1
|
Hou J, Wang L, Wu Q, Zheng G, Long H, Wu H, Zhou C, Guo T, Zhong T, Wang L, Chen X, Wang T. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res Ther 2018; 9:109. [PMID: 29673400 PMCID: PMC5909270 DOI: 10.1186/s13287-018-0861-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Background Currently, the overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory. The low viability and angiogenic capacity of the implanted cells in the local infarct tissues restrict their further application. Evidence shows that long noncoding RNA H19 (lncRNA-H19) mediates cell survival and angiogenesis. Additionally, it is also involved in MSCs biological activities. This study aimed to explore the functional role of lncRNA-H19 in MSCs survival and angiogenic capacity as well as the underlying mechanism. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells at the third passage were divided into the following groups: MSCs+H19, MSCs+H19 NC, MSCs+si-H19, MSCs+si-H19 NC and MSCs. The MSCs+H19 and MSCs+H19 NC groups were transfected with lncRNA-H19 and lncRNA-H19 scramble RNA respectively. The MSCs+si-H19 and MSCs+si-H19 NC groups were transfected with lncRNA-H19 siRNA and lncRNA-H19 siRNA scramble respectively. MSCs were used as the blank control. All groups were exposed to normoxia (20% O2) and hypoxia (1% O2)/serum deprivation (H/SD) conditions for 24 h. Cell proliferation, apoptosis and vascular densities were assessed. Bioinformatics and dual luciferase reporter assay were performed. Relevant biomarkers were detected in different experimental groups. Results Overexpression of lncRNA-H19 improved survival and angiogenic capacity of MSCs under both normoxia and H/SD conditions, whereas its knockdown impaired cell viability and their angiogenic potential. MicroRNA-199a-5p (miR-199a-5p) targeted and downregulated vascular endothelial growth factor A (VEGFA). MiR-199a-5p was a target of lncRNA-H19. LncRNA-H19 transfection led to a decreased level of miR-199a-5p, accompanied with an elevated expression of VEGFA. However, both miR-199a-5p and VEGFA presented inverse alterations in the condition of lncRNA-H19 knockdown. Conclusions LncRNA-H19 enhanced MSCs survival and their angiogenic potential in vitro. It could directly upregulate VEGFA expression by inhibiting miR-199a-5p as a competing endogenous RNA. This mechanism contributes to a better understanding of MSCs biological activities and provides new insights for cell therapy based on MSCs transplantation.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lingyun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Guanghui Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Xuxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China. .,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kikuchi K, Sasaki K, Akizawa H, Tsukahara H, Bai H, Takahashi M, Nambo Y, Hata H, Kawahara M. Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses. J Reprod Dev 2018; 64:57-64. [PMID: 29151450 PMCID: PMC5830359 DOI: 10.1262/jrd.2017-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and
3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The
complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did
not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and
analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which
caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was
found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal
development of mammals, including horses.
Collapse
Affiliation(s)
- Kohta Kikuchi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Keisuke Sasaki
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Present: Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hiroki Akizawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Yasuo Nambo
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan.,Present: Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hiroshi Hata
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido 060-0811, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|