1
|
Zhang C, Li W, Wu Y, Li S, Hua B, Sun H. Chloroplast Functionality at the Interface of Growth, Defense, and Genetic Innovation: A Multi-Omics and Technological Perspective. PLANTS (BASEL, SWITZERLAND) 2025; 14:978. [PMID: 40265935 PMCID: PMC11944437 DOI: 10.3390/plants14060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Chloroplasts are important in plant growth, development, and defense mechanisms, making them central to addressing global agricultural challenges. This review explores the multi-faceted contributions of chloroplasts, including photosynthesis, hormone biosynthesis, and stress signaling, which orchestrate the trade-off between growth and defense. Advancements in chloroplast genomics, transcription, translation, and proteomics have deepened our understanding of their regulatory functions and interactions with nuclear-encoded proteins. Case studies have demonstrated the potential of chloroplast-targeted strategies, such as the expression of elongation factor EF-2 for heat tolerance and flavodiiron proteins for drought resilience, to enhance crop productivity and stress adaptation. Future research directions should focus on the need for integrating omics data with nanotechnology and synthetic biology to develop sustainable and resilient agricultural systems. This review uniquely integrates recent advancements in chloroplast genomics, transcriptional regulation, and synthetic biology to present a holistic perspective on optimizing plant growth and stress tolerance. We emphasize the role of chloroplast-driven trade-off in balancing growth and immunity, leveraging omics technologies and emerging biotechnological innovations. This comprehensive approach offers new insights into sustainable agricultural practices, making it a significant contribution to the field.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Wenting Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Yahan Wu
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Shengli Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Bao Hua
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Haizhou Sun
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China; (C.Z.); (W.L.); (Y.W.); (S.L.); (B.H.)
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| |
Collapse
|
2
|
Nesiyama TNG, Sangalli JR, De Bem THC, Recchia K, Martins SMMK, de Andrade AFC, Ferst JG, Almeida GHDR, Marques MG, Dória RGS, Carregaro AB, Feliciano MAR, Miglino MA, Bressan FF, Perecin F, da Silveira JC, Smith LC, Bordignon V, Meirelles FV. Swine clones: potential application for animal production and animal models. Anim Reprod 2025; 22:e20240037. [PMID: 39867300 PMCID: PMC11758785 DOI: 10.1590/1984-3143-ar2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/10/2024] [Indexed: 01/28/2025] Open
Abstract
Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals. Indeed, recombinant DNA technologies have evolved considerably in recent years, with homologous recombination and gene editing technologies becoming more efficient and capable of recombining both alleles in a single cell. The selection of appropriate cells and their use as nuclear donors for SCNT is the most common method for generating edited and genetically modified animals for commercial and research purposes. This article reviews current applications of swine cloning and shares our personal experiences with the procedure in this species.
Collapse
Affiliation(s)
| | - Juliano Rodrigues Sangalli
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Tiago Henrique Camara De Bem
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Kaiana Recchia
- Faculdade de Medicina Veterinária e Zootecnia – FMVZ, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | | | | | - Juliana Germano Ferst
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | | | | | - Renata Gebara Sampaio Dória
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Adriano Bonfim Carregaro
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | | | - Maria Angélica Miglino
- Faculdade de Medicina Veterinária e Zootecnia – FMVZ, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Fabiana Fernandes Bressan
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Felipe Perecin
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Lawrence Charles Smith
- Faculté de Médecine Vétérinaire – FMV, Université de Montréal – UdeM, Montréal, Quebec, Canada
| | - Vilceu Bordignon
- McGill Faculty of Agricultural and Environmental Science – FAES, McGill University, Montréal, Quebec, Canada
| | - Flávio Vieira Meirelles
- Faculdade de Zootecnia e Engenharia de Alimentos – FZEA, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
3
|
Lin Q, Takebayashi K, Torigoe N, Liu B, Namula Z, Hirata M, Tanihara F, Nagahara M, Otoi T. Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system. J Reprod Dev 2024; 70:356-361. [PMID: 39218670 PMCID: PMC11658923 DOI: 10.1262/jrd.2024-054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneously double-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.
