1
|
Tepekoy F, Bulut B, Karaoz E. Activation of Proteolysis During Oocyte In Vitro Maturation. Mol Reprod Dev 2025; 92:e70013. [PMID: 39871782 DOI: 10.1002/mrd.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/01/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
In vitro maturation (IVM) is a form of assisted reproductive technology (ART) applied to obtain mature oocytes in culture. Decline in IVM success rates by age has led consideration of novel approaches based on cellular dynamics. Our aim was to achieve proteostasis in old bovine oocytes from 13 to 16-year-old bovine with a lower potential for fertilization. Lysosomal activation was achieved through increasing concentrations of proton pump activators PIP2 (0.1, 0.5, 1, and 5 μM), PMA (0.1, 1, 10, and 50 μM), and DOG (0.1, 1, 10, and 50 μM) at 6, 12, 18, and 24 h of IVM in old bovine oocytes. Morphological analysis was performed and IVM rates were determined. DQ-Red BSA was applied to live oocytes to determine proteolytic activation while lysosome density was determined by Lysotracker probe. Protein carbonylation was detected through oxyblot analysis. Polar body extrusion (PBE), through which a haploid nonfunctional polar body is released in the perivitelline space after completion of the first meiotic division, was observed in PIP2-0.1 μM, -0.5μM-6h; PIP2-5μM-12h; PMA-0.1μM-18h; PIP2-0.1μM, -0.5μM-24h groups. Oocyte diameter was the highest in DOG-1μM-6h, PMA-0.1μM-12h, PIP2-1μM-18h, and PIP2-0.5μM-24h groups. Morphological scores of oocytes were higher in young and old control groups. PIP2, PMA, and DOG affected oocyte quality positively after 6 h of IVM yielding in oocyte scores similar to the control group oocytes. However, they had a negative impact on the oocyte scores in longer periods of IVM, except for lower doses PMA (0.1 and 1 μM) at 12 h and PIP2 (0.5 μM) and PMA (0.1 μM) at 18 h, which were able to maintain the scores relatively closer to the control oocytes. Proteolytic activation was achieved in all groups at 6 h of culture. At all other time points PIP2 and PMA groups showed a better response to proteolytic activation. Lysosome density was increased in PIP2-5μM-6h; PIP2-0.1μM, -1μM-12h; PIP2-1μM, -5μM-18h as well as PMA-0.1μM-6h; PMA-1μM, -10μM-12h; PMA-1μM-18h; DOG-50μM-6h and DOG-0.1μM-12h. Protein carbonylation was the lowest in PIP2-0.1 μM groups at 12, 18, and 24 h. This study suggests that proton pump activators PIP2 and PMA was found to have a positive impact on IVM in terms of both morphological scores and proteolytic activation in a time and dose dependant manner.
Collapse
Affiliation(s)
- Filiz Tepekoy
- Department of Histology and Embryology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Central Research Laboratory, Altinbas University, Istanbul, Turkey
- Department of Biomedical and Forensic Science, School of Science, College of Science and Engineering, University of Derby, Derby, UK
| | - Berk Bulut
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Erdal Karaoz
- Liv Hospital, Centre for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey
| |
Collapse
|
2
|
Liu W, Wang K, Lin Y, Wang L, Jin X, Qiu Y, Sun W, Zhang L, Sun Y, Dou X, Luo S, Su Y, Sun Q, Xiang W, Diao F, Li J. VPS34 Governs Oocyte Developmental Competence by Regulating Mito/Autophagy: A Novel Insight into the Significance of RAB7 Activity and Its Subcellular Location. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308823. [PMID: 39287146 PMCID: PMC11538714 DOI: 10.1002/advs.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring HealthWomen's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingJiangsu211166China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthCenter of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhouJiangsu215002China
| | - Yuting Lin
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Reproductive MedicineCangzhou Central HospitalCangzhouHebei061012China
| | - Xin Jin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Center of Reproductive MedicineWuxi Maternity and Child Health Care HospitalNanjing Medical UniversityWuxiJiangsu214200China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Ling Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaowei Dou
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210011China
| | - Shiming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Feiyang Diao
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhou430074China
| |
Collapse
|
3
