1
|
Verma P, Pal H, Mohanty B. Neurotensin receptor-1 antagonist SR48692 modulation of high-fat diet induced reproductive impairment in male mice. Reprod Toxicol 2024; 123:108498. [PMID: 37952698 DOI: 10.1016/j.reprotox.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Neurotensin (NTS), a tridecapeptide of the gastrointestinal tract, has been implicated in the facilitation of lipid absorption on ingestion of a high-fat diet (HFD) especially via NTS receptors, NTSR1, NTSR2, and NTSR3, to cause lipid metabolic dysregulation and imbalance of the oxidant-antioxidant system. Oxidative stress induced a negative impact on reproductive function, affecting the reproductive organ and related reproductive hormones. The present study elucidated the efficacy of NTSR1 antagonist SR48692 in the modulation of HFD-induced reproductive impairment in male mice. Swiss albino mice (male, 23 ± 2 g) were maintained (6/group) for eight weeks; Group-I chow diet (CD), Group-II HFD, Group-III (HFD+SR48692L), Group-IV (HFD+SR48692H), Group-V (CD+SR48692L) and Group-VI (CD+SR48692H). SR48692 low (100 µg/kg b.w./SR48692L) and high-dose (400 µg/kg b.w./SR48692H) were given intraperitoneally for the last four weeks. Treatment with low-dose (SR48692L) to HFD-fed mice showed some efficacy in mitigating lipid dysregulation, oxidative stress, and reproductive impairment as evidenced by decreased triglycerides, total cholesterol, low-density lipoprotein cholesterol, leptin, and increased high-density lipoprotein cholesterol, increased antioxidant defense enzymes, reduction of histopathological scores in testis and increase in plasma level of LH, FSH and testosterone compared to that of HFD, but not up to CD. With the high-dose of antagonist (SR48692H) showed more adverse effects even from that of HFD. Treatment of both doses of SR48692 to CD-fed mice these effects become more extended. Less effectiveness of NTSR1 antagonist with the doses tried (low and high) in normalizing the lipid dysregulation and reproductive impairments might be due to the persistence of NTSR2/NTSR3-mediated lipid absorption.
Collapse
Affiliation(s)
- Pradeep Verma
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - Himanshu Pal
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
2
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
3
|
Hoorn QA, Rabaglino MB, Maia TS, Sagheer M, Fuego D, Jiang Z, Hansen PJ. Transcriptomic profiling of the bovine endosalpinx and endometrium to identify putative embryokines. Physiol Genomics 2023; 55:557-564. [PMID: 37720990 PMCID: PMC11918271 DOI: 10.1152/physiolgenomics.00064.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
The objectives of the present study were to characterize the expression of genes encoding for cell signaling ligands in the bovine endosalpinx and endometrium and analyze spatial changes in gene expression. RNA sequencing was performed for the endosalpinx from the ampulla of the oviduct and endometrium from the upper and middle uterine horn and uterine body at day 2 after ovulation from ipsilateral and contralateral sides relative to the ovulatory ovary. Of the 17,827 unique mRNA transcripts mapped, 2,072 were affected by cranial-caudal position in the reproductive tract and 818 were affected by side (false discovery rate < 0.05). There were 334 genes encoding for cell signaling ligands, with 128 genes having greater than two transcripts per million on average. A total of 81 cell signaling ligand genes were affected by position and 24 were affected by side. A data set of the transcriptome of two to four cell embryos was used to identify cell signaling ligand genes that were highly expressed in the ampulla for which there was high expression of the receptor in the embryo. The most expressed ligand-receptor pairs were PSAP/SORT1, MIF/CXCR4, GPI/AMFR, and KITLG/KIT. These cell signaling ligands, as well as others whose gene is expressed in the endosalpinx and endometrium, may influence early embryonic development. Spatial changes throughout the reproductive tract highlight the distinctive expression profile of the oviduct versus the endometrium, including a set of the identified genes encoding for cell signaling ligands, and highlight the local influence of the ovary. The results also show the continuity of expression for large numbers of genes in the reproductive tract.NEW & NOTEWORTHY Examination of the transcriptome of the endosalpinx and endometrium revealed the degree to which gene expression in the reproductive tract varies spatially. The expression of genes encoding cell signaling molecules that could potentially regulate embryonic development was also identified.
