1
|
Yao X, Wang J, Hu B. How methanotrophs respond to pH: A review of ecophysiology. Front Microbiol 2023; 13:1034164. [PMID: 36687570 PMCID: PMC9853399 DOI: 10.3389/fmicb.2022.1034164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023] Open
Abstract
Varying pH globally affects terrestrial microbial communities and biochemical cycles. Methanotrophs effectively mitigate methane fluxes in terrestrial habitats. Many methanotrophs grow optimally at neutral pH. However, recent discoveries show that methanotrophs grow in strongly acidic and alkaline environments. Here, we summarize the existing knowledge on the ecophysiology of methanotrophs under different pH conditions. The distribution pattern of diverse subgroups is described with respect to their relationship with pH. In addition, their responses to pH stress, consisting of structure-function traits and substrate affinity traits, are reviewed. Furthermore, we propose a putative energy trade-off model aiming at shedding light on the adaptation mechanisms of methanotrophs from a novel perspective. Finally, we take an outlook on methanotrophs' ecophysiology affected by pH, which would offer new insights into the methane cycle and global climate change.
Collapse
Affiliation(s)
- Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China,*Correspondence: Baolan Hu ✉
| |
Collapse
|
2
|
Somayaji A, Dhanjal CR, Lingamsetty R, Vinayagam R, Selvaraj R, Varadavenkatesan T, Govarthanan M. An insight into the mechanisms of homeostasis in extremophiles. Microbiol Res 2022; 263:127115. [PMID: 35868258 DOI: 10.1016/j.micres.2022.127115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
The homeostasis of extremophiles is one that is a diamond hidden in the rough. The way extremophiles adapt to their extreme environments gives a clue into the true extent of what is possible when it comes to life. The discovery of new extremophiles is ever-expanding and an explosion of knowledge surrounding their successful existence in extreme environments is obviously perceived in scientific literature. The present review paper aims to provide a comprehensive view on the different mechanisms governing the extreme adaptations of extremophiles, along with insights and discussions on what the limits of life can possibly be. The membrane adaptations that are vital for survival are discussed in detail. It was found that there are many alterations in the genetic makeup of such extremophiles when compared to their mesophilic counterparts. Apart from the several proteins involved, the significance of chaperones, efflux systems, DNA repair proteins and a host of other enzymes that adapt to maintain functionality, are enlisted, and explained. A deeper understanding of the underlying mechanisms could have a plethora of applications in the industry. There are cases when certain microbes can withstand extreme doses of antibiotics. Such microbes accumulate numerous genetic elements (or plasmids) that possess genes for multiple drug resistance (MDR). A deeper understanding of such mechanisms helps in the development of potential approaches and therapeutic schemes for treating pathogen-mediated outbreaks. An in-depth analysis of the parameters - radiation, pressure, temperature, pH value and metal resistance - are discussed in this review, and the key to survival in these precarious niches is described.