Collapse
Affiliation(s)
- Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Bin Liu
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Zhao Namula
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Fuminori Tanihara
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| |
Collapse
|
4
|
Aksoy MO, Bilinska A, Stachowiak M, Flisikowska T, Szczerbal I. Deciphering the Role of the SREBF1 Gene in the Transcriptional Regulation of Porcine Adipogenesis Using CRISPR/Cas9 Editing. Int J Mol Sci 2024; 25:12677. [PMID: 39684387 DOI: 10.3390/ijms252312677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP1) is an important transcription factor that controls lipid metabolism and adipogenesis. Two isoforms, SREBP1a and SREBP1c, are generated by alternative splicing of the first exon of the SREBF1 gene. The porcine SREBF1 gene has mainly been studied for its role in lipid metabolism in adipose tissues, but little is known about its involvement, and the role of its two isoforms, in adipogenesis. The aim of the present study was to introduce a deletion in the 5'-regulatory region of the SREBF1c gene, considered crucial for adipogenesis, using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. This approach allows for the evaluation of how inhibiting SREBF1c transcription affects the expression of other genes essential for adipocyte differentiation, particularly PPARG, CEBPA, CEBPB, CEBPD, GATA2, and FABP4. It was observed that disrupting the SREBF1c isoform had no effect on the GATA2 gene but did result in a decrease in the expression of the CEBPA and CEBPD genes, an increase in the expression of CEBPB, and an inhibition in the expression of the PPARG and FABP4 genes. These changes in gene expression blocked adipogenesis, as could be seen by the failure of lipid droplets to accumulate. Our results provide evidence highlighting the pivotal role of the SREBP1c isoform in the regulation of porcine adipogenesis.
Collapse
Affiliation(s)
- Mehmet Onur Aksoy
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Adrianna Bilinska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, School of Life Sciences, Technical University of Munich (TUM), D-85354 Freising, Germany
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| |
Collapse
|
5
|
Lin Q, Torigoe N, Liu B, Nakayama Y, Nakai A, Namula Z, Nagahara M, Tanihara F, Hirata M, Otoi T. Efficient gene editing of pig embryos by combining electroporation and lipofection. Vet World 2024; 17:2701-2707. [PMID: 39829671 PMCID: PMC11736372 DOI: 10.14202/vetworld.2024.2701-2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aim Mosaicism, which is characterized by the presence of wild-type and more than one mutant allele, poses a serious problem in zygotic gene modification through the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 system. Therefore, we used pig embryos to compare the gene editing efficiencies achieved by combining electroporation and lipofection using different aminopeptidase N (APN)-targeting guide RNA (gRNA) sequences. Materials and Methods Six gRNAs (gRNA1-6) with different target sequences were designed to target APN. Zona pellucida (ZP)-intact zygotes collected 10 h after the start of in vitro fertilization (IVF) were electroporated with each gRNA to compare their gene editing efficiency. The gRNA sequences that achieved the lowest and highest mutation rates (gRNA4 and gRNA6, respectively) were selected for additional lipofection to assess gene editing efficiency following combined treatment. As ZP removal is essential for lipofection, ZP-free zygotes were electroporated with gRNA4 or gRNA6 10 h after IVF initiation, followed by lipofection with the same gRNAs 24 or 29 h after IVF initiation. The electroporated ZP-intact and ZP-free zygotes were used as controls. Results gRNA4 and gRNA6 exhibited the lowest and highest mutation rates, respectively. gRNA4-targeted ZP-free embryos subjected to additional lipofection 29 h after IVF initiation exhibited significantly higher total and biallelic mutation rates than ZP-intact embryos that received only electroporation. Additional lipofection of gRNA6-targeted embryos had no obvious effect on mutation rates. Conclusion Electroporation combined with lipofection using gRNAs with low mutation rates may improve gene editing efficiency in pig embryos. However, the effects may vary based on the timing of gene editing.
