1
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Cui Z, Wu Y, Mureev S, Alexandrov K. Oligonucleotide-mediated tRNA sequestration enables one-pot sense codon reassignment in vitro. Nucleic Acids Res 2019; 46:6387-6400. [PMID: 29846683 PMCID: PMC6158751 DOI: 10.1093/nar/gky365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Sense codon reassignment to unnatural amino acids (uAAs) represents a powerful approach for introducing novel properties into polypeptides. The main obstacle to this approach is competition between the native isoacceptor tRNA(s) and orthogonal tRNA(s) for the reassigned codon. While several chromatographic and enzymatic procedures for selective deactivation of tRNA isoacceptors in cell-free translation systems exist, they are complex and not scalable. We designed a set of tRNA antisense oligonucleotides composed of either deoxy-, ribo- or 2′-O-methyl ribonucleotides and tested their ability to efficiently complex tRNAs of choice. Methylated oligonucleotides targeting sequence between the anticodon and variable loop of tRNASerGCU displayed subnanomolar binding affinity with slow dissociation kinetics. Such oligonucleotides efficiently and selectively sequestered native tRNASerGCU directly in translation-competent Escherichia coli S30 lysate, thereby, abrogating its translational activity and liberating the AGU/AGC codons. Expression of eGFP protein from the template harboring a single reassignable AGU codon in tRNASerGCU-depleted E. coli lysate allowed its homogeneous modification with n-propargyl-l-lysine or p-azido-l-phenylalanine. The strategy developed here is generic, as demonstrated by sequestration of tRNAArgCCU isoacceptor in E. coli translation system. Furthermore, this method is likely to be species-independent and was successfully applied to the eukaryotic Leishmania tarentolae in vitro translation system. This approach represents a new direction in genetic code reassignment with numerous practical applications.
Collapse
Affiliation(s)
- Zhenling Cui
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yue Wu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods 2016; 13:453-8. [PMID: 26999002 PMCID: PMC4850110 DOI: 10.1038/nmeth.3807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/13/2016] [Indexed: 01/01/2023]
Abstract
Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism termed −1 programmed ribosomal frameshifting (−1 PRF) to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient −1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling −1 PRF stimulatory elements to RNA aptamers using rational design and in vivo directed evolution. We demonstrate that −1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, −1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and establish −1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes.
Collapse
|
4
|
Cui Z, Stein V, Tnimov Z, Mureev S, Alexandrov K. Semisynthetic tRNA complement mediates in vitro protein synthesis. J Am Chem Soc 2015; 137:4404-13. [PMID: 25822136 DOI: 10.1021/ja5131963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genetic code expansion is a key objective of synthetic biology and protein engineering. Most efforts in this direction are focused on reassigning termination or decoding quadruplet codons. While the redundancy of genetic code provides a large number of potentially reassignable codons, their utility is diminished by the inevitable interaction with cognate aminoacyl-tRNAs. To address this problem, we sought to establish an in vitro protein synthesis system with a simplified synthetic tRNA complement, thereby orthogonalizing some of the sense codons. This quantitative in vitro peptide synthesis assay allowed us to analyze the ability of synthetic tRNAs to decode all of 61 sense codons. We observed that, with the exception of isoacceptors for Asn, Glu, and Ile, the majority of 48 synthetic Escherichia coli tRNAs could support protein translation in the cell-free system. We purified to homogeneity functional Asn, Glu, and Ile tRNAs from the native E. coli tRNA mixture, and by combining them with synthetic tRNAs, we formulated a semisynthetic tRNA complement for all 20 amino acids. We further demonstrated that this tRNA complement could restore the protein translation activity of tRNA-depleted E. coli lysate to a level comparable to that of total native tRNA. To confirm that the developed system could efficiently synthesize long polypeptides, we expressed three different sequences coding for superfolder GFP. This novel semisynthetic translation system is a powerful tool for tRNA engineering and potentially enables the reassignment of at least 9 sense codons coding for Ser, Arg, Leu, Pro, Thr, and Gly.