Collapse
Affiliation(s)
- Adithi Somayaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chetan Roger Dhanjal
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rathnamegha Lingamsetty
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| |
Collapse
|
3
|
Goto T, Ogami S, Yoshimume K, Yumoto I. Differences in Bioenergetic Metabolism of Obligately Alkaliphilic Bacillaceae Under High pH Depend on the Aeration Conditions. Front Microbiol 2022; 13:842785. [PMID: 35401478 PMCID: PMC8992544 DOI: 10.3389/fmicb.2022.842785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alkaliphilic Bacillaceae appear to produce ATP based on the H+-based chemiosmotic theory. However, the bulk-based chemiosmotic theory cannot explain the ATP production in alkaliphilic bacteria because the H+ concentration required for driving ATP synthesis through the ATPase does not occur under the alkaline conditions. Alkaliphilic bacteria produce ATP in an H+-diluted environment by retaining scarce H+ extruded by the respiratory chain on the outer surface of the membrane and increasing the potential of the H+ for ATP production on the outer surface of the membrane using specific mechanisms of ATP production. Under high-aeration conditions, the high ΔΨ (ca. -170 mV) of the obligate alkaliphilic Evansella clarkii retains H+ at the outer surface of the membrane and increases the intensity of the protonmotive force (Δp) per H+ across the membrane. One of the reasons for the production of high ΔΨ is the Donnan potential, which arises owing to the induction of impermeable negative charges in the cytoplasm. The intensity of the potential is further enhanced in the alkaliphiles compared with neutralophiles because of the higher intracellular pH (ca. pH 8.1). However, the high ΔΨ observed under high-aeration conditions decreased (∼ -140 mV) under low-aeration conditions. E. clarkii produced 2.5–6.3-fold higher membrane bound cytochrome c in the content of the cell extract under low-aeration conditions than under high-aeration conditions. The predominant membrane-bound cytochrome c in the outer surface of the membrane possesses an extra Asn-rich segment between the membrane anchor and the main body of protein. This structure may influence the formation of an H+-bond network that accumulates H+ on the outer surface of the membrane. Following accumulation of the H+-bond network producing cytochrome c, E. clarkii constructs an H+ capacitor to overcome the energy limitation of low aeration at high pH conditions. E. clarkii produces more ATP than other neutralophilic bacteria by enhancing the efficacy per H+ in ATP synthesis. In low H+ environments, E. clarkii utilizes H+ efficiently by taking advantage of its high ΔΨ under high-aeration conditions, whereas under low-aeration conditions E. clarkii uses cytochrome c bound on its outer surface of the membrane as an H+ capacitor.
Collapse
Affiliation(s)
- Toshitaka Goto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinichi Ogami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazuaki Yoshimume
- College of Industrial Technology, Nihon University, Narashino, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- *Correspondence: Isao Yumoto,
| |
Collapse
|
4
|
Khalikova E, Somersalo S, Korpela T. Metabolites Produced by Alkaliphiles with Potential Biotechnological Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:157-193. [PMID: 31240347 DOI: 10.1007/10_2019_96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alkaliphiles are a diverse group of relatively less known microorganisms living in alkaline environments. To thrive in alkaline environments, alkaliphiles require special adaptations. This adaptation may have evolved metabolites which can be useful for biotechnological processes or other applications. In fact, certain metabolites are found unique to alkaliphiles or are effectively produced by alkaliphiles. This probably aroused the interest in metabolites of alkaliphiles. During recent years, many alkaliphilic microbes have been isolated, especially in countries having alkaline environments, like soda lakes. Even if the number of such isolated alkaliphiles is large, their metabolites have not yet been extensively analyzed and exploited. This is expected to come in the years ahead. So far, the focus of interests in metabolites from alkaliphiles falls into categories such as organic acids, ingredients for foodstuffs and cosmetics, antibiotics, and substances which modify properties of other materials used in industry. This chapter deals with biotechnologically important metabolites of alkaliphiles including compatible solutes, biosurfactants, siderophores, carotenoids, exopolysaccharides, and antimicrobial agents. It also covers the promising potential of alkaliphiles as sources of bioplastic raw materials. Moreover, an overview of the patent literature related to alkaliphiles is highlighted. Graphical Abstract.
