1
|
Qi F, Chen J, Chen Y, Sun J, Lin Y, Chen Z, Kapranov P. Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae043. [PMID: 39317944 PMCID: PMC12016570 DOI: 10.1093/gpbjnl/qzae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
Accurate identification of the correct, biologically relevant RNA structures is critical to understanding various aspects of RNA biology since proper folding represents the key to the functionality of all types of RNA molecules and plays pivotal roles in many essential biological processes. Thus, a plethora of approaches have been developed to predict, identify, or solve RNA structures based on various computational, molecular, genetic, chemical, or physicochemical strategies. Purely computational approaches hold distinct advantages over all other strategies in terms of the ease of implementation, time, speed, cost, and throughput, but they strongly underperform in terms of accuracy that significantly limits their broader application. Nonetheless, the advantages of these methods led to a steady development of multiple in silico RNA secondary structure prediction approaches including recent deep learning-based programs. Here, we compared the accuracy of predictions of biologically relevant secondary structures of dozens of self-cleaving ribozyme sequences using seven in silico RNA folding prediction tools with tasks of varying complexity. We found that while many programs performed well in relatively simple tasks, their performance varied significantly in more complex RNA folding problems. However, in general, a modern deep learning method outperformed the other programs in the complex tasks in predicting the RNA secondary structures, at least based on the specific class of sequences tested, suggesting that it may represent the future of RNA structure prediction algorithms.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Junjie Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Yiting Lin
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Zipeng Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Ekesan Ş, McCarthy E, Case DA, York DM. RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis. J Phys Chem B 2022; 126:5982-5990. [PMID: 35862934 PMCID: PMC9496635 DOI: 10.1021/acs.jpcb.2c03727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrostatic interactions are fundamental to RNA structure and function, and intimately influenced by solvation and the ion atmosphere. RNA enzymes, or ribozymes, are catalytic RNAs that are able to enhance reaction rates over a million-fold, despite having only a limited repertoire of building blocks and available set of chemical functional groups. Ribozyme active sites usually occur at junctions where negatively charged helices come together, and in many cases leverage this strained electrostatic environment to recruit metal ions in solution that can assist in catalysis. Similar strategies have been implicated in related artificially engineered DNA enzymes. Herein, we apply Poisson-Boltzmann, 3D-RISM, and molecular simulations to study a set of metal-dependent small self-cleaving ribozymes (hammerhead, pistol, and Varkud satellite) as well as an artificially engineered DNAzyme (8-17) to examine electrostatic features and their relation to the recruitment of monovalent and divalent metal ions important for activity. We examine several fundamental roles for these ions that include: (1) structural integrity of the catalytically active state, (2) pKa tuning of residues involved in acid-base catalysis, and (3) direct electrostatic stabilization of the transition state via Lewis acid catalysis. Taken together, these examples demonstrate how RNA electrostatics orchestrates the site-specific and territorial binding of metal ions to play important roles in catalysis.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David A. Case
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Dagenais P, Desjardins G, Legault P. An integrative NMR-SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res 2021; 49:11959-11973. [PMID: 34718697 PMCID: PMC8599749 DOI: 10.1093/nar/gkab963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.
Collapse
Affiliation(s)
- Pierre Dagenais
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Geneviève Desjardins
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| |
Collapse
|
4
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Dönmüş B, Ünal S, Kirmizitaş FC, Türkoğlu Laçin N. Virus-associated ribozymes and nano carriers against COVID-19. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:204-218. [PMID: 33645342 DOI: 10.1080/21691401.2021.1890103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoo tonic, highly pathogenic virus. The new type of coronavirus with contagious nature spread from Wuhan (China) to the whole world in a very short time and caused the new coronavirus disease (COVID-19). COVID-19 has turned into a global public health crisis due to spreading by close person-to-person contact with high transmission capacity. Thus, research about the treatment of the damages caused by the virus or prevention from infection increases everyday. Besides, there is still no approved and definitive, standardized treatment for COVID-19. However, this disaster experienced by human beings has made us realize the significance of having a system ready for use to prevent humanity from viral attacks without wasting time. As is known, nanocarriers can be targeted to the desired cells in vitro and in vivo. The nano-carrier system targeting a specific protein, containing the enzyme inhibiting the action of the virus can be developed. The system can be used by simple modifications when we encounter another virus epidemic in the future. In this review, we present a potential treatment method consisting of a nanoparticle-ribozyme conjugate, targeting ACE-2 receptors by reviewing the virus-associated ribozymes, their structures, types and working mechanisms.
Collapse
Affiliation(s)
- Beyza Dönmüş
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Sinan Ünal
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Fatma Ceren Kirmizitaş
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Nelisa Türkoğlu Laçin
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Dagenais P, Legault P. In Vitro Selection of Varkud Satellite Ribozyme Variants that Cleave a Modified Stem-Loop Substrate. Methods Mol Biol 2021; 2167:61-77. [PMID: 32712915 DOI: 10.1007/978-1-0716-0716-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro selection is an established approach to create artificial ribozymes with defined activities or to modify the properties of naturally occurring ribozymes. For the Varkud satellite ribozyme of Neurospora, an in vitro selection protocol based on its phosphodiester bond cleavage activity has not been previously reported. Here, we describe a simple protocol for cleavage-based in vitro selection that we recently used to identify variants of the Varkud satellite ribozyme able to target and cleave a non-natural stem-loop substrate derived from the HIV-1 TAR RNA. It allows quick selection of active ribozyme variants from the transcription reaction based on the size of the self-cleavage product without the need for RNA labeling. This results in a streamlined procedure that is easily adaptable to engineer ribozymes with new activities.
Collapse
Affiliation(s)
- Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
8
|
Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme. Nat Chem 2020; 12:193-201. [PMID: 31959957 PMCID: PMC7389185 DOI: 10.1038/s41557-019-0391-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
The Varkud satellite ribozyme catalyses site-specific RNA cleavage and ligation, and serves as an important model system to understand RNA catalysis. Here, we combine stereospecific phosphorothioate substitution, precision nucleobase mutation and linear free-energy relationship measurements with molecular dynamics, molecular solvation theory and ab initio quantum mechanical/molecular mechanical free-energy simulations to gain insight into the catalysis. Through this confluence of theory and experiment, we unify the existing body of structural and functional data to unveil the catalytic mechanism in unprecedented detail, including the degree of proton transfer in the transition state. Further, we provide evidence for a critical Mg2+ in the active site that interacts with the scissile phosphate and anchors the general base guanine in position for nucleophile activation. This novel role for Mg2+ adds to the diversity of known catalytic RNA strategies and unifies functional features observed in the Varkud satellite, hairpin and hammerhead ribozyme classes.