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Adel N, Abdulghaffar S, Elmahdy M, Nabil M, Ghareeb D, Maghraby H. Autophagy-related gene and protein expressions during blastocyst development. J Assist Reprod Genet 2023; 40:323-331. [PMID: 36576685 PMCID: PMC9935768 DOI: 10.1007/s10815-022-02698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE This study aims to examine the expression of autophagic genes and proteins during blastocyst development and differentiation. METHODS This is a prospective cohort study. Between March 2018 and November 2019, 30 females aged 30.13 ± 4.83 years underwent an intracytoplasmic sperm injection (ICSI) cycle at Madina Fertility Center. ICSI was used to develop and incubate 82 leftover embryos to day 5. Then, the embryos were divided into two groups based on their developmental structure: group D (n = 49) included embryos that developed into blastocysts, whereas group A (n = 33) included arrested embryos. These embryos were used to investigate the autophagic gene and protein expressions. The current study was approved by the Clinical Trial Ethical Committee of the Faculty of Medicine, Alexandria University, following the ethical standards of scientific research (Registration no. 0303721). RESULTS Embryos that developed into blastocysts on day 5 (group D) had significantly higher relative expression of the LC3 gene (1.11 ± 0.52) and beclin-1 gene (1.43 ± 0.34) and beclin-1 protein expression (3.8 ± 0.028) than those that did not develop into blastocysts on day 5 (group A) [0.72 ± 0.18 (P = 0.03), 0.35 ± 0.12 (P = 0.0001), and 3.14 ± 0.05, (P = 0.0001), respectively]. In contrast, mTOR and PIK3C3 protein expression was significantly higher in group A (arrested embryos) than those in group D (developed embryos) (P = 0.007 and P = 0.0001, respectively). Furthermore, the expression of the eIF4E gene was significantly lower in group D embryos (0.32 ± 0.07) than that in group A embryos (4.38 ± 1.16) (P = 0.0001). CONCLUSIONS This work identifies autophagy as a well regulated process required to maintain cell allocation and differentiation during late preimplantation embryo developmental stages.
Collapse
Affiliation(s)
- Nehal Adel
- Madina Fertility Center, Madina Women's Hospital, 5 Ahmed Yehia Street, Smouha, Alexandria, Zezenia, 21563, Egypt.
| | - Shaymaa Abdulghaffar
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21563, Egypt
| | - Mohamed Elmahdy
- Obstetrics and Gynecology Department, Faculty of Medicine, Alexandria University, Alexandria, 21563, Egypt
| | - Mohamed Nabil
- Pharmacology Department, Faculty of Pharmacy, New Valley University, Kharga, 72511, Egypt
| | - Doaa Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21563, Egypt
| | - Hassan Maghraby
- Obstetrics and Gynecology Department, Faculty of Medicine, Alexandria University, Alexandria, 21563, Egypt
| |
Collapse
|
5
|
Lin L, Wu X, Jiang Y, Deng C, Luo X, Han J, Hu J, Cao X. Down-regulated NEDD4L facilitates tumor progression through activating Notch signaling in lung adenocarcinoma. PeerJ 2022; 10:e13402. [PMID: 35646490 PMCID: PMC9138047 DOI: 10.7717/peerj.13402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4-like protein (NEDD4L), an E3 ubiquitin ligase, exerts an important role in diverse biological processes including development, tumorigenesis, and tumor progression. Although the role of NEDD4L in the pathogenesis of lung adenocarcinoma (LUAD) has been described, the mechanism by which NEDD4L promotes LUAD progression remains poorly understood. In the study, the correlation between NEDD4L level and clinical outcome in LUAD patients was analysed using the data from The Cancer Genome Atlas (TCGA) database. NEDD4L expression in LUAD cell lines and tissue samples was assessed through quantitative real-time PCR (qRT-PCR). The biological function of NEDD4L on regulating LUAD cell proliferation was tested with Cell Counting Kit-8 (CCK-8) assay in vitro, and mouse xenograft tumor model in vivo. We found that NEDD4L expression was significantly decreased in LUAD tissues and cell lines. Lower expression of NEDD4L exhibited a significantly poorer overall survival. Functionally, NEDD4L knockdown in H1299 cells accelerated cell growth, whereas NEDD4L overexpression in A549 cells repressed cell proliferation. NEDD4L overexpression also inhibited tumor xenograft growth in vivo. Mechanistically, NEDD4L decreased the protein stability of notch receptor 2 (Notch2) through facilitating its ubiquitination and degradation by ubiquitin-proteasome system. Consequently, NEDD4L negatively regulated Notch signaling activation in LUAD cells, and RO4929097 (a Notch inhibitor) treatment effectively repressed the effect of NEDD4L knockdown on LUAD cell proliferation. Taken together, these results demonstrate that down-regulated NEDD4L facilitates LUAD progression by activating Notch signaling, and NEDD4L may be a promising target to treat LUAD.