Collapse
Affiliation(s)
- Zhenling Cui
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Viktor Stein
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zakir Tnimov
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Abstract
Macrocyclic peptides are an emerging class of therapeutics that can modulate protein-protein interactions. In contrast to the heavily automated high-throughput screening systems traditionally used for the identification of chemically synthesized small-molecule drugs, peptide-based macrocycles can be synthesized by ribosomal translation and identified using in vitro selection techniques, allowing for extremely rapid (hours to days) screening of compound libraries comprising more than 10(13) different species. Furthermore, chemical modification of translated peptides and engineering of the genetic code have greatly expanded the structural diversity of the available peptide libraries. In this review, we discuss the use of these technologies for the identification of bioactive macrocyclic peptides, emphasizing recent developments.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; , , ,
| | | | | | | |
Collapse
|
6
|
A Concept for Selection of Codon-Suppressor tRNAs Based on Read-Through Ribosome Display in an In Vitro Compartmentalized Cell-Free Translation System. J Nucleic Acids 2012; 2012:538129. [PMID: 22928090 PMCID: PMC3425794 DOI: 10.1155/2012/538129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/29/2012] [Indexed: 11/24/2022] Open
Abstract
Here is presented a concept for in vitro selection of suppressor tRNAs. It uses a pool of dsDNA templates in compartmentalized water-in-oil micelles. The template contains a transcription/translation trigger, an amber stop codon, and another transcription trigger for the anticodon- or anticodon loop-randomized gene for tRNASer. Upon transcription are generated two types of RNAs, a tRNA and a translatable mRNA (mRNA-tRNA). When the tRNA suppresses the stop codon (UAG) of the mRNA, the full-length protein obtained upon translation remains attached to the mRNA (read-through ribosome display) that contains the sequence of the tRNA. In this way, the active suppressor tRNAs can be selected (amplified) and their sequences read out. The enriched anticodon (CUA) was complementary to the UAG stop codon and the enriched anticodon-loop was the same as that in the natural tRNASer.
Collapse
|
7
|
Hipolito CJ, Suga H. Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems. Curr Opin Chem Biol 2012; 16:196-203. [PMID: 22401851 DOI: 10.1016/j.cbpa.2012.02.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/30/2022]
Abstract
Bioactive natural product peptides have diverse architectures such as non-standard sidechains and a macrocyclic backbone bearing modifications. In vitro translation of peptides bearing these features would provide the research community with a diverse collection of natural product peptide-like molecules with a potential for drug development. The ordinary in vitro translation system, however, is not amenable to the incorporation of non-proteinogenic amino acids or genetic encoding of macrocyclic backbones. To circumvent this problem, flexible tRNA-acylation ribozymes (flexizymes) were combined with a custom-made reconstituted translation system to produce the flexible in vitro translation (FIT) system. The FIT system was integrated with mRNA display to devise an in vitro selection technique, referred to as the random non-standard peptide integrated discovery (RaPID) system. It has recently yielded an N-methylated macrocyclic peptide having high affinity (Kd=0.60 nM) for its target protein, E6AP.
Collapse
Affiliation(s)
- Christopher J Hipolito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
8
|
Post-translational modification of genetically encoded polypeptide libraries. Curr Opin Chem Biol 2011; 15:355-61. [PMID: 21489857 DOI: 10.1016/j.cbpa.2011.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
The genetic encoding of polypeptides with biological display systems enables the facile generation and screening of very large combinatorial libraries of molecules. By post-translationally modifying the encoded polypeptides, chemically and structurally more diverse molecules beyond linear amino acid polymers can be generated. The first post-translational modification applied to encoded polypeptides, the oxidation of cysteine residues to form disulfide bridges, is a natural one and was used to cyclise short peptides soon after the invention of phage display. Recently a range of non-natural chemical strategies for the post-translational modification of encoded polypeptide repertoires were applied to generate optical biosensors, semisynthetic polypeptides, peptide-drug conjugates, redox-insensitive monocyclic peptides or multicyclic peptides, and these strategies are reviewed in this article.