Collapse
|
9
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
10
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
11
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
12
|
Intracellular Imaging with Genetically Encoded RNA-based Molecular Sensors. NANOMATERIALS 2019; 9:nano9020233. [PMID: 30744040 PMCID: PMC6410142 DOI: 10.3390/nano9020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023]
Abstract
Genetically encodable sensors have been widely used in the detection of intracellular molecules ranging from metal ions and metabolites to nucleic acids and proteins. These biosensors are capable of monitoring in real-time the cellular levels, locations, and cell-to-cell variations of the target compounds in living systems. Traditionally, the majority of these sensors have been developed based on fluorescent proteins. As an exciting alternative, genetically encoded RNA-based molecular sensors (GERMS) have emerged over the past few years for the intracellular imaging and detection of various biological targets. In view of their ability for the general detection of a wide range of target analytes, and the modular and simple design principle, GERMS are becoming a popular choice for intracellular analysis. In this review, we summarize different design principles of GERMS based on various RNA recognition modules, transducer modules, and reporting systems. Some recent advances in the application of GERMS for intracellular imaging are also discussed. With further improvement in biostability, sensitivity, and robustness, GERMS can potentially be widely used in cell biology and biotechnology.
Collapse
|
13
|
Studying Parasite Gene Function and Interaction Through Ribozymes and Riboswitches Design Mechanism. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
14
|
Ren A, Micura R, Patel DJ. Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Curr Opin Chem Biol 2017; 41:71-83. [PMID: 29107885 PMCID: PMC7955703 DOI: 10.1016/j.cbpa.2017.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
Small self-cleaving ribozymes are widely distributed in nature and are essential for rolling-circle-based replication of satellite and pathogenic RNAs. Earlier structure-function studies on the hammerhead, hairpin, glmS, hepatitis delta virus and Varkud satellite ribozymes have provided insights into their overall architecture, their catalytic active site organization, and the role of nearby nucleobases and hydrated divalent cations in facilitating general acid-base and electrostatic-mediated catalysis. This review focuses on recent structure-function research on active site alignments and catalytic mechanisms of the Rzb hammerhead ribozyme, as well as newly-identified pistol, twister and twister-sister ribozymes. In contrast to an agreed upon mechanistic understanding of self-cleavage by Rzb hammerhead and pistol ribozymes, there exists a divergence of views as to the cleavage site alignments and catalytic mechanisms adopted by twister and twister-sister ribozymes. One approach to resolving this conundrum would be to extend the structural studies from currently available pre-catalytic conformations to their transition state mimic vanadate counterparts for both ribozymes.
Collapse
Affiliation(s)
- Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck A6020, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
DasGupta S, Suslov NB, Piccirilli JA. Structural Basis for Substrate Helix Remodeling and Cleavage Loop Activation in the Varkud Satellite Ribozyme. J Am Chem Soc 2017; 139:9591-9597. [PMID: 28625058 PMCID: PMC5929484 DOI: 10.1021/jacs.7b03655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Varkud satellite (VS) ribozyme catalyzes site-specific RNA cleavage and ligation reactions. Recognition of the substrate involves a kissing loop interaction between the substrate and the catalytic domain of the ribozyme, resulting in a rearrangement of the substrate helix register into a so-called "shifted" conformation that is critical for substrate binding and activation. We report a 3.3 Å crystal structure of the complete ribozyme that reveals the active, shifted conformation of the substrate, docked into the catalytic domain of the ribozyme. Comparison to previous NMR structures of isolated, inactive substrates provides a physical description of substrate remodeling, and implicates roles for tertiary interactions in catalytic activation of the cleavage loop. Similarities to the hairpin ribozyme cleavage loop activation suggest general strategies to enhance fidelity in RNA folding and ribozyme cleavage.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nikolai B. Suslov
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Structural and Biochemical Properties of Novel Self-Cleaving Ribozymes. Molecules 2017; 22:molecules22040678. [PMID: 28441772 PMCID: PMC6154101 DOI: 10.3390/molecules22040678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 01/20/2023] Open
Abstract
Fourteen well-defined ribozyme classes have been identified to date, among which nine are site-specific self-cleaving ribozymes. Very recently, small self-cleaving ribozymes have attracted renewed interest in their structure, biochemistry, and biological function since the discovery, during the last three years, of four novel ribozymes, termed twister, twister sister, pistol, and hatchet. In this review, we mainly address the structure, biochemistry, and catalytic mechanism of the novel ribozymes. They are characterized by distinct active site architectures and divergent, but similar, biochemical properties. The cleavage activities of the ribozymes are highly dependent upon divalent cations, pH, and base-specific mutations, which can cause changes in the nucleotide arrangement and/or electrostatic potential around the cleavage site. It is most likely that a guanine and adenine in close proximity of the cleavage site are involved in general acid-base catalysis. In addition, metal ions appear to play a structural rather than catalytic role although some of their crystal structures have shown a direct metal ion coordination to a non-bridging phosphate oxygen at the cleavage site. Collectively, the structural and biochemical data of the four newest ribozymes could contribute to advance our mechanistic understanding of how self-cleaving ribozymes accomplish their efficient site-specific RNA cleavages.