Collapse
Affiliation(s)
- Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Bin Liu
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yuichiro Nakayama
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Aya Nakai
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Zhao Namula
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Department of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Ju BH, Kim YJ, Park YB, Kim BH, Kim MK. Evaluation of conical 9 well dish on bovine oocyte maturation and subsequent embryonic development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:936-948. [PMID: 39398310 PMCID: PMC11466740 DOI: 10.5187/jast.2024.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
The Conical 9 well dish (C9 well dish) is characterized by a decreasing cross-sectional area towards the base. This design was hypothesized to enhance embryonic development by emulating the in vivo physical environment through density modulation. Comparative analyses revealed no significant difference in nuclear maturation rates between the C9 well dish and the 5-well dish. Reactive oxygen species (ROS) generation was lower in the C9 well dish compared to the 5-well dish; however, this difference was not statistically significant. On the second day of in vitro culture, the cleavage rate in the C9 well dish was 4.66% higher, although not statistically significant, and the rates of blastocyst development were similar across both dishes. No significant differences were observed in the intracellular levels of glutathione (GSH) and ROS, as well as in the total cell number within the blastocysts between the dish types. The expression of mitogen-related factors, TGFα and IGF-1, in the blastocysts was consistent between the dishes. However, PDGFβ expression was significantly lower in the C9 well dish compared to the 35 mm petri dish. Similarly, the expression of the apoptosis factor Bax/Bcl2l2 showed no significant differences between the two dishes. Despite the marked difference in PDGFβ expression, its impact on blastocyst formation appeared negligible. The study also confirmed the feasibility of culturing a small number of oocytes per donor, collected via Ovum Pick-Up (OPU), with reduced volumes of culture medium and mineral oil, thus offering economic advantages. In conclusion, the present study indicates that the C9 well dish is effective for in vitro development of a small quantity of oocytes and embryos, presenting it as a viable alternative to traditional cell culture dishes.
Collapse
Affiliation(s)
- Byung Hyun Ju
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - You Jin Kim
- Department of Obstetrics &
Gynecology, Chungnam National University Hospital, Daejeon
34134, Korea
| | - Youn Bae Park
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - Byeong Ho Kim
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| |
Collapse
|
7
|
Sun Q, Song SY, Ma J, Li D, Wang Y, Yang Z, Wang Y. Cutting edge of genetically modified pigs targeting complement activation for xenotransplantation. Front Immunol 2024; 15:1383936. [PMID: 38638432 PMCID: PMC11024274 DOI: 10.3389/fimmu.2024.1383936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In the quest to address the critical shortage of donor organs for transplantation, xenotransplantation stands out as a promising solution, offering a more abundant supply of donor organs. Yet, its widespread clinical adoption remains hindered by significant challenges, chief among them being immunological rejection. Central to this issue is the role of the complement system, an essential component of innate immunity that frequently triggers acute and chronic rejection through hyperacute immune responses. Such responses can rapidly lead to transplant embolism, compromising the function of the transplanted organ and ultimately causing graft failure. This review delves into three key areas of xenotransplantation research. It begins by examining the mechanisms through which xenotransplantation activates both the classical and alternative complement pathways. It then assesses the current landscape of xenotransplantation from donor pigs, with a particular emphasis on the innovative strides made in genetically engineering pigs to evade complement system activation. These modifications are critical in mitigating the discordance between pig endogenous retroviruses and human immune molecules. Additionally, the review discusses pharmacological interventions designed to support transplantation. By exploring the intricate relationship between the complement system and xenotransplantation, this retrospective analysis not only underscores the scientific and clinical importance of this field but also sheds light on the potential pathways to overcoming one of the major barriers to the success of xenografts. As such, the insights offered here hold significant promise for advancing xenotransplantation from a research concept to a viable clinical reality.
Collapse
Affiliation(s)
- Qin Sun
- Department of Endocrinology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jiabao Ma
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Li
- Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengteng Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Guo X, Liu C, Zhao Y, Jiang C, Jin J, Liu Z, Mu Y. CRISPR Ribonucleoprotein-Mediated Precise Editing of Multiple Genes in Porcine Fibroblasts. Animals (Basel) 2024; 14:650. [PMID: 38396618 PMCID: PMC10886166 DOI: 10.3390/ani14040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The multi-gene editing porcine cell model can analyze the genetic mechanisms of multiple genes, which is beneficial for accelerating genetic breeding. However, there has been a lack of an effective strategy to simultaneously perform precise multi-gene editing in porcine cells. In this study, we aimed to improve the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells. CRISPR RNP, including Cas9 protein, sgRNA, and ssODN, was used to generate precise nucleotide substitutions by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by PCR for each target site. To enhance HDR efficacy, small-molecule M3814 and phosphorothioate-modified ssODN were employed. All target DNA samples were sequenced and analyzed, and the efficiencies of different combinations of the CRISPR RNP system in target sites were compared. The results showed that when 2 μM M3814, a small molecule which inhibits NHEJ-mediated repair by blocking DNA-PKs activity, was used, there was no toxicity to PFFs. The CRISPR RNP-mediated HDR efficiency increased 3.62-fold. The combination of CRISPR RNP with 2 μM M3814 and PS-ssODNs achieved an HDR-mediated precision gene modification efficiency of approximately 42.81% in mutated cells, a 6.38-fold increase compared to the control group. Then, we used the optimized CRISPR RNP system to perform simultaneous editing of two and three loci at the INS and RLN3 genes. The results showed that the CRISPR RNP system could simultaneously edit two and three loci. The efficiency of simultaneous editing of two loci was not significantly different from that of single-gene editing compared to the efficiency of single-locus editing. The efficiency of simultaneous precise editing of INS, RLN3 exon 1, and RLN3 exon 2 was 0.29%, 0.24%, and 1.05%, respectively. This study demonstrated that a 2 μM M3814 combination with PS-ssODNs improves the efficacy of CRISPR RNP-mediated precise gene editing and allows for precise editing of up to three genes simultaneously in porcine cells.
