977 DOI: 10.1371/journal.pone.0005773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
The origin of the genetic code in the context of an RNA world is a major problem in the field of biophysical chemistry. In this paper, we describe how the polymerization of amino acids along RNA templates can be affected by the properties of both molecules. Considering a system without enzymes, in which the tRNAs (the translation adaptors) are not loaded selectively with amino acids, we show that an elementary translation governed by a Michaelis-Menten type of kinetics can follow different polymerization regimes: random polymerization, homopolymerization and coded polymerization. The regime under which the system is running is set by the relative concentrations of the amino acids and the kinetic constants involved. We point out that the coding regime can naturally occur under prebiotic conditions. It generates partially coded proteins through a mechanism which is remarkably robust against non-specific interactions (mismatches) between the adaptors and the RNA template. Features of the genetic code support the existence of this early translation system.
Collapse
Affiliation(s)
- Jean Lehmann
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| | | | | |
Collapse
|