Collapse
|
17
|
Dagenais P, Girard N, Bonneau E, Legault P. Insights into RNA structure and dynamics from recent NMR and X-ray studies of the Neurospora Varkud satellite ribozyme. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28382748 PMCID: PMC5573960 DOI: 10.1002/wrna.1421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Despite the large number of noncoding RNAs and their importance in several biological processes, our understanding of RNA structure and dynamics at atomic resolution is still very limited. Like many other RNAs, the Neurospora Varkud satellite (VS) ribozyme performs its functions through dynamic exchange of multiple conformational states. More specifically, the VS ribozyme recognizes and cleaves its stem-loop substrate via a mechanism that involves several structural transitions within its stem-loop substrate. The recent publications of high-resolution structures of the VS ribozyme, obtained by NMR spectroscopy and X-ray crystallography, offer an opportunity to integrate the data and closely examine the structural and dynamic properties of this model RNA system. Notably, these investigations provide a valuable example of the divide-and-conquer strategy for structural and dynamic characterization of a large RNA, based on NMR structures of several individual subdomains. The success of this divide-and-conquer approach reflects the modularity of RNA architecture and the great care taken in identifying the independently-folding modules. Together with previous biochemical and biophysical characterizations, the recent NMR and X-ray studies provide a coherent picture into how the VS ribozyme recognizes its stem-loop substrate. Such in-depth characterization of this RNA enzyme will serve as a model for future structural and engineering studies of dynamic RNAs and may be particularly useful in planning divide-and-conquer investigations. WIREs RNA 2017, 8:e1421. doi: 10.1002/wrna.1421 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Nicolas Girard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
18
|
Gebetsberger J, Micura R. Unwinding the twister ribozyme: from structure to mechanism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863022 PMCID: PMC5408937 DOI: 10.1002/wrna.1402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022]
Abstract
The twister ribozyme motif has been identified by bioinformatic means very recently. Currently, four crystal structures with ordered active sites together with a series of chemical and biochemical data provide insights into how this RNA accomplishes its efficient self‐cleavage. Of particular interest for a mechanistic proposal are structural distinctions observed in the active sites that concern the conformation of the U‐A cleavage site dinucleotide (in‐line alignment of the attacking 2′‐O nucleophile to the to‐be‐cleaved P—O5′ bond versus suboptimal alignments) as well as the presence/absence of Mg2+ ions at the scissile phosphate. All structures support the notion that an active site guanine and the conserved adenine at the cleavage site are important contributors to cleavage chemistry, likely being involved in general acid base catalysis. Evidence for innersphere coordination of a Mg2+ ion to the pro‐S nonbridging oxygen of the scissile phosphate stems from two of the four crystal structures. Together with the finding of thio/rescue effects for phosphorothioate substrates, this suggests the participation of divalent ions in the overall catalytic strategy employed by twister ribozymes. In this context, it is notable that twister retains wild‐type activity when the phylogenetically conserved stem P1 is deleted, able to cleave a single nucleotide only. WIREs RNA 2017, 8:e1402. doi: 10.1002/wrna.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, Austria
| |
Collapse
|
19
|
Ren A, Vušurović N, Gebetsberger J, Gao P, Juen M, Kreutz C, Micura R, Patel DJ. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nat Chem Biol 2016; 12:702-8. [PMID: 27398999 PMCID: PMC4990474 DOI: 10.1038/nchembio.2125] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report the crystal structure of a pistol ribozyme termed env25, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2'-O of G for attack on the adjacent to-be-cleaved P-O5' bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2'-OH positions) are aligned to act as a general base and a general acid, respectively, to accelerate cleavage chemistry, with their roles confirmed by cleavage assays on variants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defined how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on variants revealing key residues that participate in acid-base-catalyzed cleavage chemistry.
Collapse
Affiliation(s)
- Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| | - Nikola Vušurović
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Jennifer Gebetsberger
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Pu Gao
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| | - Michael Juen
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| |
Collapse
|
20
|
Lacroix-Labonté J, Girard N, Dagenais P, Legault P. Rational engineering of the Neurospora VS ribozyme to allow substrate recognition via different kissing-loop interactions. Nucleic Acids Res 2016; 44:6924-34. [PMID: 27166370 PMCID: PMC5001590 DOI: 10.1093/nar/gkw401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/30/2016] [Indexed: 12/24/2022] Open
Abstract
The Neurospora VS ribozyme is a catalytic RNA that has the unique ability to specifically recognize and cleave a stem-loop substrate through formation of a highly stable kissing-loop interaction (KLI). In order to explore the engineering potential of the VS ribozyme to cleave alternate substrates, we substituted the wild-type KLI by other known KLIs using an innovative engineering method that combines rational and combinatorial approaches. A bioinformatic search of the protein data bank was initially performed to identify KLIs that are structurally similar to the one found in the VS ribozyme. Next, substrate/ribozyme (S/R) pairs that incorporate these alternative KLIs were kinetically and structurally characterized. Interestingly, several of the resulting S/R pairs allowed substrate cleavage with substantial catalytic efficiency, although with reduced activity compared to the reference S/R pair. Overall, this study describes an innovative approach for RNA engineering and establishes that the KLI of the trans VS ribozyme can be adapted to cleave other folded RNA substrates.
Collapse
Affiliation(s)
- Julie Lacroix-Labonté
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Nicolas Girard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
21
|
|
22
|
Bonneau E, Girard N, Lemieux S, Legault P. The NMR structure of the II-III-VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure. RNA (NEW YORK, N.Y.) 2015; 21:1621-32. [PMID: 26124200 PMCID: PMC4536322 DOI: 10.1261/rna.052076.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 05/04/2023]
Abstract
As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III-IV-V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II-III-VI three-way junction and its adjoining stems. In addition, we localize Mg(2+)-binding sites within this structure using Mn(2+)-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg(2+) ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge-bulge interaction and Mg(2+) ions are critical for the stable folding of the II-III-VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II-III-VI junction that does not contain the II-VI bulge-bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Nicolas Girard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Sébastien Lemieux
- Département d'Informatique et de Recherche Opérationnelle et Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
23
|
Abstract
Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.
Collapse
Affiliation(s)
- Vipender Singh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Ren A, Košutić M, Rajashankar KR, Frener M, Santner T, Westhof E, Micura R, Patel DJ. In-line alignment and Mg²⁺ coordination at the cleavage site of the env22 twister ribozyme. Nat Commun 2014; 5:5534. [PMID: 25410397 PMCID: PMC4373348 DOI: 10.1038/ncomms6534] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022] Open
Abstract
Small self-cleaving nucleolytic ribozymes contain catalytic domains that accelerate site-specific cleavage/ligation of phosphodiester backbones. We report on the 2.9-Å crystal structure of the env22 twister ribozyme, which adopts a compact tertiary fold stabilized by co-helical stacking, double-pseudoknot formation and long-range pairing interactions. The U-A cleavage site adopts a splayed-apart conformation with the modelled 2'-O of U positioned for in-line attack on the adjacent to-be-cleaved P-O5' bond. Both an invariant guanosine and a Mg(2+) are directly coordinated to the non-bridging phosphate oxygens at the U-A cleavage step, with the former positioned to contribute to catalysis and the latter to structural integrity. The impact of key mutations on cleavage activity identified an invariant guanosine that contributes to catalysis. Our structure of the in-line aligned env22 twister ribozyme is compared with two recently reported twister ribozymes structures, which adopt similar global folds, but differ in conformational features around the cleavage site.