Collapse
Affiliation(s)
- Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Pepin B, Rodriguez-Villamil P, Sammel L, Yin J, Dacken B. Monitoring swine virus transmission in embryos derived from commercial abattoir oocytes. Front Vet Sci 2024; 11:1336005. [PMID: 38371600 PMCID: PMC10869560 DOI: 10.3389/fvets.2024.1336005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Pigs are pivotal in agriculture and biomedical research and hold promise for xenotransplantation. Specific-pathogen-free (SPF) herds are essential for commercial swine production and xenotransplantation research facilities. Commercial herds aim to safeguard animal health, welfare, and productivity, and research facilities require SPF status to protect immunocompromised patients. Somatic cell nuclear transfer (SCNT) embryos are the norm for producing cloned and genetically edited animals. Oocytes for embryo reconstruction are most conveniently sourced from commercial abattoirs with unclear disease statuses. However, research on viral clearance from donor oocytes during embryo reconstruction remains limited. SCNT has previously been shown to reduce the transmission of Porcine reproductive and respiratory syndrome virus, Bovine viral diarrhea virus, Porcine Circovirus type 2, and Porcine parvovirus. Still, it is lacking for other pathogens, including endogenous viruses. This project contains two preliminary studies investigating the polymerase chain reaction (PCR) assay detection of common swine viruses through the phases of producing parthenogenic and SCNT embryos. Exogenous pathogens detected in oocyte donor tissue or the oocyte maturation media were not detected in the produced embryos. Porcine endogenous retrovirus type C (PERVC) was not removed by parthenogenic embryo activation and was detected in 1 of the 2 tested SCNT embryos reconstructed using a PERVC-negative cell line. SCNT and parthenogenic embryo construction similarly reduced exogenous virus detection. SCNT embryo construction helped reduce endogenous virus detection. This project demonstrates the importance of screening embryos for endogenous viruses and shows the usefulness of parthenogenic embryos in future exogenous virus clearance studies.
Collapse
Affiliation(s)
- Brent Pepin
- Cytotheryx, Inc., Rochester, MN, United States
| | | | - Lauren Sammel
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | - Jie Yin
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | | |
Collapse
|
10
|
Haraguchi S, Dang-Nguyen TQ, Kikuchi K, Somfai T. Electroporation-mediated genome editing in vitrified/warmed porcine zygotes obtained in vitro. Mol Reprod Dev 2024; 91:e23712. [PMID: 37882473 DOI: 10.1002/mrd.23712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) system is the most efficient and widely used technology for genome editing in all sorts of organisms, including livestock animals. Here, we examined the feasibility of CRISPR/Cas9-derived genome editing (GE) in vitrified porcine zygotes, where the flexible planning of experiments in time and space is expected. OCT4 and CD46 genes were targeted, and the Cas9/sgRNA ribonucleoprotein complexes (RNP) were electroporated into zygotes at 2 h after warming. Vitrification or GE alone did not significantly reduce the developmental rates to the blastocyst stage. However, vitrification followed by GE significantly reduced blastocyst development. Sequencing analysis of the resultant blastocysts revealed efficient GE for both OCT4 (nonvitrified: 91.0%, vitrified: 95.1%) and CD46 (nonvitrified: 94.5%, vitrified: 93.2%), with no significant difference among them. Immunocytochemical analysis showed that GE-blastocysts lacked detectable proteins. They were smaller in size, and the cell numbers were significantly reduced compared with the control (p < 0.01). Finally, we demonstrated that double GE efficiently occurs (100%) when the OCT4-RNP and CD46-RNP are simultaneously introduced into zygotes after vitrification/warming. This is the first demonstration that vitrified porcine zygotes can be used in GE as efficiently as nonvitrified ones.