Collapse
Affiliation(s)
- Elvira Khalikova
- Joint Biotechnology Laboratory, University of Turku, Turku, Finland
| | | | - Timo Korpela
- Department of Future Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Matsuno T, Goto T, Ogami S, Morimoto H, Yamazaki K, Inoue N, Matsuyama H, Yoshimune K, Yumoto I. Formation of Proton Motive Force Under Low-Aeration Alkaline Conditions in Alkaliphilic Bacteria. Front Microbiol 2018; 9:2331. [PMID: 30333809 PMCID: PMC6176047 DOI: 10.3389/fmicb.2018.02331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022] Open
Abstract
In Mitchell’s chemiosmotic theory, a proton (H+) motive force across the membrane (Δp), generated by the respiratory chain, drives F1Fo-ATPase for ATP production in various organisms. The bulk-base chemiosmotic theory cannot account for ATP production in alkaliphilic bacteria. However, alkaliphiles thrive in environments with a H+ concentrations that are one-thousandth (ca. pH 10) the concentration required by neutralophiles. This situation is similar to the production of electricity by hydroelectric turbines under conditions of very limited water. Alkaliphiles manage their metabolism via various strategies involving the cell wall structure, solute transport systems and molecular mechanisms on the outer surface membrane. Our experimental results indicate that efficient ATP production in alkaliphilic Bacillus spp. is attributable to a high membrane electrical potential (ΔΨ) generated for an attractive force for H+ on the outer surface membrane. In addition, the enhanced F1Fo-ATPase driving force per H+ is derived from the high ΔΨ. However, it is difficult to explain the reasons for high ΔΨ formation based on the respiratory rate. The Donnan effect (which is observed when charged particles that are unable to pass through a semipermeable membrane create an uneven electrical charge) likely contributes to the formation of the high ΔΨ because the intracellular negative ion capacities of alkaliphiles are much higher than those of neutralophiles. There are several variations in the adaptation to alkaline environments by bacteria. However, it could be difficult to utilize high ΔΨ in the low aeration condition due to the low activity of respiration. To explain the efficient ATP production occurring in H+-less and air-limited environments in alkaliphilic bacteria, we propose a cytochrome c-associated “H+ capacitor mechanism” as an alkaline adaptation strategy. As an outer surface protein, cytochrome c-550 from Bacillusclarkii possesses an extra Asn-rich segment between the region anchored to the membrane and the main body of the cytochrome c. This structure may contribute to the formation of the proton-binding network to transfer H+ at the outer surface membrane in obligate alkaliphiles. The H+ capacitor mechanism is further enhanced under low-aeration conditions in both alkaliphilic Bacillus spp. and the Gram-negative alkaliphile Pseudomonas alcaliphila.
Collapse
Affiliation(s)
- Toshihide Matsuno
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Sabae, Japan
| | - Toshitaka Goto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinichi Ogami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hajime Morimoto
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Sabae, Japan.,Department of Bioscience and Technology, School of Biological Sciences and Engineering, Tokai University, Sapporo, Japan
| | - Koji Yamazaki
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | - Hidetoshi Matsuyama
- Department of Bioscience and Technology, School of Biological Sciences and Engineering, Tokai University, Sapporo, Japan
| | - Kazuaki Yoshimune
- College of Industrial Technology, Nihon University, Narashino, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Carlson RP, Oshota O, Shipman M, Caserta JA, Hu P, Saunders CW, Xu J, Jay ZJ, Reeder N, Richards A, Pettigrew C, Peyton BM. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles 2016; 20:261-74. [PMID: 26888357 DOI: 10.1007/s00792-015-0806-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/06/2015] [Indexed: 01/15/2023]
Abstract
Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % μ max) observed over <0.1-5 % (w/v) NaCl and pH ranging from 7.4 to 10.2. Isolate BC1 was further characterized by measuring uptake or synthesis of compatible solutes under different growth conditions; in complex medium, uptake and accumulation of external glycine betaine was observed while ectoine was synthesized de novo in salts medium. Transcriptome analysis of isolate BC1 grown on glucose or citrate medium measured differences in glycolysis- and gluconeogenesis-based metabolisms, respectively. The annotated BC1 genome was used to build an in silico, genome-scale stoichiometric metabolic model to study catabolic energy strategies and compatible solute synthesis under gradients of oxygen and nutrient availability. The theoretical analysis identified energy metabolism challenges associated with acclimation to high salinity and high pH. The study documents central metabolism data for the industrially and scientifically important haloalkaliphile genus Halomonas.