Collapse
Affiliation(s)
- Aiming Ren
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Marija Košutić
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, A-6020, Austria
| | - Kanagalaghatta R. Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne National laboratory, Argonne, IL 60439, USA
| | - Marina Frener
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, A-6020, Austria
| | - Tobias Santner
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, A-6020, Austria
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, University of Strasbourg, Institute of Molecular and Cellular Biology, CNRS, Strasbourg F-67084, France
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, A-6020, Austria
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
25
|
Bonneau E, Legault P. Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement. Biochemistry 2014; 53:6264-75. [PMID: 25238589 DOI: 10.1021/bi500826n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The VS ribozyme is a catalytic RNA found within some natural isolates of Neurospora that is being used as a model system to improve our understanding of RNA structure, catalysis, and engineering. The catalytic domain contains five helical domains (SLII-SLVI) that are organized by two three-way junctions. The III-IV-V junction is required for high-affinity binding of the substrate domain (SLI) through formation of a kissing loop interaction with SLV. Here, we determine the high-resolution nuclear magnetic resonance (NMR) structure of a 47-nucleotide RNA containing the III-IV-V junction (J345). The J345 RNA adopts a Y-shaped fold typical of the family C three-way junctions, with coaxial stacking between stems III and IV and an acute angle between stems III and V. The NMR structure reveals that the core of the III-IV-V junction contains four stacked base triples, a U-turn motif, a cross-strand stacking interaction, an A-minor interaction, and a ribose zipper. In addition, the NMR structure shows that the cCUUGg tetraloop used to stabilize stem IV adopts a novel RNA tetraloop fold, different from the known gCUUGc tetraloop structure. Using Mn(2+)-induced paramagnetic relaxation enhancement, we identify six Mg(2+)-binding sites within J345, including one associated with the cCUUGg tetraloop and two with the junction core. The NMR structure of J345 likely represents the conformation of the III-IV-V junction in the context of the active VS ribozyme and suggests that this junction functions as a dynamic hinge that contributes to substrate recognition and catalysis. Moreover, this study highlights a new role for family C three-way junctions in long-range tertiary interactions.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
| | | |
Collapse
|
26
|
Ramesh A, Winkler WC. Metabolite-binding ribozymes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:989-994. [PMID: 24769284 DOI: 10.1016/j.bbagrm.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/22/2022]
Abstract
Catalysis in the biological context was largely thought to be a protein-based phenomenon until the discovery of RNA catalysts called ribozymes. These discoveries demonstrated that many RNA molecules exhibit remarkable structural and functional versatility. By virtue of these features, naturally occurring ribozymes have been found to be involved in catalyzing reactions for fundamentally important cellular processes such as translation and RNA processing. Another class of RNAs called riboswitches directly binds ligands to control downstream gene expression. Most riboswitches regulate downstream gene expression by controlling premature transcription termination or by affecting the efficiency of translation initiation. However, one riboswitch class couples ligand-sensing to ribozyme activity. Specifically, the glmS riboswitch is a nucleolytic ribozyme, whose self-cleavage activity is triggered by the binding of GlcN6P. The products of this self-cleavage reaction are then targeted by cellular RNases for rapid degradation, thereby reducing glmS expression under conditions of sufficient GlcN6P. Since the discovery of the glmS ribozyme, other metabolite-binding ribozymes have been identified. Together, these discoveries have expanded the general understanding of noncoding RNAs and provided insights that will assist future development of synthetic riboswitch-ribozymes. A very broad overview of natural and synthetic ribozymes is presented herein with an emphasis on the structure and function of the glmS ribozyme as a paradigm for metabolite-binding ribozymes that control gene expression. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Arati Ramesh
- The University of Texas Southwestern Medical Center, Department of Biophysics, 6001 Forest Park Rd, Dallas, USA.
| | - Wade C Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, 3112 Biosciences Research Building, College Park, MD, USA.
| |
Collapse
|
27
|
Ward WL, Plakos K, DeRose VJ. Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chem Rev 2014; 114:4318-42. [PMID: 24730975 PMCID: PMC4002065 DOI: 10.1021/cr400476k] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 12/17/2022]
Affiliation(s)
- W. Luke Ward
- Department of Chemistry and Biochemistry and Institute of
Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Kory Plakos
- Department of Chemistry and Biochemistry and Institute of
Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry and Biochemistry and Institute of
Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
28
|
Bonneau E, Legault P. NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions. Biochemistry 2014; 53:579-90. [PMID: 24364590 PMCID: PMC3906864 DOI: 10.1021/bi401484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
29
|
Bouchard P, Legault P. Structural insights into substrate recognition by the Neurospora Varkud satellite ribozyme: importance of U-turns at the kissing-loop junction. Biochemistry 2013; 53:258-69. [PMID: 24325625 PMCID: PMC3893828 DOI: 10.1021/bi401491g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Substrate
recognition by the Neurospora Varkud
satellite ribozyme depends on the formation of a magnesium-dependent
kissing-loop interaction between the stem-loop I (SLI) substrate and
stem-loop V (SLV) of the catalytic domain. From mutagenesis studies,
it has been established that this I/V kissing-loop interaction involves
three Watson–Crick base pairs and is associated with a structural
rearrangement of the SLI substrate that facilitates catalysis. Here,
we report the NMR structural characterization of this I/V kissing-loop
using isolated stem-loops. NMR studies were performed on different
SLI/SLV complexes containing a common SLV and shiftable, preshifted,
or double-stranded SLI variants. These studies confirm the presence
of three Watson–Crick base pairs at the kissing-loop junction
and provide evidence for the structural rearrangement of shiftable
SLI variants upon SLV binding. NMR structure determination of an SLI/SLV
complex demonstrates that both the SLI and SLV loops adopt U-turn
structures, which facilitates intermolecular Watson–Crick base
pairing. Several other interactions at the I/V interface, including
base triples and base stacking, help create a continuously stacked
structure. These NMR studies provide a structural basis to understand
the stability of the I/V kissing-loop interaction and lead us to propose
a kinetic model for substrate activation in the VS ribozyme.