Collapse
Affiliation(s)
- Liping Lin
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yuanxue Jiang
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Caijiu Deng
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Jianjun Han
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Jiazhu Hu
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Guangzhou, Guangdong Province, China,Cancer Institute of Panyu, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Xiang D, Jia B, Zhang B, Liang J, Hong Q, Wei H, Wu G. Astaxanthin Supplementation Improves the Subsequent Developmental Competence of Vitrified Porcine Zygotes. Front Vet Sci 2022; 9:871289. [PMID: 35433903 PMCID: PMC9011099 DOI: 10.3389/fvets.2022.871289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopreservation of embryos has been confirmed to cause oxidative stress as a factor responsible for impaired developmental competence. Currently, astaxanthin (Ax) raises considerable interest as a strong exogenous antioxidant and for its potential in reproductive biology. The present study aimed to investigate the beneficial effects of Ax supplementation during in vitro culture of vitrified porcine zygotes and the possible underlying mechanisms. First, the parthenogenetic zygotes were submitted to vitrification and then cultured in the medium added with various concentrations of Ax (0, 0.5, 1.5, and 2.5 μM). Supplementation of 1.5 μM Ax achieved the highest blastocyst yield and was considered as the optimal concentration. This concentration also improved the blastocyst formation rate of vitrified cloned zygotes. Moreover, the vitrified parthenogenetic zygotes cultured with Ax exhibited significantly increased mRNA expression of CDX2, SOD2, and GPX4 in their blastocysts. We further analyzed oxidative stress, mitochondrial and lysosomal function in the 4-cell embryos and blastocysts derived from parthenogenetic zygotes. For the 4-cell embryos, vitrification disturbed the levels of reactive oxygen species (ROS) and glutathione (GSH), and the activities of mitochondria, lysosome and cathepsin B, and Ax supplementation could fully or partially rescue these values. The blastocysts obtained from vitrified zygotes showed significantly reduced ATP content and elevated cathepsin B activity, which also was recovered by Ax supplementation. There were no significant differences in other parameters mentioned above for the resultant blastocysts. Furthermore, the addition of Ax significantly enhanced mitochondrial activity and reduced lysosomal activity in resultant blastocysts. In conclusion, these findings revealed that Ax supplementation during the culture period improved subsequent embryonic development and quality of porcine zygotes after vitrification and might be used to ameliorate the recovery culture condition for vitrified embryos.
Collapse
Affiliation(s)
- Decai Xiang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Baoyu Jia
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Zhang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiachong Liang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Hongjiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guoquan Wu
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guoquan Wu
| |
Collapse
|
7
|
Soto-Moreno EJ, Balboula A, Spinka C, Rivera RM. Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation. PLoS One 2021; 16:e0260123. [PMID: 34882691 PMCID: PMC8659681 DOI: 10.1371/journal.pone.0260123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.