Collapse
Affiliation(s)
- Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
| | - Olusegun Oshota
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Matt Shipman
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,U.S. Navy, Washington, DC, USA
| | | | - Ping Hu
- Procter and Gamble Co., Cincinnati, OH, 45202, USA
| | | | - Jun Xu
- Procter and Gamble Co., Cincinnati, OH, 45202, USA
| | - Zackary J Jay
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Nancy Reeder
- Procter and Gamble Co., Cincinnati, OH, 45202, USA
| | - Abigail Richards
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | | | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
8
|
Goto T, Hirabayashi T, Morimoto H, Yamazaki K, Inoue N, Matsuyama H, Yumoto I. Contribution of intracellular negative ion capacity to Donnan effect across the membrane in alkaliphilic Bacillus spp. J Bioenerg Biomembr 2016; 48:87-96. [PMID: 26749514 DOI: 10.1007/s10863-015-9641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
To elucidate the energy production mechanism of alkaliphiles, the relationship between the H(+) extrusion rate by the respiratory chain and the corresponding ATP synthesis rate was determined in the facultative alkaliphile Bacillus cohnii YN-2000 and compared with those in the obligate alkaliphile Bacillus clarkii DSM 8720(T) and the neutralophile Bacillus subtilis IAM 1026. Under high aeration condition, much higher ATP synthesis rates and larger Δψ in the alkaliphilic Bacillus spp. grown at pH 10 than those in the neutralophilic B. subtilis grown at pH 7 were observed. This high ATP productivity could be attributed to the larger Δψ in alkaliphiles than in B. subtilis because the H(+) extrusion rate in alkaliphiles cannot account for the high ATP productivity. However, the large Δψ in the alkaliphiles could not be explained only by the H(+) translocation rate in the respiratory chain in alkaliphiles. There is a possibility that the Donnan effect across the membrane has the potential to contribute to the large Δψ. To estimate the contribution of the Donnan effect to the large Δψ in alkaliphilic Bacillus spp. grown at pH 10, intracellular negative ion capacity was examined. The intracellular negative ion capacities in alkaliphiles grown at pH 10 under high aeration condition corresponding to their intracellular pH (pH 8.1) were much higher than those in alkaliphiles grown under low aeration condition. A proportional relationship is revealed between the negative ion capacity and Δψ in alkaliphiles grown under different aeration conditions. This relationship strongly suggests that the intracellular negative ion capacity contributes to the formation of Δψ through the Donnan effect in alkaliphilic Bacillus spp. grown at pH 10.
Collapse
Affiliation(s)
- Toshitaka Goto
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.,Bioproduction Research Insitute, National Institute of Advanced Science and Technology, 2-17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Toshinao Hirabayashi
- Department of Bioscience and Technology, School of Biological Science and Engineering, Tokai University, Minaminosawa, Minami-ku, Sapporo, Hokkaido, 005-8601, Japan
| | - Hajime Morimoto
- Department of Bioscience and Technology, School of Biological Science and Engineering, Tokai University, Minaminosawa, Minami-ku, Sapporo, Hokkaido, 005-8601, Japan
| | - Koji Yamazaki
- Department of Marine Bioresources Chemistry, Faculty of Fisheries, Hokkaido University, 3-1-1, Minoto-cho, Hakodate, Hokkaido, 041-0821, Japan
| | - Norio Inoue
- Department of Marine Bioresources Chemistry, Faculty of Fisheries, Hokkaido University, 3-1-1, Minoto-cho, Hakodate, Hokkaido, 041-0821, Japan
| | - Hidetoshi Matsuyama
- Department of Bioscience and Technology, School of Biological Science and Engineering, Tokai University, Minaminosawa, Minami-ku, Sapporo, Hokkaido, 005-8601, Japan
| | - Isao Yumoto
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan. .,Bioproduction Research Insitute, National Institute of Advanced Science and Technology, 2-17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
9
|
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis. Front Bioeng Biotechnol 2015; 3:75. [PMID: 26090360 PMCID: PMC4453477 DOI: 10.3389/fbioe.2015.00075] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 12/28/2022] Open
Abstract
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - David B Hicks
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Shino Suzuki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology , Nankoku , Japan ; Microbial and Environmental Genomics, J. Craig Venter Institutes , La Jolla, CA , USA
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - Terry Ann Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
10
|
Bioenergetics and the role of soluble cytochromes C for alkaline adaptation in gram-negative alkaliphilic Pseudomonas. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847945. [PMID: 25705691 PMCID: PMC4332470 DOI: 10.1155/2015/847945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/25/2022]
Abstract
Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μmax [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+.