Collapse
Affiliation(s)
- Patricia Bouchard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | |
Collapse
|
30
|
Nelson KE, Ihms HE, Mazumdar D, Bruesehoff PJ, Lu Y. The importance of peripheral sequences in determining the metal selectivity of an in vitro-selected Co(2+) -dependent DNAzyme. Chembiochem 2012; 13:381-91. [PMID: 22250000 PMCID: PMC3299816 DOI: 10.1002/cbic.201100724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 11/12/2022]
Abstract
DNAzymes are catalytically active DNA molecules that use metal cofactors for their enzymatic functions. While a growing number of DNAzymes with diverse functions and metal selectivities have been reported, the relationships between metal ion selectivity, conserved sequences and structures responsible for selectivity remain to be elucidated. To address this issue, we report biochemical assays of a family of previously reported in vitro selected DNAzymes. This family includes the clone 11 DNAzyme, which was isolated by positive and negative selection, and the clone 18 DNAzyme, which was isolated by positive selection alone. The clone 11 DNAzyme has a higher selectivity for Co(2+) over Pb(2+) compared with clone 18. The reasons for this difference are explored here through phylogenetic comparison, mutational analysis and stepwise truncation. A novel DNAzyme truncation method incorporated a nick in the middle of the DNAzyme to allow for truncation close to the nicked site while preserving peripheral sequences at both ends of the DNAzyme. The results demonstrate that peripheral sequences within the substrate binding arms, most notably the stem loop, loop II, are sufficient to restore its selectivity for Co(2+) over Pb(2+) to levels observed in clone 11. A comparison of these sequences' secondary structures and Co(2+) selectivities suggested that metastable structures affect metal ion selectivity. The Co(2+) selectivity of the clone 11 DNAzyme showed that the metal ion binding and selectivities of small, in vitro selected DNAzymes may be more complex than previously appreciated, and that clone 11 may be more similar to larger ribozymes than to other small DNAzymes in its structural complexity and behavior. These factors should be taken into account when metal-ion selectivity is required in rationally designed DNAzymes and DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Kevin E. Nelson
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
- Department of Pediatrics, Primary Children’s Medical Center, University of Utah, 100 North Mario Capecchi Drive, Salt Lake City, UT 84113 (USA)
| | - Hannah E. Ihms
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Debapriya Mazumdar
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Peter J. Bruesehoff
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Yi Lu
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| |
Collapse
|
31
|
Fürtig B, Buck J, Richter C, Schwalbe H. Functional dynamics of RNA ribozymes studied by NMR spectroscopy. Methods Mol Biol 2012; 848:185-199. [PMID: 22315070 DOI: 10.1007/978-1-61779-545-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Catalytic RNA motifs (ribozymes) are involved in various cellular processes. Although functional cleavage of the RNA phosphodiester backbone for self-cleaving ribozymes strongly differs with respect to sequence specificity, the structural context, and the underlying mechanism, these ribozyme motifs constitute evolved RNA molecules that carry out identical chemical functionality. Therefore, they represent ideal systems for detailed studies of the underlying structure-function relationship, illustrating the diversity of RNA's functional role in biology. Nuclear magnetic resonance (NMR) spectroscopic methods in solution allow investigation of structure and dynamics of functional RNA motifs at atomic resolution. In addition, characterization of RNA conformational transitions initiated either through addition of specific cofactors, as e.g. ions or small molecules, or by photo-chemical triggering of essential RNA functional groups provides insights into the reaction mechanism. Here, we discuss applications of static and time-resolved NMR spectroscopy connected with the design of suitable NMR probes that have been applied to characterize global and local RNA functional dynamics together with cleavage-induced conformational transitions of two RNA ribozyme motifs: a minimal hammerhead ribozyme and an adenine-dependent hairpin ribozyme.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
32
|
Lacroix-Labonté J, Girard N, Lemieux S, Legault P. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture. Nucleic Acids Res 2011; 40:2284-93. [PMID: 22086962 PMCID: PMC3299992 DOI: 10.1093/nar/gkr1018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure–function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing–loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (kcat/KM) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing–loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.
Collapse
Affiliation(s)
- Julie Lacroix-Labonté
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada
| | | | | | | |
Collapse
|
33
|
Laing C, Wen D, Wang JTL, Schlick T. Predicting coaxial helical stacking in RNA junctions. Nucleic Acids Res 2011; 40:487-98. [PMID: 21917853 PMCID: PMC3258123 DOI: 10.1093/nar/gkr629] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA junctions are important structural elements that form when three or more helices come together in space in the tertiary structures of RNA molecules. Determining their structural configuration is important for predicting RNA 3D structure. We introduce a computational method to predict, at the secondary structure level, the coaxial helical stacking arrangement in junctions, as well as classify the junction topology. Our approach uses a data mining approach known as random forests, which relies on a set of decision trees trained using length, sequence and other variables specified for any given junction. The resulting protocol predicts coaxial stacking within three- and four-way junctions with an accuracy of 81% and 77%, respectively; the accuracy increases to 83% and 87%, respectively, when knowledge from the junction family type is included. Coaxial stacking predictions for the five to ten-way junctions are less accurate (60%) due to sparse data available for training. Additionally, our application predicts the junction family with an accuracy of 85% for three-way junctions and 74% for four-way junctions. Comparisons with other methods, as well applications to unsolved RNAs, are also presented. The web server Junction-Explorer to predict junction topologies is freely available at: http://bioinformatics.njit.edu/junction.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | | | | | |
Collapse
|
34
|
Talini G, Branciamore S, Gallori E. Ribozymes: Flexible molecular devices at work. Biochimie 2011; 93:1998-2005. [PMID: 21740954 DOI: 10.1016/j.biochi.2011.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022]
Abstract
The discovery of ribozymes, RNAs with catalytic activity, revealed the extraordinary characteristic of this molecule, and corroborated the idea that RNA was the first informative polymer. The "RNA world" hypothesis asserts that the DNA/RNA/PROTEIN world arose from an earlier RNA world in which were present only RNA molecules able to perform both of the two functions performed separately by DNA and proteins in the present-day cells: the ability to transfer genetic information and to carry out catalytic activity. The catalytic properties of ribozymes are exclusively due to the capacity of RNA molecules to assume particular structures. Moreover, the structural versatility of RNA can allow to a single RNA sequence to fold in more than one structure, able to perform more than one function. In the first part of this work we will discuss the RNA plasticity, focusing on "bifunctional" ribozymes isolated by in vitro selection experiments, and on the consequences of this plasticity in the prospective of the emergence of new specific functions. The possibility that one sequence could have more than one structure/function, greatly increase the evolutionary potential of RNA, and the capacity of RNA to switch from a structure/function to another is probably one of the reasons of the evolutionary success also in modern-day cells. Naturally occurring ribozymes discovered in contemporary cells, demonstrate the crucial role that ribozymes still have in the modern protein world. In the second part of this paper we will discuss the capacity of natural ribozymes to modulate gene expression making use of their exclusive catalytic properties. Moreover, we will consider the possibility of their ancient origin.