Collapse
Affiliation(s)
- Seiki Haraguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Thanh Q Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tamás Somfai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Duo T, Liu X, Mo D, Bian Y, Cai S, Wang M, Li R, Zhu Q, Tong X, Liang Z, Jiang W, Chen S, Chen Y, He Z. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs. J Anim Sci Biotechnol 2023; 14:141. [PMID: 37919760 PMCID: PMC10621156 DOI: 10.1186/s40104-023-00930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness. This favorable mutation is common in Western commercial pig populations, but absent in most Chinese indigenous pig breeds. To improve meat production of Chinese indigenous pigs, we used cytosine base editor 3 (CBE3) to introduce IGF2-intron3-C3071T mutation into porcine embryonic fibroblasts (PEFs) isolated from a male Liang Guang Small Spotted pig (LGSS), and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer (SCNT) to generate the founder line of IGF2T/T pigs. RESULTS We found the heterozygous progeny IGF2C/T pigs exhibited enhanced expression of IGF2, increased lean meat by 18%-36%, enlarged loin muscle area by 3%-17%, improved intramuscular fat (IMF) content by 18%-39%, marbling score by 0.75-1, meat color score by 0.53-1.25, and reduced backfat thickness by 5%-16%. The enhanced accumulation of intramuscular fat in IGF2C/T pigs was identified to be regulated by the PI3K-AKT/AMPK pathway, which activated SREBP1 to promote adipogenesis. CONCLUSIONS We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality, and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3K-AKT/AMPK signaling pathways. Our study provides a further understanding of the biological functions of IGF2 and an example for improving porcine economic traits through precise base editing.
Collapse
Affiliation(s)
- Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Ruiqiang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Weilun Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Shiyi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
12
|
Nguyen TV, Do LTK, Namula Z, Lin Q, Torigoe N, Nagahara M, Hirata M, Tanihara F, Otoi T. Development and Genome Mutation of Bovine Zygotes Vitrified Before and After Genome Editing via Electroporation. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND: Cryopreservation of bovine zygotes allows for a flexible schedule of genome editing via electroporation. However, vitrification-induced cell membrane damage may not only affect embryonic development but also genome mutation. OBJECTIVE: To investigate the effects
of vitrification of zygotes before and after electroporation treatments on the development and genome mutation of bovine presumptive zygotes. MATERIALS AND METHODS: In vitro-derived bovine zygotes were electroporated with the CRISPR/Cas9 system immediately (Vitrified-EP) or 2 h after
incubation (Vitrified-2h-EP) following vitrification and warming, or electroporated before vitrification (EP-vitrified). RESULTS: The development rates of vitrified-warmed zygotes were significantly lower (p < 0.05) than those of control zygotes that were not vitrified. Moreover,
no differences were observed in the mutation rates and mutation efficiency of the blastocysts resulting from electroporated zygotes, irrespective of the timing of electroporation treatment. CONCLUSION: Our results suggest that vitrification before and after electroporation treatments
does not affect the genome editing of zygotes.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam
| | - Lanh Thi Kim Do
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam
| | - Zhao Namula
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, China
| | - Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Fuminori Tanihara
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| |
Collapse
|
13
|
Watanabe M, Nagashima H. Genome Editing of Pig. Methods Mol Biol 2023; 2637:269-292. [PMID: 36773154 DOI: 10.1007/978-1-0716-3016-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Pigs have anatomical and physiological characteristics similar to humans; therefore, genetically modified pigs have the potential to become a valuable bioresource in biomedical research. In fact, considering the increasing need for translational research, pigs are useful for studying intractable diseases, organ transplantation, and regenerative medicine as large-scale experimental animals with excellent potential for extrapolation to humans. With the advent of zinc finger nucleases (ZFNs), breakthroughs in genome editing tools such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) have facilitated the efficient generation of genetically modified pigs. Genome editing has been used in pigs for more than 10 years; now, along with knockout pigs, knock-in pigs are also gaining increasing importance. In this chapter, we describe the establishment of gene-modified cells (nuclear donor cells), which are necessary for gene knockout and production of knock-in pigs via somatic cell nuclear transplantation, as well as the production of gene knockout pigs using a simple cytoplasmic injection method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan.,PorMedTec Co., Ltd., Kawasaki, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan. .,Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
14
|