Collapse
|
9
|
Goto Y, Ohta A, Sako Y, Yamagishi Y, Murakami H, Suga H. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol 2008; 3:120-9. [PMID: 18215017 DOI: 10.1021/cb700233t] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The initiation codon dictates that the translation initiation event exclusively begins with methionine. We report here a new technology to reprogram the initiation event, where various amino acids and those bearing N (alpha)-acyl groups can be used as an initiator for peptide synthesis. The technology is built upon the concept of genetic code reprogramming, where methionine is depleted from the translation system and the initiation codon is reassigned to the desired amino acid. We have applied this technology to the synthesis of an antitumor cyclic peptide, G7-18NATE, closed by a physiologically stable bond, and it is also extended to the custom synthesis of its analogues with various ring sizes. Significantly, cyclization occurs spontaneously upon translation of the precursor linear peptides. To demonstrate the practicality of this methodology, we also prepared a small cyclic peptide library designated by 160 distinct mRNAs. Thus, this technology offers a new means to prepare a wide array of in vivo compatible cyclic peptide libraries for the discovery of peptidic drug candidates against various therapeutic targets.
Collapse
Affiliation(s)
- Yuki Goto
- Research Center for Advanced
Science and Technology
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering
| | - Atsushi Ohta
- Research Center for Advanced
Science and Technology
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Yusuke Sako
- Research Center for Advanced
Science and Technology
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Yusuke Yamagishi
- Research Center for Advanced
Science and Technology
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8904, Japan
| | | | - Hiroaki Suga
- Research Center for Advanced
Science and Technology
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8904, Japan
| |
Collapse
|
10
|
Ahn JH, Hwang MY, Oh IS, Park KM, Hahn GH, Choi CY, Kim DM. Preparation method forEscherichia coli S30 extracts completely dependent upon tRNA addition to catalyze cell-free protein synthesis. BIOTECHNOL BIOPROC E 2006. [DOI: 10.1007/bf02932309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Millward SW, Takahashi TT, Roberts RW. A general route for post-translational cyclization of mRNA display libraries. J Am Chem Soc 2006; 127:14142-3. [PMID: 16218582 DOI: 10.1021/ja054373h] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic peptides are attractive scaffolds for the design of conformationally constrained molecular therapeutics. Previously, biological display libraries could only be cyclized via disulfide bonds, which are labile and can be reduced in an intracellular environment. In this paper, we construct high diversity, covalently cyclized mRNA display libraries (>1013 sequences) and analyze the cyclization reaction using MALDI-TOF MS and unnatural amino acid incorporation. Our route allows the extent of cyclization to be evaluated quantitatively and is broadly applicable to a variety of cyclization chemistries.
Collapse
Affiliation(s)
- Steven W Millward
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
12
|
Kourouklis D, Murakami H, Suga H. Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation. Methods 2005; 36:239-44. [PMID: 16076449 DOI: 10.1016/j.ymeth.2005.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/24/2022] Open
Abstract
Here we describe a novel technology that allows users to charge nonnatural amino acids onto any tRNA. This technology is based on a resin-immobilized ribozyme system, called Flexiresin. It enables users to readily and rapidly synthesize misacylated tRNAs with a wide variety of phenylalanine analogs. Since Flexiresin is reusable and little effort is necessary for regeneration, it is economical and convenient. Moreover, it can adapt to virtually any tRNA chosen by the user, and can therefore be applied to not only a single site mutation but also multiple sites with designated nonnatural amino acids when both the amber and programmed frame-shift mutations are utilized. The original ribozyme utilized for Flexiresin was artificially generated in vitro, and thus the technology in principle could be broadened from Phe analogues to essentially any amino acid.
Collapse
Affiliation(s)
- Dimitrios Kourouklis
- Department of Chemistry, University at Buffalo, The State University at New York, USA
| | | | | |
Collapse
|
13
|
Ja WW, Roberts RW. G-protein-directed ligand discovery with peptide combinatorial libraries. Trends Biochem Sci 2005; 30:318-24. [PMID: 15950876 DOI: 10.1016/j.tibs.2005.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/08/2005] [Accepted: 04/08/2005] [Indexed: 01/19/2023]
Abstract
Modulators of G-protein signaling have a central role in controlling cell physiology and represent over half of all marketed prescription drugs. G-protein pathways have traditionally been targeted by developing ligands to the extracellular surface of a small subset of the estimated approximately 1000 G-protein-coupled receptors in humans. The intracellular machinery, consisting of the cytosolic receptor surfaces and heterotrimeric G proteins, provides an equivalent diversity of targets that has remained relatively unexplored until now. This review summarizes recent efforts using combinatorial peptide libraries to develop new G-protein signaling modulators targeting intracellular components.