Collapse
Affiliation(s)
- Giulia Talini
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory, Istituto Toscano Tumori, AOU Careggi, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | |
Collapse
|
35
|
Large scale expression and purification of recombinant RNA in Escherichia coli. Methods 2011; 54:267-73. [PMID: 21320602 DOI: 10.1016/j.ymeth.2011.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 12/21/2010] [Accepted: 02/09/2011] [Indexed: 11/20/2022] Open
Abstract
Stable, folded RNA are involved in many key cellular processes and can be used as tools for biological, pharmacological and/or molecular design studies. However, their widespread use has been somewhat limited by their fragile nature and by the difficulties associated with their production on a large scale, which were limited to in vitro methods. This work reviews the novel techniques recently developed that allow efficient expression of recombinant RNA in vivo in Escherichia coli. Based on the extensive data available on the genetic and metabolic mechanisms of this model organism, conditions for optimal production can be derived. Combined with a large repertoire of RNA motifs which can be assembled by recombinant DNA techniques, this opens the way to the modular design of RNA molecules with novel properties.
Collapse
|
36
|
Desjardins G, Bonneau E, Girard N, Boisbouvier J, Legault P. NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. Nucleic Acids Res 2011; 39:4427-37. [PMID: 21266483 PMCID: PMC3105416 DOI: 10.1093/nar/gkq1244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem–loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson–Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme.
Collapse
Affiliation(s)
- Geneviève Desjardins
- Département de Biochimie, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
37
|
Chawla M, Sharma P, Halder S, Bhattacharyya D, Mitra A. Protonation of base pairs in RNA: context analysis and quantum chemical investigations of their geometries and stabilities. J Phys Chem B 2011; 115:1469-84. [PMID: 21254753 DOI: 10.1021/jp106848h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Base pairs involving protonated nucleobases play important roles in mediating global macromolecular conformational changes and in facilitation of catalysis in a variety of functional RNA molecules. Here we present our attempts at understanding the role of such base pairs by detecting possible protonated base pairs in the available RNA crystal structures using BPFind software, in their specific structural contexts, and by the characterization of their geometries, interaction energies, and stabilities using advanced quantum chemical computations. We report occurrences of 18 distinct protonated base pair combinations from a representative data set of RNA crystal structures and propose a theoretical model for one putative base pair combination. Optimization of base pair geometries was carried out at the B3LYP/cc-pVTZ level, and the BSSE corrected interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory. The geometries for each of the base pairs were characterized in terms of H-bonding patterns observed, rmsd values observed on optimization, and base pair geometrical parameters. In addition, the intermolecular interaction in these complexes was also analyzed using Morokuma energy decomposition. The gas phase interaction energies of the base pairs range from -24 to -49 kcal/mol and reveal the dominance of Hartree-Fock component of interaction energy constituting 73% to 98% of the total interaction energy values. On the basis of our combined bioinformatics and quantum chemical analysis of different protonated base pairs, we suggest resolution of structural ambiguities and correlate their geometric and energetic features with their structural and functional roles. In addition, we also examine the suitability of specific base pairs as key elements in molecular switches and as nucleators for higher order structures such as base triplets and quartets.
Collapse
Affiliation(s)
- Mohit Chawla
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H) Gachibowli, Hyderabad 500032, India
| | | | | | | | | |
Collapse
|
38
|
Abstract
The glmS ribozyme is the first known example of a natural ribozyme that has evolved to require binding of an exogenous small molecule for activity. In Gram-positive bacteria, this RNA domain is part of the messenger RNA (mRNA) encoding the essential enzyme that synthesizes glucosamine-6-phosphate (GlcN6P). When present at physiologic concentration, this small molecule binds to the glmS ribozyme and uncovers a latent self-cleavage activity that ultimately leads to degradation of the mRNA. Biochemical and structural studies reveal that the RNA adopts a rigid fold stabilized by three pseudoknots and the packing of a peripheral domain against the ribozyme core. GlcN6P binding to this pre-organized RNA does not induce conformational changes; rather, the small molecule functions as a coenzyme, providing a catalytically essential amine group to the active site. The ribozyme is not a passive player, however. Active site functional groups are essential for catalysis, even in the presence of GlcN6P. In addition to being a superb experimental system with which to analyze how RNA catalysts can exploit small molecule coenzymes to broaden their chemical versatility, the presence of the glmS ribozyme in numerous pathogenic bacteria make this RNA an attractive target for the development of new antibiotics and antibacterial strategies.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| |
Collapse
|
39
|
Abstract
The hammerhead, hairpin, hepatitis delta virus (HDV), Varkud Satellite (VS), and glmS ribozymes catalyze sequence-specific intramolecular cleavage of RNA. They range between 50 and 150 nucleotides in length, and are known as the "small self-cleaving ribozymes." Except for the glmS ribozyme that functions as a riboswitch in Gram-positive bacteria, they were originally discovered as domains of satellite RNAs. However, recent studies show that several of them are broadly distributed in genomes of organisms from many phyla. Each of these ribozymes has a unique overall architecture and active site organization. Crystal structures have revealed how RNA active sites can bind preferentially to the transition state of a reaction, whereas mechanistic studies have shown that nucleobases can efficiently perform general acid-base and electrostatic catalysis. This versatility explains the abundance of ribozymes in contemporary organisms and also supports a role for catalytic RNAs early in evolution.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Howard Hughes Medical Institute and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 8109-1024, USA.