Collapse
Affiliation(s)
- Edgar Joel Soto-Moreno
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Christine Spinka
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States of America
| | - Rocío Melissa Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
8
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
9
|
Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development. Int J Mol Sci 2021; 22:ijms22126313. [PMID: 34204653 PMCID: PMC8231133 DOI: 10.3390/ijms22126313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.
Collapse
|
10
|
Characterization of Glutathione Peroxidase 4 in Rat Oocytes, Preimplantation Embryos, and Selected Maternal Tissues during Early Development and Implantation. Int J Mol Sci 2021; 22:ijms22105174. [PMID: 34068371 PMCID: PMC8153280 DOI: 10.3390/ijms22105174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to describe glutathione peroxidase 4 (GPx4) in rat oocytes, preimplantation embryos, and female genital organs. After copulation, Sprague Dawley female rats were euthanized with anesthetic on the first (D1), third (D3), and fifth days of pregnancy (D5). Ovaries, oviducts, and uterine horns were removed, and oocytes and preimplantation embryos were obtained. Immunohistochemical, immunofluorescent, and Western blot methods were employed. Using immunofluorescence, we detected GPx4 in both the oocytes and preimplantation embryos. Whereas in the oocytes, GPx4 was homogeneously diffused, in the blastomeres, granules were formed, and in the blastocysts, even clusters were present mainly around the cell nuclei. Employing immunohistochemistry, we detected GPx4 inside the ovary in the corpus luteum, stroma, follicles, and blood vessels. In the oviduct, the enzyme was present in the epithelium, stroma, blood vessels, and smooth muscles. In the uterus, GPx4 was found in the endometrium, myometrium, blood vessels, and stroma. Moreover, we observed GPx4 positive granules in the uterine gland epithelium on D1 and D3 and cytoplasm of fibroblasts forming in the decidua on D5. Western blot showed the highest GPx4 levels in the uterus and the lowest levels in the ovary. Our results show that the GPx4 is necessary as early as in the preimplantation development of a new individual because we detected it in an unfertilized oocyte in a blastocyst and not only after implantation, as was previously thought.
Collapse
|
11
|
GPx8 Expression in Rat Oocytes, Embryos, and Female Genital Organs During Preimplantation Period of Pregnancy. Int J Mol Sci 2020; 21:ijms21176313. [PMID: 32878231 PMCID: PMC7503774 DOI: 10.3390/ijms21176313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to detect the presence of glutathione peroxidase 8 (GPx8) in rat during preimplantation period of pregnancy. Females were killed on first (D1), third (D3), and fifth (D5) day of pregnancy. The presence of GPx8 in embryos was detected under the confocal microscope, the presence of GPx8 in genital organs was confirmed immunohistochemically, and the amount of GPx8 was determined using densitometry. We found that GPx8 is dispersed in the cytoplasm of oocytes, while after fertilization, it is concentrated in granules. From 4-cell stage till blastocyst, GPx8 reaction was found in the perinuclear region. In the ovary, GPx8 was seen in granulosa-lutein cells, in plasma of blood vessels, and inside Graafian follicles. In oviduct, GPx8 was detected in the plasma and in the extracellular matrix (ECM). Moreover, epithelial cells of isthmus were positive. In uterus, GPx8 was observed in the uterine glands, in the plasma, and in ECM. On D5, the enzyme disappeared from the uterine glands and appeared in fibroblasts. Densitometry revealed that the highest amount of GPx8 was on D1 and subsequently declined. To our knowledge, this is the first paper describing GPx8 presence in the oocytes, preimplantation embryos, and female genital organs in mammals. Our results improve the understanding of antioxidant enzymes presence during pregnancy in defense against oxidative stress, which is considered to be one of the main causes of infertility.