Collapse
Affiliation(s)
- William W Ja
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
14
|
Sando S, Kanatani K, Sato N, Matsumoto H, Hohsaka T, Aoyama Y. A Small-Molecule-Based Approach to Sense Codon-Templated Natural-Unnatural Hybrid Peptides. Selective Silencing and Reassignment of the Sense Codon by Orthogonal Reacylation Stalling at the Single-Codon Level. J Am Chem Soc 2005; 127:7998-9. [PMID: 15926808 DOI: 10.1021/ja0502977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the presence of the stable sulfamoyl analogue of phenylalanyl adenylate (Phe-SA), the UUU/UUC sense codon for phenylalanine (Phe) can be silenced and reassigned to a naphthylalanine (Nap) conjugated to tRNAPhe. We have demonstrated the efficiency and selectivity or orthogonality of the Phe-to-Nap reassignment induced by an "orthogonal reacylation stalling" strategy at the single-codon level in the translation of mRNAs of dihydrofolate reductase and a 24-mer oligopeptide. We used a prokaryotic translation system with an essential preincubation, during which the endogenous precharged phenylalanyl-tRNAPhe undergoes deacylation and the reacylation of the resulting tRNAPhe is stalled by the action of Phe-SA to inhibit the phenylalanyl-tRNA synthetase activity. We discuss the significance of the present small-molecule-based approach to sense-codon templated natural-unnatural peptides.
Collapse
Affiliation(s)
- Shinsuke Sando
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Budisa N. Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300646] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Budisa N. Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire. Angew Chem Int Ed Engl 2004; 43:6426-63. [PMID: 15578784 DOI: 10.1002/anie.200300646] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein synthesis and its relation to the genetic code was for a long time a central issue in biology. Rapid experimental progress throughout the past decade, crowned with the recently elucidated ribosomal structures, provided an almost complete description of this process. In addition important experiments provided solid evidence that the natural protein translation machinery can be reprogrammed to encode genetically a vast number of non-coded (i.e. noncanonical) amino acids. Indeed, in the set of 20 canonical amino acids as prescribed by the universal genetic code, many desirable functionalities, such as halogeno, keto, cyano, azido, nitroso, nitro, and silyl groups, as well as C=C or C[triple bond]C bonds, are absent. The ability to encode genetically such chemical diversity will enable us to reprogram living cells, such as bacteria, to express tailor-made proteins exhibiting functional diversity. Accordingly, genetic code engineering has developed into an exciting emerging research field at the interface of biology, chemistry, and physics.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Junior Research Group "Moleculare Biotechnologie", Am Klopferspitz 18a, 82152 Martinsried bei München, Germany.
| |
Collapse
|
17
|
Abstract
Methods such as monoclonal antibody technology, phage display, and ribosome display provide genetic routes to the selection of proteins and peptides with desired properties. However, extension to polymers of unnatural amino acids is problematic because the translation step is always performed in vivo or in crude extracts in the face of competition from natural amino acids. Here, we address this restriction using a pure translation system in which aminoacyl-tRNA synthetases and other competitors are deliberately omitted. First, we show that such a simplified system can synthesize long polypeptides. Second, we demonstrate "pure translation display" by selecting from an mRNA library only those mRNAs that encode a selectable unnatural amino acid upstream of a peptide spacer sequence long enough to span the ribosome tunnel. Pure translation display should enable the directed evolution of peptide analogs with desirable catalytic or pharmacological properties.