Collapse
Affiliation(s)
- Quinn A Hoorn
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | | | - Tatiane S Maia
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Masroor Sagheer
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Dailin Fuego
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Zongliang Jiang
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
4
|
Yao F, Hao J, Wang Z, Chu M, Zhang J, Xi G, Zhang Z, An L, Tian J. WNT Co-Receptor LRP6 Is Critical for Zygotic Genome Activation and Embryonic Developmental Potential by Interacting with Oviductal Paracrine Ligand WNT2. Genes (Basel) 2023; 14:genes14040891. [PMID: 37107647 PMCID: PMC10138000 DOI: 10.3390/genes14040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Mammalian preimplantation development depends on the interaction between embryonic autocrine and maternal paracrine signaling. Despite the robust independence of preimplantation embryos, oviductal factors are thought to be critical to pregnancy success. However, how oviductal factors regulate embryonic development and the underlying mechanism remain unknown. In the present study, focusing on WNT signaling, which has been reported to be essential for developmental reprogramming after fertilization, we analyzed the receptor-ligand repertoire of preimplantation embryonic WNT signaling, and identified that the WNT co-receptor LRP6 is necessary for early cleavage and has a prolonged effect on preimplantation development. LRP6 inhibition significantly impeded zygotic genome activation and disrupted relevant epigenetic reprogramming. Focusing on the potential oviductal WNT ligands, we found WNT2 as the candidate interacting with embryonic LRP6. More importantly, we found that WNT2 supplementation in culture medium significantly promoted zygotic genome activation (ZGA) and improved blastocyst formation and quality following in vitro fertilization (IVF). In addition, WNT2 supplementation significantly improved implantation rate and pregnancy outcomes following embryo transfer. Collectively, our findings not only provide novel insight into how maternal factors regulate preimplantation development through maternal-embryonic communication, but they also propose a promising strategy for improving current IVF systems.
Collapse
Affiliation(s)
- Fusheng Yao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jia Hao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhaochen Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Meiqiang Chu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jingyu Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Guangyin Xi
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhenni Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
5
|
Neurotensin and Its Involvement in Reproductive Functions: An Exhaustive Review of the Literature. Int J Mol Sci 2023; 24:ijms24054594. [PMID: 36902025 PMCID: PMC10002593 DOI: 10.3390/ijms24054594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Neurotensin (NTS) is a peptide discovered in 1973, which has been studied in many fields and mainly in oncology for its action in tumor growth and proliferation. In this review of the literature, we wanted to focus on its involvement in reproductive functions. NTS participates in an autocrine manner in the mechanisms of ovulation via NTS receptor 3 (NTSR3), present in granulosa cells. Spermatozoa express only its receptors, whereas in the female reproductive system (endometrial and tube epithelia and granulosa cells), we find both NTS secretion and the expression of its receptors. It consistently enhances the acrosome reaction of spermatozoa in mammals in a paracrine manner via its interaction with NTSR1 and NTSR2. Furthermore, previous results on embryonic quality and development are discordant. NTS appears to be involved in the key stages of fertilization and could improve the results of in vitro fertilization, especially through its effect on the acrosomal reaction.