Collapse
|
12
|
Latorraca LB, Feitosa WB, Mariano C, Moura MT, Fontes PK, Nogueira MFG, Paula-Lopes FF. Autophagy is a pro-survival adaptive response to heat shock in bovine cumulus-oocyte complexes. Sci Rep 2020; 10:13711. [PMID: 32792582 PMCID: PMC7426922 DOI: 10.1038/s41598-020-69939-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a physiological mechanism that can be activated under stress conditions. However, the role of autophagy during oocyte maturation has been poorly investigated. Therefore, this study characterized the role of autophagy on developmental competence and gene expression of bovine oocytes exposed to heat shock (HS). Cumulus-oocyte-complexes (COCs) were matured at Control (38.5 °C) and HS (41 °C) temperatures in the presence of 0 and 10 mM 3-methyladenine (3MA; autophagy inhibitor). Western blotting analysis revealed that HS increased autophagy marker LC3-II/LC3-I ratio in oocytes. However, there was no effect of temperature for oocytes matured with 3MA. On cumulus cells, 3MA reduced LC3-II/LC3-I ratio regardless of temperature. Inhibition of autophagy during IVM of heat-shocked oocytes (3MA-41 °C) reduced cleavage and blastocyst rates compared to standard in vitro matured heat-shocked oocytes (IVM-41 °C). Therefore, the magnitude of HS detrimental effects was greater in the presence of autophagy inhibitor. Oocyte maturation under 3MA-41 °C reduced mRNA abundance for genes related to energy metabolism (MTIF3), heat shock response (HSF1), and oocyte maturation (HAS2 and GREM1). In conclusion, autophagy is a stress response induced on heat shocked oocytes. Inhibition of autophagy modulated key functional processes rendering the oocyte more susceptible to the deleterious effects of heat shock.
Collapse
Affiliation(s)
- Lais B Latorraca
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
| | - Weber B Feitosa
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Camila Mariano
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Marcelo T Moura
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Patrícia K Fontes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
- Department of Biological Sciences, School of Sciences and Languages, UNESP, Assis, São Paulo, Brazil
| | - Fabíola F Paula-Lopes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil.
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil.
| |
Collapse
|
13
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
14
|
El-Gowily AH, Abosheasha MA. Differential mechanisms of autophagy in cancer stem cells: Emphasizing gastrointestinal cancers. Cell Biochem Funct 2020; 39:162-173. [PMID: 32468609 DOI: 10.1002/cbf.3552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) cancers are one of the most common forms of malignancies and still are the most important cause of cancer-related mortality worldwide. Autophagy is a conserved catabolic pathway involving lysosomal degradation and recycling of whole cellular components, which is essential for cellular homeostasis. For instance, it acts as a pivotal intracellular quality control and repair mechanism but also implicated in cell reformation during cell differentiation and development. Indeed, GI cancer stem cells (CSCs) are thought to be responsible for tumour initiation, traditional therapies resistance, metastasis and tumour recurrence. Molecular mechanisms of autophagy in normal vs CSCs gain great interest worldwide. Here, we shed light on the role of autophagy in normal stem cells differentiation for embryonic progression and its role in maintaining the activity and self-renewal capacity of CSCs which offer novel viewpoints on promising cancer therapeutic strategies based on the differential roles of autophagy in CSCs.