Tu CF, Peng SH, Chuang CK, Wong CH, Yang TS. - Invited Review - Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm. Anim Biosci 2023; 36:339-349. [PMID: 36397683 PMCID: PMC9899582 DOI: 10.5713/ab.22.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Gene editing (GE) offers a new breeding technique (NBT) of sustainable value to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical embryo transfer. The extension of NBT in the new era of pig breeding depends on the synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on scientific due diligence and operational excellence but also on the feasibility of application on farms to improve sustainability.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Corresponding Author: Ching-Fu Tu, Tel: +886-37-585815, E-mail:
| | - Shu-Hui Peng
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chin-kai Chuang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chi-Hong Wong
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Department of Biotechnology and Animal Science, National Ilan University, Yilan 260007,
Taiwan
| |
Collapse
|
15
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
16
|
KOGASAKA Y, MURAKAMI S, YAMASHITA S, KIMURA D, FURUMOTO Y, IGUCHI K, SENDAI Y. Generation of germ cell-deficient pigs by NANOS3 knockout. J Reprod Dev 2022; 68:361-368. [PMID: 36273893 PMCID: PMC9792658 DOI: 10.1262/jrd.2022-028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NANOS3 is an evolutionarily conserved gene expressed in primordial germ cells that is important for germ cell development. Germ cell deletion by NANOS3 knockout has been reported in several mammalian species, but its function in pigs is unclear. In the present study, we investigated the germline effects of NANOS3 knockout in pigs using CRISPR/Cas9. Embryo transfer of CRISPR/Cas9-modified embryos produced ten offspring, of which one showed wild-type NANOS3 alleles, eight had two mutant NANOS3 alleles, and the other exhibited mosaicism (four mutant alleles). Histological analysis revealed no germ cells in the testes or ovaries of any of the nine mutant pigs. These results demonstrated that NANOS3 is crucial for porcine germ cell production.
Collapse
Affiliation(s)
- Yuhei KOGASAKA
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Sho MURAKAMI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Shiro YAMASHITA
- Quality Control Research Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Daisuke KIMURA
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Yoshinori FURUMOTO
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Kana IGUCHI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Yutaka SENDAI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| |
Collapse
|
17
|
Sturek M. Introduction to ion transport and membrane interactions in vascular health and disease. CURRENT TOPICS IN MEMBRANES 2022; 90:1-11. [PMID: 36368870 DOI: 10.1016/bs.ctm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular disease is on the rise, partially due to the continued increase in metabolic syndrome. Advances in basic research on vascular ion transport have the potential to provide targets for therapeutic interventions. Vascular specificity, which includes different vascular beds having different characteristics and the macro- vs. microvasculature, is a vitally important variable in characterization of ion transport. At the cellular level, targeted fluorescent biosensors for Ca2+, super-resolution microscopy, and organelle patch clamp electrophysiology enable more detailed studies. The "MetS/diabetes milieu" includes increased and decreased insulin, and increased glucose, increased LDL/HDL cholesterol and triglycerides, and increased blood pressure. The duration and severity of MetS/diabetes components certainly affect the vascular phenotype and ion transport and membrane interactions. A combination of in vivo animal models and in vitro cell models to study ion transport in MetS/diabetes conditions is optimal. Gene editing and selective pharmacological tools should be used after or in conjunction with characterization of ion transport in vascular health and disease phenotypes. This is critical to determining the causal role of Ca2+ signaling in modulation of vascular phenotype. The ion transport and membrane interactions that are measured are typically only a snapshot in time in these dynamic processes occurring over the progression of health and disease. It is imperative that this concept be considered in the planning of long-term studies of vascular disease, ion transport experiments, and interpretation of the data. Future directions for our contributors' research will advance the field.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
18
|
Wei X, Pu A, Liu Q, Hou Q, Zhang Y, An X, Long Y, Jiang Y, Dong Z, Wu S, Wan X. The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells 2022; 11:cells11172682. [PMID: 36078090 PMCID: PMC9454589 DOI: 10.3390/cells11172682] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gene editing (GE) has become one of the mainstream bioengineering technologies over the past two decades, mainly fueled by the rapid development of the CRISPR/Cas system since 2012. To date, plenty of articles related to the progress and applications of GE have been published globally, but the objective, quantitative and comprehensive investigations of them are relatively few. Here, 13,980 research articles and reviews published since 1999 were collected by using GE-related queries in the Web of Science. We used bibliometric analysis to investigate the competitiveness and cooperation of leading countries, influential affiliations, and prolific authors. Text clustering methods were used to assess technical trends and research hotspots dynamically. The global application status and regulatory framework were also summarized. This analysis illustrates the bottleneck of the GE innovation and provides insights into the future trajectory of development and application of the technology in various fields, which will be helpful for the popularization of gene editing technology.