Collapse
|
6
|
Denizot AL, L'Hostis A, Sallem A, Favier S, Pierre R, Do Cruzeiro M, Guilbert T, Burlet P, Lapierre JM, Robain M, Le Lorc'H M, Vicaut E, Chatzovoulou K, Steffann J, Romana S, Méhats C, Santulli P, Patrat C, Vaiman D, Ziyyat A, Wolf JP. Cyclic fertilin-derived peptide stimulates in vitro human embryo development. F&S SCIENCE 2022; 3:49-63. [PMID: 35559995 DOI: 10.1016/j.xfss.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study the cyclic fertilin peptide effects on preimplantation human embryogenesis. Cyclic fertilin peptide reproduces the structure of the binding site of the sperm Fertilin β (also named A Disintegrin and Metalloprotease 2: ADAM2) disintegrin domain. It binds to the oocyte membrane and increases sperm-oocyte fusion index in human and fertilization rate in mouse, providing healthy pups. It also improves human oocyte maturation and chromosome segregation in meiosis I and binds to human embryo blastomeres, suggesting that it has a membrane receptor. DESIGN Thawed human embryos at the 3 to 4 cells stage were randomly included in a dose-response study with cyclic fertilin peptide. Inner cell mass (ICM), trophectoderm (TE), and total cell numbers were evaluated in top- and good-quality blastocysts. SETTING The study was performed in an academic hospital and research laboratory. PATIENT(S) Human embryos donated for research. This project was approved by the French "Agence de la Biomédecine." INTERVENTION(S) Immunofluorescence and tissue-specific gene expression analysis, using Clariom D microarrays, were performed to study its mechanism of action. MAIN OUTCOME MEASURE(S) Cyclic fertilin peptide improves blastocyst formation by almost 20%, the concentration of 1 μM being the lowest most efficient concentration. It significantly increases twice the TE cell number, without modifying the ICM. It increases the in vitro hatching rate from 14% to 45%. RESULT(S) Cyclic fertilin peptide stimulates TE growth. In the ICM, it induces transcriptional activation of intracellular protein and vesicle-mediated transport. CONCLUSION(S) Cyclic fertilin peptide dramatically improves human embryo development potential. It could be used to supplement culture medium and improve the in vitro human embryo development. Starting supplementation immediately after fertilization, instead of day 2, could significantly upgrade assisted reproductive technology outcome.
Collapse
Affiliation(s)
- Anne-Lyse Denizot
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France; Department "Histologie-Embryologie-Biologie de la Reproduction," Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Audrey L'Hostis
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France; Department "Histologie-Embryologie-Biologie de la Reproduction," Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Amira Sallem
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France; Department "Histologie-Embryologie-Biologie de la Reproduction," Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Laboratoire d'Histologie-Embryologie et Cytogénétique (LR 18 ES 40), Faculté de Médecine de Monastir, Tunisie
| | - Sophie Favier
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Rémi Pierre
- Homologous Recombination, Embryo Transfer and Cryopreservation Facility, Cochin Institute, University of Paris, Paris, France
| | - Marcio Do Cruzeiro
- Homologous Recombination, Embryo Transfer and Cryopreservation Facility, Cochin Institute, University of Paris, Paris, France
| | - Thomas Guilbert
- IMAG'IC facility, Cochin Institute, Inserm U1016, CNRS UMR 8104, University of Paris UMR-S1016, Paris, France
| | - Philippe Burlet
- Department "Génétique Moléculaire," Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Michel Lapierre
- Department of "Histologie - Embryologie-Cytogénétique," Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Marc Le Lorc'H
- Department of "Histologie - Embryologie-Cytogénétique," Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Eric Vicaut
- Unité de Recherche Clinique, ACTION Study Group, Hôpital Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Kalliopi Chatzovoulou
- Department "Génétique Moléculaire," Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Institut Imagine, Université de Paris, Laboratoire des Maladies Génétiques Mitochondriales. Inserm UMR1163, Paris, France
| | - Julie Steffann
- Department "Génétique Moléculaire," Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Institut Imagine, Université de Paris, Laboratoire des Maladies Génétiques Mitochondriales. Inserm UMR1163, Paris, France
| | - Serge Romana
- Department of "Histologie - Embryologie-Cytogénétique," Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Institut Imagine, Université de Paris, Laboratoire d'Embryologie et de Génétique des Malformations Congénitales, Inserm UMR1163, Paris, France
| | - Céline Méhats
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Piétro Santulli
- Service de Gynécologie-Obstétrique II et de Médecine de la Reproduction, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Catherine Patrat
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France; Department "Histologie-Embryologie-Biologie de la Reproduction," Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Daniel Vaiman
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Ahmed Ziyyat
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France; Department "Histologie-Embryologie-Biologie de la Reproduction," Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean Philippe Wolf
- Team "From Gametes To Birth," Cochin Institute, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France; Department "Histologie-Embryologie-Biologie de la Reproduction," Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|