Collapse
|
11
|
Adaptation in Haloalkaliphiles and Natronophilic Bacteria. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Isolation and preliminary characterization of new cytochrome c from autotrophic haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. Biochimie 2012; 94:2577-81. [PMID: 22809527 DOI: 10.1016/j.biochi.2012.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/07/2012] [Indexed: 11/22/2022]
Abstract
New small cytochrome c (TniCYT) was purified from haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. The protein was analyzed by mass spectrometry as well as using visible, CD and EPR spectroscopy. It was found that TniCYT is a monomer with a molecular mass of 9461 Da which contains two hemes per molecule. The data of CD and EPR spectroscopy showed that two hemes possess different optical activity and are in distinct, high and low spin states. TniCYT was also demonstrated to have unusual characteristics in the visible spectrum, namely, the splitting of characteristic peaks was observed in α- and β-bands of the heme spectrum when the reduced form of cytochrome was analyzed. The α-band has two peaks with maximum at 548 and 556 nm whereas the β-band showes ones at 520 and 528 nm. According to the MALDI finger-print analysis, the new cytochrome has a unique amino acid sequence.
Collapse
|
13
|
Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720(T). J Bioenerg Biomembr 2012; 44:265-72. [PMID: 22437739 DOI: 10.1007/s10863-012-9430-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
To elucidate the energy production mechanism of alkaliphiles, the relationship between the rate of proton extrusion via the respiratory chain and the corresponding ATP synthesis rate was examined in obligately alkaliphilic Bacillus clarkii DSM 8720(T) and neutralophilic Bacillus subtilis IAM 1026. The oxygen consumption rate of B. subtilis IAM 1026 cells at pH 7 was approximately 2.5 times higher than that of B. clarkii DSM 8720(T) cells at pH 10. The H⁺/O ratio of B. clarkii DSM 8720(T) cells was approximately 1.8 times higher than that of B. subtilis IAM 1026 cells. On the basis of oxygen consumption rate and H⁺/O ratio, the rate of proton translocation via the respiratory chain in B. subtilis IAM 1026 is expected to be approximately 1.4 times higher than that in B. clarkii DSM 8720(T). Conversely, the rate of ATP synthesis in B. clarkii DSM 8720(T) at pH 10 was approximately 7.5 times higher than that in B. subtilis IAM 1026 at pH 7. It can be predicted that the difference in rate of ATP synthesis is due to the effect of transmembrane electrical potential (Δψ) on protons translocated via the respiratory chain. The Δψ values of B. clarkii DSM 8720(T) and B. subtilis IAM 1026 were estimated as -192 mV (pH 10) and -122 mV (pH 7), respectively. It is considered that the discrepancy between the rates of proton translocation and ATP synthesis between the strains used in this study is due to the difference in ATP production efficiency per translocated proton between the two strains caused by the difference in Δψ.
