1
|
Pawlowska R, Graczyk A, Radzikowska-Cieciura E, Wielgus E, Madaj R, Chworos A. Substrate Specificity of T7 RNA Polymerase toward Hypophosphoric Analogues of ATP. ACS OMEGA 2024; 9:9348-9356. [PMID: 38434886 PMCID: PMC10905585 DOI: 10.1021/acsomega.3c08635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Modified nucleotides are commonly used in molecular biology as substrates or inhibitors for several enzymes but also as tools for the synthesis of modified DNA and RNA fragments. Introduction of modification into RNA, such as phosphorothioate (PS), has been demonstrated to provide higher stability, more effective transport, and enhanced activity of potential therapeutic molecules. Hence, in order to achieve widespread use of RNA molecules in medicine, it is crucial to continuously refine the techniques that enable the effective introduction of modifications into RNA strands. Numerous analogues of nucleotides have been tested for their substrate activity with the T7 RNA polymerase and therefore in the context of their utility for use in in vitro transcription. In the present studies, the substrate preferences of the T7 RNA polymerase toward β,γ-hypophospho-modified ATP derivatives for the synthesis of unmodified RNA and phosphorothioate RNA (PS) are presented. The performed studies revealed the stereoselectivity of this enzyme for α-thio-β,γ-hypo-ATP derivatives, similar to that for α-thio-ATP. Additionally, it is demonstrated herein that hypodiphosphoric acid may inhibit in vitro transcription catalyzed by T7 RNA polymerase.
Collapse
Affiliation(s)
- Roza Pawlowska
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Anna Graczyk
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Department
of Structural Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Rafal Madaj
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department
of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
2
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
3
|
George JT, Srivatsan SG. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state. Chem Commun (Camb) 2020; 56:12307-12318. [PMID: 33026365 PMCID: PMC7611129 DOI: 10.1039/d0cc05228k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To understand the structure and ensuing function of RNA in various cellular processes, researchers greatly rely on traditional as well as contemporary labeling technologies to devise efficient biochemical and biophysical platforms. In this context, bioorthogonal chemistry based on chemoselective reactions that work under biologically benign conditions has emerged as a state-of-the-art labeling technology for functionalizing biopolymers. Implementation of this technology on sugar, protein, lipid and DNA is fairly well established. However, its use in labeling RNA has posed challenges due to the fragile nature of RNA. In this feature article, we provide an account of bioorthogonal chemistry-based RNA labeling techniques developed in our lab along with a detailed discussion on other technologies put forward recently. In particular, we focus on the development and applications of covalent methods to label RNA by transcription and posttranscription chemo-enzymatic approaches. It is expected that existing as well as new bioorthogonal functionalization methods will immensely advance our understanding of RNA and support the development of RNA-based diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | | |
Collapse
|
4
|
Keyhani S, Goldau T, Blümler A, Heckel A, Schwalbe H. Chemo-Enzymatic Synthesis of Position-Specifically Modified RNA for Biophysical Studies including Light Control and NMR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sara Keyhani
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Thomas Goldau
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| |
Collapse
|
5
|
Keyhani S, Goldau T, Blümler A, Heckel A, Schwalbe H. Chemo-Enzymatic Synthesis of Position-Specifically Modified RNA for Biophysical Studies including Light Control and NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:12017-12021. [PMID: 30007102 DOI: 10.1002/anie.201807125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 02/04/2023]
Abstract
The investigation of non-coding RNAs requires RNAs containing modifications at every possible position within the oligonucleotide. Here, we present the chemo-enzymatic RNA synthesis containing photoactivatable or 13 C,15 N-labelled nucleosides. All four ribonucleotides containing ortho-nitrophenylethyl (NPE) photocages, photoswitchable azobenzene C-nucleotides and 13 C,15 N-labelled nucleotides were incorporated position-specifically in high yields. We applied this approach for the synthesis of light-inducible 2'dG-sensing riboswitch variants and detected ligand-induced structural reorganization upon irradiation by NMR spectroscopy. This chemo-enzymatic method opens the possibility to incorporate a wide range of modifications at any desired position of RNAs of any lengths beyond the limits of solid-phase synthesis.
Collapse
Affiliation(s)
- Sara Keyhani
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany.,Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Thomas Goldau
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany.,Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| |
Collapse
|
6
|
Kireeva ML, Afonin KA, Shapiro BA, Kashlev M. Cotranscriptional Production of Chemically Modified RNA Nanoparticles. Methods Mol Biol 2017; 1632:91-105. [PMID: 28730434 DOI: 10.1007/978-1-4939-7138-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RNA nanoparticles consisting of multiple RNA strands of different sequences forming various three-dimensional structures emerge as promising carriers of siRNAs, RNA aptamers, and ribozymes. In vitro transcription of a mixture of dsDNA templates encoding all the subunits of the RNA nanoparticle may result in cotranscriptional self-assembly of the nanoparticle. Based on our experience with production of RNA nanorings, RNA nanocubes, and RNA three-way junctions, we propose a strategy for optimization of the cotranscriptional production of chemically modified ribonuclease-resistant RNA nanoparticles.