Collapse
Affiliation(s)
- Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (X.W.); (X.W.); Tel.: +86-189-1087-6260 (X.W.); +86-186-0056-1850 (X.W.)
| | - Aqing Pu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Qianqian Liu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yong Zhang
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Zhenying Dong
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (X.W.); (X.W.); Tel.: +86-189-1087-6260 (X.W.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
19
|
Arndt SS, Goerlich VC, van der Staay FJ. A dynamic concept of animal welfare: The role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.908513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal welfare is a multifaceted issue that can be approached from different viewpoints, depending on human interests, ethical assumptions, and culture. To properly assess, safeguard and promote animal welfare, concepts are needed to serve as guidelines in any context the animal is kept in. Several different welfare concepts have been developed during the last half decade. The Five Freedoms concept has provided the basis for developing animal welfare assessment to date, and the Five Domains concept has guided those responsible for safeguarding animal welfare, while the Quality of Life concept focuses on how the individual perceives its own welfare state. This study proposes a modified and extended version of an earlier animal welfare concept - the Dynamic Animal Welfare Concept (DAWCon). Based on the adaptability of the animal, and taking the importance of positive emotional states and the dynamic nature of animal welfare into account, an individual animal is likely in a positive welfare state when it is mentally and physically capable and possesses the ability and opportunity to react adequately to sporadic or lasting appetitive and adverse internal and external stimuli, events, and conditions. Adequate reactions are elements of an animal’s normal behavior. They allow the animal to cope with and adapt to the demands of the (prevailing) environmental circumstances, enabling it to reach a state that it perceives as positive, i.e., that evokes positive emotions. This paper describes the role of internal as well as external factors in influencing welfare, each of which exerts their effects in a sporadic or lasting manner. Behavior is highlighted as a crucial read-out parameter. As most animals under human care are selected for certain traits that may affect their behavioral repertoire it is crucial to have thorough ethograms, i.e., a catalogue of specific behaviors of the species/strain/breed under study. DAWCon highlights aspects that need to be addressed when assessing welfare and may stimulate future research questions.
Collapse
|
20
|
Tu CF, Chuang CK, Yang TS. The application of new breeding technology based on gene editing in pig industry. Anim Biosci 2022; 35:791-803. [PMID: 34991204 PMCID: PMC9066036 DOI: 10.5713/ab.21.0390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU’s Green Deal and biodiversity strategies and even meet the United Nations’ sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Chin-Kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, 26047 Taiwan
| |
Collapse
|
21
|
Can Gao, Wang R, Zhang L, Yue C. Visualization Analysis of CRISPR Gene-editing Knowledge Map based on Citespace. BIOL BULL+ 2021; 48:705-720. [PMID: 34955625 PMCID: PMC8682952 DOI: 10.1134/s1062359021060108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
CRISPR is an adaptive immune defense system found in bacteria and archaea that is resistant to heterologous invasive genetic material. Later studies showed that the CRISPR system can be used for gene-editing. This study used the Web of Science database as a search object, then visually analyzed the literature related to CRISPR gene-editing technology with CiteSpace IV. The results show that publications had increased year by year. USA ranked first in terms of publications. China is second, but the centrality is very low. Doudna JA and Zhang F have made outstanding contributions. There are close connections between the internal institutions of the various states, but there are few links between the states. The hot spot and frontier are the application of CRISPR in animals, plants, detection, diagnosis, and clinical treatment.
Collapse
Affiliation(s)
- Can Gao
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, 716000 Yan'an, Shaanxi China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, 610500 Chengdu, Sichuan China
| | - Rui Wang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, 610500 Chengdu, Sichuan China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, 312000 Shaoxing, Zhejiang China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, 716000 Yan'an, Shaanxi China
| |
Collapse
|
22
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|