Collapse
Affiliation(s)
- Anthony C Forster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | |
Collapse
|
18
|
Tan Z, Forster AC, Blacklow SC, Cornish VW. Amino Acid Backbone Specificity of the Escherichia coli Translation Machinery. J Am Chem Soc 2004; 126:12752-3. [PMID: 15469251 DOI: 10.1021/ja0472174] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a pure Escherichia coli translation system, we tested the intrinsic specificity of the protein biosynthetic machinery by determining the relative yields of peptide synthesis for incorporation of a series of acyl-%@mt;sys@%tRNA%@sx@%GAC%@be@%AsnB%@sxx@%%@mx@% 's with varied backbone structures at the sense codon GUU (Val). The results showed that different amino acids on the same tRNA adaptor give significantly different peptide yields and the potential for cross-talk between the amino acid and tRNA body/anticodon in aa-tRNA decoding by the ribosome. They further support the substrate plasticity of the ribosomal biosynthetic machinery and provide immediate candidates for ribosomally encoded polymer synthesis.
Collapse
Affiliation(s)
- Zhongping Tan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Conventional display libraries are generally limited to the 20 naturally occurring amino acids. Here, we demonstrate that novel unnatural amide-linked oligomers can be constructed and encoded in an attached RNA for the purpose of mRNA display library design. To do this, we translated templates of various lengths in a protein synthesis system modified to promote sense codon suppression. Unnatural residues were escorted to the ribosome as chemically acylated tRNAs added to the translation mixture. Our experiments reveal that unnatural peptide oligomers ("encodamers") consisting of an N-substituted amino acid are readily generated as mRNA-peptide fusions with excellent stepwise efficiency. The N-substituted polyamides have strikingly improved proteolytic stability relative to their naturally encoded counterparts. Overall, our work indicates that the ribosome can be used as a synthesis platform to generate encoded combinatorial chemistry outside the universal genetic code.
Collapse
Affiliation(s)
- Adam Frankel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 147-75, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
20
|
Jayathilaka LP, Deb M, Standaert RF. Asymmetric Synthesis and Translational Competence of l-α-(1-Cyclobutenyl)glycine. Org Lett 2004; 6:3659-62. [PMID: 15469317 DOI: 10.1021/ol049026b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] L-alpha-(1-Cyclobutenyl)glycine (1-Cbg) was targeted as a potentially translatable analogue of isoleucine and valine and as a useful building block for peptides. An enantioselective synthesis was executed in which the key step was diastereoselective addition of 1-cyclobutenylmagnesium bromide to the sulfinimine 2b derived from (S)-t-butanesulfinimide and tert-butyl glyoxylate. 1-Cbg was found to substitute efficiently for isoleucine and valine, but not leucine, in the translation of green fluorescent protein in vitro.
Collapse
Affiliation(s)
- Lasanthi P Jayathilaka
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 West Taylor Street, Room 4500 Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
21
|
Abstract
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- A James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
22
|
Abstract
Why do proteins adopt the conformations that they do, and what determines their stabilities? While we have come to some understanding of the forces that underlie protein architecture, a precise, predictive, physicochemical explanation is still elusive. Two obstacles to addressing these questions are the unfathomable vastness of protein sequence space, and the difficulty in making direct physical measurements on large numbers of protein variants. Here, we review combinatorial methods that have been applied to problems in protein biophysics over the last 15 years. The effects of hydrophobic core composition, the most important determinant of structure and stability, are still poorly understood. Particular attention is given to core composition as addressed by library methods. Increasingly useful screens and selections, in combination with modern high-throughput approaches borrowed from genomics and proteomics efforts, are making the empirical, statistical correlation between sequence and structure a tractable problem for the coming years.
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
23
|
Abstract
Combinatorial peptide and protein libraries have now been developed to accommodate unnatural amino acids in a genetically encoded format via in vitro nonsense and sense suppression. General translation features and specific regioselective and stereoselective properties of the ribosome endow these libraries with a broad chemical diversity. Alternatively, amino acid residues can be chemically derivatized post-translationally to add preferred functionality to the encoded peptide. All of these efforts are advancing combinatorial peptide and protein libraries for enhanced ligands against biological targets of interest.
Collapse
Affiliation(s)
- Adam Frankel
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|