1
|
Gazestani VH, Nikpour N, Mehta V, Najafabadi HS, Moshiri H, Jardim A, Salavati R. A Protein Complex Map of Trypanosoma brucei. PLoS Negl Trop Dis 2016; 10:e0004533. [PMID: 26991453 PMCID: PMC4798371 DOI: 10.1371/journal.pntd.0004533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/20/2016] [Indexed: 12/27/2022] Open
Abstract
The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org. Due to high evolutionary divergence of trypanosomatid pathogens from other eukaryotes, accurate prediction of functional roles for most of their proteins is not feasible based on homology-based approaches. Although protein co-complex maps provide a compelling tool for the functional annotation of proteins, as subunits of a complex are expected to be involved in similar biological processes, the current knowledge about these maps is still rudimentary. Here, we systematically examined the protein co-complex membership of more than one third of T. brucei proteome using two orthogonal fractionation approaches. A high-confidence network of co-complex relationships predicts the network context of 866 proteins, including many hypothetical and experimentally unannotated proteins. To our knowledge, this study presents the largest proteomics-based interaction map of trypanosomatid parasites to date, providing a useful resource for formulating new biological hypothesises and further experimental leads.
Collapse
Affiliation(s)
- Vahid H. Gazestani
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Najmeh Nikpour
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Hamed S. Najafabadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Houtan Moshiri
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
2
|
Kovárová J, Horáková E, Changmai P, Vancová M, Lukeš J. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:353-62. [PMID: 24243795 PMCID: PMC3957590 DOI: 10.1128/ec.00235-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.
Collapse
Affiliation(s)
- Julie Kovárová
- Biology Center, Institute of Parasitology, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | | | | | | | | |
Collapse
|
3
|
Madina BR, Kuppan G, Vashisht AA, Liang YH, Downey KM, Wohlschlegel JA, Ji X, Sze SH, Sacchettini JC, Read LK, Cruz-Reyes J. Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2011; 17:1821-30. [PMID: 21810935 PMCID: PMC3185915 DOI: 10.1261/rna.2815911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 05/29/2023]
Abstract
The mitochondrial genome of kinetoplastids, including species of Trypanosoma and Leishmania, is an unprecedented DNA structure of catenated maxicircles and minicircles. Maxicircles represent the typical mitochondrial genome encoding components of the respiratory complexes and ribosomes. However, most mRNA sequences are cryptic, and their maturation requires a unique U insertion/deletion RNA editing. Minicircles encode hundreds of small guide RNAs (gRNAs) that partially anneal with unedited mRNAs and direct the extensive editing. Trypanosoma brucei gRNAs and mRNAs are transcribed as polycistronic precursors, which undergo processing preceding editing; however, the relevant nucleases are unknown. We report the identification and functional characterization of a close homolog of editing endonucleases, mRPN1 (mitochondrial RNA precursor-processing endonuclease 1), which is involved in gRNA biogenesis. Recombinant mRPN1 is a dimeric dsRNA-dependent endonuclease that requires Mg(2+), a critical catalytic carboxylate, and generates 2-nucleotide 3' overhangs. The cleavage specificity of mRPN1 is reminiscent of bacterial RNase III and thus is fundamentally distinct from editing endonucleases, which target a single scissile bond just 5' of short duplexes. An inducible knockdown of mRPN1 in T. brucei results in loss of gRNA and accumulation of precursor transcripts (pre-gRNAs), consistent with a role of mRPN1 in processing. mRPN1 stably associates with three proteins previously identified in relatively large complexes that do not contain mRPN1, and have been linked with multiple aspects of mitochondrial RNA metabolism. One protein, TbRGG2, directly binds mRPN1 and is thought to modulate gRNA utilization by editing complexes. The proposed participation of mRPN1 in processing of polycistronic RNA and its specific protein interactions in gRNA expression are discussed.