| | | |
Collapse
|
40
|
Lam JCF, Li Y. Influence of Cleavage Site on Global Folding of an RNA-Cleaving DNAzyme. Chembiochem 2010; 11:1710-9. [DOI: 10.1002/cbic.201000144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Brenner MD, Scanlan MS, Nahas MK, Ha T, Silverman SK. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Biochemistry 2010; 49:1596-605. [PMID: 20108980 PMCID: PMC2854158 DOI: 10.1021/bi9019912] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Purine riboswitches are RNA regulatory elements that control purine metabolism in response to intracellular concentrations of the purine ligands. Conformational changes of the guanine riboswitch aptamer domain induced by guanine binding lead to transcriptional regulation of genes involved in guanine biosynthesis. The guanine riboswitch aptamer domain has three RNA helices designated P1, P2, and P3. An overall model for the Mg2+- and guanine-dependent relative orientations and dynamics of P1, P2, and P3 has not been reported, and the conformational role of guanine under physiologically relevant conditions has not been fully elucidated. In this study, an ensemble and single-molecule fluorescence resonance energy transfer (FRET) study was performed on three orthogonally labeled variants of the xpt guanine riboswitch aptamer domain. The combined FRET data support a model in which the unfolded state of the aptamer domain has a highly dynamic P2 helix that switches rapidly between two orientations relative to nondynamic P1 and P3. At ≪1 mM Mg2+ (in the presence of a saturating level of guanine) or ≥1 mM Mg2+ (in the absence of guanine), the riboswitch starts to adopt a folded conformation in which loop−loop interactions lock P2 and P3 into place. At >5 mM Mg2+, further compaction occurs in which P1 more closely approaches P3. Our data help to explain the biological role of guanine as stabilizing the globally folded aptamer domain conformation at physiologically relevant Mg2+ concentrations (≤1 mM), whereas in the absence of guanine, much higher Mg2+ concentrations are required to induce this folding event.
Collapse
Affiliation(s)
- Michael D Brenner
- Department of Chemistry, University of Illinois atUrbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
42
|
Reymond C, Beaudoin JD, Perreault JP. Modulating RNA structure and catalysis: lessons from small cleaving ribozymes. Cell Mol Life Sci 2009; 66:3937-50. [PMID: 19718544 PMCID: PMC2777235 DOI: 10.1007/s00018-009-0124-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/12/2023]
Abstract
RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today's knowledge in the field.
Collapse
Affiliation(s)
- Cedric Reymond
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| |
Collapse
|
43
|
Buck J, Li YL, Richter C, Vergne J, Maurel MC, Schwalbe H. NMR Spectroscopic Characterization of the Adenine-Dependent Hairpin Ribozyme. Chembiochem 2009; 10:2100-10. [DOI: 10.1002/cbic.200900196] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Abstract
Self-cleaving hammerhead, hairpin, hepatitis delta virus, and glmS ribozymes comprise a family of small catalytic RNA motifs that catalyze the same reversible phosphodiester cleavage reaction, but each motif adopts a unique structure and displays a unique array of biochemical properties. Recent structural, biochemical, and biophysical studies of these self-cleaving RNAs have begun to reveal how active site nucleotides exploit general acid-base catalysis, electrostatic stabilization, substrate destabilization, and positioning and orientation to reduce the free energy barrier to catalysis. Insights into the variety of catalytic strategies available to these model RNA enzymes are likely to have important implications for understanding more complex RNA-catalyzed reactions fundamental to RNA processing and protein synthesis.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Talini G, Gallori E, Maurel MC. Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol 2009; 160:457-65. [PMID: 19539027 DOI: 10.1016/j.resmic.2009.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
We review natural and in vitro selected ribozymes, for which combined studies could provide us with both insight into the functions performed by ancient RNA molecules in a primitive RNA world and a hypothesis about evolutionary steps that led to the contemporary world.
Collapse
Affiliation(s)
- Giulia Talini
- Department of Astronomy and Space Science, University of Florence, Largo E. Fermi 2, 50125 Florence, Italy.
| | | | | |
Collapse
|
46
|
MacElrevey C, Salter JD, Krucinska J, Wedekind JE. Structural effects of nucleobase variations at key active site residue Ade38 in the hairpin ribozyme. RNA (NEW YORK, N.Y.) 2008; 14:1600-16. [PMID: 18596253 PMCID: PMC2491461 DOI: 10.1261/rna.1055308] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The hairpin ribozyme requires functional groups from Ade38 to achieve efficient bond cleavage or ligation. To identify molecular features that contribute to catalysis, structures of position 38 base variants 2,6-diaminopurine (DAP), 2-aminopurine (AP), cytosine (Cyt), and guanine (Gua) were determined between 2.2 and 2.8 A resolution. For each variant, two substrate modifications were compared: (1) a 2'-O-methyl-substituent at Ade-1 was used in lieu of the nucleophile to mimic the precatalytic state, and (2) a 3'-deoxy-2',5'-phosphodiester linkage between Ade-1 and Gua+1 was used to mimic a reaction-intermediate conformation. While the global fold of each variant remained intact, the results revealed the importance of Ade38 N1 and N6 groups. Absence of N6 resulting from AP38 coincided with failure to localize the precatalytic scissile phosphate. Cyt38 severely impaired catalysis in a prior study, and its structures here indicated an anti base conformation that sequesters the imino moiety from the scissile bond. Gua38 was shown to be even more deleterious to activity. Although the precatalytic structure was nominally affected, the reaction-intermediate conformation indicated a severe electrostatic clash between the Gua38 keto oxygen and the pro-Rp oxygen of the scissile bond. Overall, position 38 modifications solved in the presence of 2'-OMe Ade-1 deviated from in-line geometry, whereas variants with a 2',5' linkage exhibited S-turn destabilization, as well as base conformational changes from syn to anti. These findings demonstrate the importance of the Ade38 Watson-Crick face in attaining a reaction-intermediate state and the sensitivity of the RNA fold to restructuring when electrostatic and shape features fail to complement.