Collapse
Affiliation(s)
- Afnan H El-Gowily
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.,Organ and Cell physiology Department, Juntendo University, Tokyo, Japan
| | - Mohammed A Abosheasha
- Cellular Genetics Laboratory, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
15
|
Zhang L, Yu M, Xu H, Wei X, Liu Y, Huang C, Chen H, Guo Z. RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos. Int J Biol Macromol 2020; 150:492-500. [PMID: 32035150 DOI: 10.1016/j.ijbiomac.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has potential applications in agriculture and biomedicine, but the efficiency of cloning is still low. In this study, the transcriptional profiles in cloned and fertilized embryos were measured and compared by RNA sequencing. The 2-cell embryos were detected to identify the earliest transcriptional differences between embryos derived through IVF and SCNT. As a result, 364 genes showed decreased expression in cloned 2-cell embryos and were enriched in "intracellular protein transport" and "ubiquitin mediated proteolysis". In blastocysts, 593 genes showed decreased expression in cloned blastocysts and were enriched in "RNA binding", "nucleotide binding", "embryo development", and "adherens junction". We identified 14 development related genes that were not activated in the cloned embryos. Then, 68 and 245 long non-coding RNAs were recognized abnormally expressed in cloned 2-cell embryos and cloned blastocysts, respectively. Furthermore, we found that incomplete RNA-editing occurred in cloned embryos and might be caused by decreased ADAR expression. In conclusion, our study revealed the abnormal transcripts and deficient RNA-editing sites in cloned embryos and provided new data for further mechanistic studies of somatic nuclear reprogramming.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Yingxiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Huanhuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
16
|
Transcriptome Analyses Reveal Effects of Vitamin C-Treated Donor Cells on Cloned Bovine Embryo Development. Int J Mol Sci 2019; 20:ijms20112628. [PMID: 31142052 PMCID: PMC6600264 DOI: 10.3390/ijms20112628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a very powerful technique used to produce genetically identical or modified animals. However, the cloning efficiency in mammals remains low. In this study, we aimed to explore the effects of vitamin C (Vc)-treated donor cells on cloned embryos. As a result, Vc treatment relaxed the chromatin of donor cells and improved cloned embryo development. RNA sequencing was adopted to investigate the changes in the transcriptional profiles in early embryos. We found that Vc treatment increased the expression of genes involved in the cell–substrate adherens junction. Gene ontology (GO) analysis revealed that Vc treatment facilitated the activation of autophagy, which was deficient in cloned two-cell embryos. Rapamycin, an effective autophagy activator, increased the formation of cloned blastocysts (36.0% vs. 25.6%, p < 0.05). Abnormal expression of some coding genes and long non-coding RNAs in cloned embryos was restored by Vc treatment, including the zinc-finger protein 641 (ZNF641). ZNF641 compensation by means of mRNA microinjection improved the developmental potential of cloned embryos. Moreover, Vc treatment rescued some deficient RNA-editing sites in cloned two-cell embryos. Collectively, Vc-treated donor cells improved the development of the cloned embryo by affecting embryonic transcription. This study provided useful resources for future work to promote the reprogramming process in SCNT embryos.
Collapse
|
17
|
Hwang H, Jin Z, Krishnamurthy VV, Saha A, Klein PS, Garcia B, Mei W, King ML, Zhang K, Yang J. Novel functions of the ubiquitin-independent proteasome system in regulating Xenopus germline development. Development 2019; 146:dev172700. [PMID: 30910828 PMCID: PMC6503979 DOI: 10.1242/dev.172700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/20/2019] [Indexed: 01/22/2023]
Abstract
In most species, early germline development occurs in the absence of transcription with germline determinants subject to complex translational and post-translational regulations. Here, we report for the first time that early germline development is influenced by dynamic regulation of the proteasome system, previously thought to be ubiquitously expressed and to serve 'housekeeping' roles in controlling protein homeostasis. We show that proteasomes are present in a gradient with the highest levels in the animal hemisphere and extending into the vegetal hemisphere of Xenopus oocytes. This distribution changes dramatically during the oocyte-to-embryo transition, with proteasomes becoming enriched in and restricted to the animal hemisphere and therefore separated from vegetally localized germline determinants. We identify Dead-end1 (Dnd1), a master regulator of vertebrate germline development, as a novel substrate of the ubiquitin-independent proteasomes. In the oocyte, ubiquitin-independent proteasomal degradation acts together with translational repression to prevent premature accumulation of Dnd1 protein. In the embryo, artificially increasing ubiquitin-independent proteasomal degradation in the vegetal pole interferes with germline development. Our work thus reveals novel inhibitory functions and spatial regulation of the ubiquitin-independent proteasome during vertebrate germline development.
Collapse
Affiliation(s)
- Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | - Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
| | - Vishnu Vardhan Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews, 314B Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Anumita Saha
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Peter S Klein
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews, 314B Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| |
Collapse
|