Collapse
Affiliation(s)
- Bhaskara Reddy Madina
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Gokulan Kuppan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | - Yu-He Liang
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Kurtis M. Downey
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | - Xinhua Ji
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
4
|
Abstract
Multisubunit RNA editing complexes recognize thousands of pre-mRNA sites in the single mitochondrion of trypanosomes. Specific determinants at each editing site must trigger the complexes to catalyze a complete cycle of either uridylate insertion or deletion. While a wealth of information on the protein composition and catalytic activities of these complexes is currently available, the precise mechanisms that govern substrate recognition and editing site specificity remain unknown. This chapter describes basic assays to visualize direct photocrosslinking interactions between purified editing complexes and targeted deletion and insertion sites in model substrates for full-round editing. It also illustrates how variations of these assays can be applied to examine the specificity of the editing enzyme/substrate association, and to dissect structural or biochemical requirements of both the substrates and enzyme complex.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Halbig K, Sacharidou A, De Nova-Ocampo M, Cruz-Reyes J. Preferential interaction of a 25kDa protein with an A6 pre-mRNA substrate for RNA editing in Trypanosoma brucei. Int J Parasitol 2006; 36:1295-304. [PMID: 16860325 DOI: 10.1016/j.ijpara.2006.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/14/2006] [Accepted: 05/15/2006] [Indexed: 11/23/2022]
Abstract
Mitochondrial gene expression in kinetoplastids is controlled after transcription, potentially at the levels of RNA maturation, stability and translation. Among these processes, RNA editing by U-insertion/deletion catalysed by multi-subunit editing complexes is best characterised at the molecular level. Nevertheless, mitochondrial RNA metabolism overall remains poorly understood, including the potential regulatory factors that may interact with the relevant catalytic molecular machines and/or RNA substrates. Here we report on a approximately 25kDa polypeptide in mitochondrial extracts that exhibits a preferential "zero-distance" photo-crosslinking interaction with an A6 pre-mRNA model substrate for RNA editing containing a single [(32)P] at the first editing site. The approximately 25kDa polypeptide purified away from editosomes upon ion-exchange chromatography and glycerol gradient sedimentation. Competition assays with homologous and heterologous transcripts suggest that the preferential recognition of the A6 substrate is based on relatively low-specificity RNA-protein contacts. Our mapping and substrate truncation analyses suggest that the crosslinking activity primarily targeted a predicted stem-loop region containing the first editing sites. Consistent with the notion that pre-mRNA folding may be required, pre-annealing with guide RNA abolished crosslinking. Interestingly, this preferential protein interaction with the A6 substrate seemed to require adenosine 5'-triphosphate but not hydrolysis. As in other biological systems, fine regulation in vivo may be brought about by transient networks of relatively low-specificity interactions in which multiple auxiliary factors bind to mRNAs and/or editing complexes in unique higher-order assemblies.
Collapse
Affiliation(s)
- Kari Halbig
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
6
|
Sacharidou A, Cifuentes-Rojas C, Halbig K, Hernandez A, Dangott LJ, De Nova-Ocampo M, Cruz-Reyes J. RNA editing complex interactions with a site for full-round U deletion in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:1219-28. [PMID: 16690999 PMCID: PMC1484423 DOI: 10.1261/rna.2295706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Trypanosome U insertion and U deletion RNA editing of mitochondrial pre-mRNAs is catalyzed by multisubunit editing complexes as directed by partially complementary guide RNAs. The basic enzymatic activities and protein composition of these high-molecular mass complexes have been under intense study, but their specific protein interactions with functional pre-mRNA/gRNA substrates remains unknown. We show that editing complexes purified through extensive ion-exchange chromatography and immunoprecipitation make specific cross-linking interactions with A6 pre-mRNA containing a single 32P and photoreactive 4-thioU at the scissile bond of a functional site for full-round U deletion. At least four direct protein-RNA contacts are detected at this site by cross-linking. All four interactions are stimulated by unpaired residues just 5' of the pre-mRNA/gRNA anchor duplex, but strongly inhibited by pairing of the editing site region. Furthermore, competition analysis with homologous and heterologous transcripts suggests preferential contacts of the editing complex with the mRNA/gRNA duplex substrate. This apparent structural selectivity suggests that the RNA-protein interactions we observe may be involved in recognition of editing sites and/or catalysis in assembled complexes.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Miller MM, Halbig K, Cruz-Reyes J, Read LK. RBP16 stimulates trypanosome RNA editing in vitro at an early step in the editing reaction. RNA (NEW YORK, N.Y.) 2006; 12:1292-303. [PMID: 16691000 PMCID: PMC1484434 DOI: 10.1261/rna.2331506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/24/2006] [Indexed: 05/09/2023]
Abstract
RBP16 is an abundant RNA binding protein from Trypanosoma brucei mitochondria that affects both RNA editing and stability. We report here experiments aimed at elucidating the mechanism of RBP16 function in RNA editing. In in vitro RNA editing assays, recombinant RBP16 is able to significantly stimulate insertion editing of both CYb and A6 pre-mRNAs. Enhancement of in vitro editing activity occurs at, or prior to, the step of pre-mRNA cleavage, as evidenced by increased accumulation of pre-mRNA 3' cleavage products in the presence of RBP16. Mutated RBP16 that is severely compromised in cold shock domain (CSD)-mediated RNA binding was able to enhance editing to levels comparable to the wild-type protein in some assays at the highest RBP16 levels tested. However, at low RBP16 concentrations or in assays with native, oligo(U)-tail-bearing gRNAs, editing stimulation by mutant RBP16 was somewhat compromised. Together, these results indicate that both the N-terminal CSD and C-terminal RGG RNA binding domains of RBP16 are required for maximal editing stimulation. Finally, the relaxed specificity of RBP16 for stimulation of both CYb and A6 editing in vitro implicates additional specificity factors that account for the strict CYb specificity of RBP16 action in editing in vivo. Our results constitute the first report of any putative RNA editing accessory factor eliciting an effect on editing in vitro. Overall, these results support a novel accessory role for RBP16 in U insertion editing.
Collapse
Affiliation(s)
- Melissa M Miller
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
8
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|