Collapse
Affiliation(s)
- Celeste MacElrevey
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
47
|
Abstract
[Structure: see text]. Five naturally occurring nucleolytic ribozymes have been identified: the hammerhead, hairpin, glmS, hepatitis delta virus (HDV), and Varkud satellite (VS) ribozymes. All of these RNA enzymes catalyze self-scission of the RNA backbone using a chemical mechanism equivalent to that of RNase A. RNase A uses four basic strategies to promote this reaction: geometric constraints, activation of the nucleophile, transition-state stabilization, and leaving group protonation. In this Account, we discuss the current thinking on how nucleolytic ribozymes harness RNase A's four sources of catalytic power. The geometry of the phosphodiester cleavage reaction constrains the nucleotides flanking the scissile phosphate so that they are unstacked from a canonical A-form helix and thus require alternative stabilization. Crystal structures and mutational analysis reveal that cross-strand base pairing, along with unconventional stacking and tertiary hydrogen-bonding interactions, work to stabilize the splayed conformation in nucleolytic ribozymes. Deprotonation of the 2'-OH nucleophile greatly increases its nucleophilicity in the strand scission reaction. Crystal structures of the hammerhead, hairpin, and glmS ribozymes reveal the N1 of a G residue within hydrogen-bonding distance of the 2'-OH. In each case, this residue has also been shown to be important for catalysis. In the HDV ribozyme, a hydrated magnesium has been implicated as the general base. Catalysis by the VS ribozyme requires both an A and a G, but the precise role of either has not been elucidated. Enzymes can lower the energy of a chemical reaction by binding more tightly to the transition state than to the ground states. Comparison of the hairpin ground- and transition-state mimic structures reveal greater hydrogen bonding to the transition-state mimic structure, suggesting transition-state stabilization as a possible catalytic strategy. However, the hydrogen-bonding pattern in the glmS ribozyme transition-state mimic structure and the ground-state structures are equivalent. Protonation of the 5'-O leaving group by a variety of functional groups can promote the cleavage reaction. In the HDV ribozyme, the general acid is a conserved C residue. In the hairpin ribozyme, a G residue has been implicated in protonation of the leaving group. An A in the hammerhead ribozyme probably plays a similar role. In the glmS ribozyme, an exogenous cofactor may provide the general acid. This diversity is in contrast to the relatively small number of functional groups that serve as a general base, where at least three of the nucleolytic ribozymes may use the N1 of a G.
Collapse
Affiliation(s)
- Jesse C. Cochrane
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
- Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
48
|
Pereira MJB, Nikolova EN, Hiley SL, Jaikaran D, Collins RA, Walter NG. Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol 2008; 382:496-509. [PMID: 18656481 DOI: 10.1016/j.jmb.2008.07.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/01/2008] [Accepted: 07/08/2008] [Indexed: 01/18/2023]
Abstract
Non-coding RNAs of complex tertiary structure are involved in numerous aspects of the replication and processing of genetic information in many organisms; however, an understanding of the complex relationship between their structural dynamics and function is only slowly emerging. The Neurospora Varkud Satellite (VS) ribozyme provides a model system to address this relationship. First, it adopts a tertiary structure assembled from common elements, a kissing loop and two three-way junctions. Second, catalytic activity of the ribozyme is essential for replication of VS RNA in vivo and can be readily assayed in vitro. Here we exploit single molecule FRET to show that the VS ribozyme exhibits previously unobserved dynamic and heterogeneous hierarchical folding into an active structure. Readily reversible kissing loop formation combined with slow cleavage of the upstream substrate helix suggests a model whereby the structural dynamics of the VS ribozyme favor cleavage of the substrate downstream of the ribozyme core instead. This preference is expected to facilitate processing of the multimeric RNA replication intermediate into circular VS RNA, which is the predominant form observed in vivo.
Collapse
Affiliation(s)
- Miguel J B Pereira
- Department of Chemistry, Single Molecule Analysis Group, 930 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bouchard P, Lacroix-Labonté J, Desjardins G, Lampron P, Lisi V, Lemieux S, Major F, Legault P. Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme. RNA (NEW YORK, N.Y.) 2008; 14:736-48. [PMID: 18314503 PMCID: PMC2271362 DOI: 10.1261/rna.824308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Substrate recognition by the VS ribozyme involves a magnesium-dependent loop/loop interaction between the SLI substrate and the SLV hairpin from the catalytic domain. Recent NMR studies of SLV demonstrated that magnesium ions stabilize a U-turn loop structure and trigger a conformational change for the extruded loop residue U700, suggesting a role for U700 in SLI recognition. Here, we kinetically characterized VS ribozyme mutants to evaluate the contribution of U700 and other SLV loop residues to SLI recognition. To help interpret the kinetic data, we structurally characterized the SLV mutants by NMR spectroscopy and generated a three-dimensional model of the SLI/SLV complex by homology modeling with MC-Sym. We demonstrated that the mutation of U700 by A, C, or G does not significantly affect ribozyme activity, whereas deletion of U700 dramatically impairs this activity. The U700 backbone is likely important for SLI recognition, but does not appear to be required for either the structural integrity of the SLV loop or for direct interactions with SLI. Thus, deletion of U700 may affect other aspects of SLI recognition, such as magnesium ion binding and SLV loop dynamics. As part of our NMR studies, we developed a convenient assay based on detection of unusual (31)P and (15)N N7 chemical shifts to probe the formation of U-turn structures in RNAs. Our model of the SLI/SLV complex, which is compatible with biochemical data, leads us to propose novel interactions at the loop I/loop V interface.
Collapse
Affiliation(s)
- Patricia Bouchard
- Département de Biochimie, Université de Montréal, Montréal, H3C 3J7 Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Enzymatic catalysis by RNA was discovered 25 years ago, yet mechanistic insights are emerging only slowly. Thought to be metalloenzymes at first, some ribozymes proved more versatile than anticipated when shown to utilize their own functional groups for catalysis. Recent evidence suggests that some may also judiciously place structural water molecules to shuttle protons in acid-base catalyzed reactions.
Collapse
Affiliation(s)
- Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48019-1055, USA.
| |
Collapse
|