Collapse
Affiliation(s)
- Maria L Kireeva
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Kirill A Afonin
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
7
|
Kotkowiak W, Pasternak A, Kierzek R. Studies on Transcriptional Incorporation of 5'-N-Triphosphates of 5'-Amino-5'-Deoxyribonucleosides. PLoS One 2016; 11:e0148282. [PMID: 26829482 PMCID: PMC4735469 DOI: 10.1371/journal.pone.0148282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/16/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, several RNA polymerases were used for the first time to examine the possibility of transcriptional incorporation of 5’-N-triphosphates of 5’-amino-5’-deoxyribonucleosides (5’NH NTPs). The T3, T7, Sp6 and T7 Y639F RNA polymerases were employed to show that the full-length transcript cannot be synthesized. The results suggest that the application of 5’NH NTPs could decrease transcription reaction rates. What is more, the modification of transcription conditions had no influence on the rate of 5’NH NTPs incorporation. Based on experimental data it is postulated that 5’NH NTPs can be used as potential transcription inhibitors. Our findings expand the knowledge on suitable uses of the 5’-N-triphosphates of 5’-amino-5’-deoxyribonucleoside and the exact mechanism of transcriptional inhibition.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
8
|
Zhu B, Hernandez A, Tan M, Wollenhaupt J, Tabor S, Richardson CC. Synthesis of 2'-Fluoro RNA by Syn5 RNA polymerase. Nucleic Acids Res 2015; 43:e94. [PMID: 25897116 PMCID: PMC4538805 DOI: 10.1093/nar/gkv367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/07/2015] [Indexed: 12/12/2022] Open
Abstract
The substitution of 2′-fluoro for 2′-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2′-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2′-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2′-fluoro-dNMPs by Syn5 RNA polymerase have been identified.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alfredo Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jan Wollenhaupt
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin 14195, Germany
| | - Stanley Tabor
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Smith CC, Hollenstein M, Leumann CJ. The synthesis and application of a diazirine-modified uridine analogue for investigating RNA–protein interactions. RSC Adv 2014. [DOI: 10.1039/c4ra08682a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A uridine analogue equipped with a photoactive diazirine unit was generated and incorporated into RNA either syntheticallyviaphosphoramidite chemistry or by enzymatic polymerization. The new analogue was developed to identify and investigate RNA–protein interactions.
Collapse
Affiliation(s)
- Christine C. Smith
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Marcel Hollenstein
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Christian J. Leumann
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| |
Collapse
|
10
|
Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. NANO LETTERS 2012; 12:5192-5. [PMID: 23016824 PMCID: PMC3498980 DOI: 10.1021/nl302302e] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a generalized methodology for the one-pot production of chemically modified functional RNA nanoparticles during in vitro transcription with T7 RNA polymerase. The efficiency of incorporation of 2'-fluoro-dNTP in the transcripts by the wild type T7 RNA polymerase dramatically increases in the presence of manganese ions, resulting in a high-yield production of chemically modified RNA nanoparticles functionalized with siRNAs that are resistant to nucleases from human blood serum. Moreover, the unpurified transcription mixture can be used for functional ex vivo pilot experiments.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Computational RNA Structure Group, Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Wade W. Grabow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Bio-Molecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
- Corresponding Author: (B.A.S.) Phone 301-846-5536. Fax 301-846-5598. . (L.J.) Phone 805-893-3628. Fax 805-893-4120.
| | - Bruce A. Shapiro
- Computational RNA Structure Group, Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Corresponding Author: (B.A.S.) Phone 301-846-5536. Fax 301-846-5598. . (L.J.) Phone 805-893-3628. Fax 805-893-4120.
| |
Collapse
|
11
|
Real-time bioluminescent assay for inhibitors of RNA and DNA polymerases and other ATP-dependent enzymes. Anal Biochem 2010; 408:226-34. [PMID: 20727342 DOI: 10.1016/j.ab.2010.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/04/2010] [Accepted: 08/12/2010] [Indexed: 11/20/2022]
Abstract
Viral polymerases are important targets for drug development. However, current methods used to identify and characterize inhibitors of polymerases are time-consuming, use radiolabeled reagents, and are cost-inefficient. Here we present a bioluminescent assay for the identification and characterization of inhibitors of polymerases, as well as other ATP-dependent enzymes, that monitors the decrease of ATP or dATP in real time, allowing detection of enzyme inhibition based on differences in ATP/dATP consumption. The assay works with a variety of RNA and DNA polymerases, using both RNA and DNA templates. The assay measures changes in substrate concentration in real time and provides a faster alternative for kinetic studies of inhibition. Michaelis-Menten plots were obtained from a single reaction, yielding K(m) values that compared well with literature values. The assay could identify the mechanism of inhibition and determine inhibition constants (K(i)) for a weak competitive inhibitor of Klenow fragment and two strong noncompetitive inhibitors of HIV-1 reverse transcriptase with one series of inhibitor concentrations, reducing the total number of experiments that would normally be needed. The assay is also sensitive enough to detect a weak inhibitor with K(i)>100 μM, making it a viable technique for fragment-based drug discovery.
Collapse
|