Collapse
|
14
|
Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21(T). J Bioenerg Biomembr 2011; 43:473-81. [PMID: 21766198 DOI: 10.1007/s10863-011-9376-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
It has been found that the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) produces a larger amount of soluble c-type cytochromes at pH 10.0 under air-limited condition than at pH 7.0 under high aeration. Cytochrome c-552 was confirmed as the major c-type cytochrome among three soluble c-type cytochromes in the strain. To understand the physiological function of cytochrome c-552, a P. alcaliphila AL15-21(T) cytochrome c-552 gene deletion mutant without a marker gene was constructed by electrotransformation adjusted in this study for the strain. The maximum specific growth rate and maximum cell turbidity of cells grown at pHs 7.0 and 10.0 under the high-aeration condition did not differ significantly between the wild-type and cytochrome c-552 deletion mutant strains. In the mutant grown at pH 10.0 under low-aeration condition, marked decreases in the maximum specific growth rate (40%) and maximum cell turbidity (25%) compared with the wild type were observed. On the other hand, the oxygen consumption rates of cell suspensions of the mutant obtained by the growth at pH 10 under low-aeration condition were slightly higher than that of the wild type. Considering the high electron-retaining ability of cytochrome c-552, the above observations could be accounted for by cytochrome c-552 acting as an electron sink in the periplasmic space. This may facilitate terminal oxidation in the respiratory system at high pH under air-limited conditions.
Collapse
|
15
|
Hicks DB, Liu J, Fujisawa M, Krulwich TA. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1362-77. [PMID: 20193659 PMCID: PMC2890045 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
Affiliation(s)
- David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Makoto Fujisawa
- Faculty of Food Life Sciences, Toyo University, Ora-gun, Gunma 374-0193, Japan
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
16
|
Fujinami S, Fujisawa M. Industrial applications of alkaliphiles and their enzymes--past, present and future. ENVIRONMENTAL TECHNOLOGY 2010; 31:845-856. [PMID: 20662376 DOI: 10.1080/09593331003762807] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alkaliphiles are microorganisms that can grow in alkaline environments, i.e. pH >9.0. Their enzymes, especially extracellular enzymes, are able to function in their catalytic activities under high alkaline pH values because of their stability under these conditions. Proteases, protein degrading enzymes, are one of the most produced enzymes in industry. Among proteases, alkaline proteases, which are added to some detergents, are the most produced. Other alkaline enzymes, e.g. alkaline cellulases, alkaline amylases, and alkaline lipases, are also adjuncts to detergents for improving cleaning efficiency. Alkaline enzymes often show activities in a broad pH range, thermostability, and tolerance to oxidants compared to neutral enzymes. Alkaliphilic Bacillus species are the most characterized organisms among alkaliphiles. They produce so many extracellular alkaline-adapted enzymes that they are often good sources for industrial enzymes. As a patent strain, the whole genome sequence of alkaliphilic Bacillus halodurans C-125 has been sequenced for the first time. In addition, an increasing number of whole genomic sequences and structural analyses of proteins in alkaliphiles, development of genetic engineering techniques and physiological analyses will reveal the alkaline adaptation mechanisms of alkaliphilic Bacillus species and the structural basis of their enzymatic functions. This information opens up the possibility of new applications. In this paper we describe, first, the physiologies of environmental adaptations, and then the applications of enzymes and microorganisms themselves in alkaliphilic Bacillus species.
Collapse
Affiliation(s)
- Shun Fujinami
- NITE Bioresource Information Center, Department of Biotechnology, National Institute of Technology and Evaluation, 2-10-49 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan
| | | |
Collapse
|
17
|
Fujinami S, Terahara N, Krulwich TA, Ito M. Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 2010; 4:1137-49. [PMID: 19895217 DOI: 10.2217/fmb.09.76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alkaliphilic Bacillus species grow at pH values up to approximately 11. Motile alkaliphilic Bacillus use electrochemical gradients of Na(+) (sodium-motive force) to power ion-coupled, flagella-mediated motility as opposed to the electrochemical gradients of H(+) (proton-motive force) used by most neutralophilic bacteria. Membrane-embedded stators of bacterial flagella contain ion channels through which either H(+) or Na(+) flow to energize flagellar rotation. Stators of the major H(+)-coupled type, MotAB, are distinguishable from Na(+)-coupled stators, PomAB of marine bacteria and MotPS of alkaliphilic Bacillus. Dual ion-coupling capacity is found in neutralophilic Bacillus strains with both MotAB and MotPS. There is also a MotAB variant that uses both coupling ions, switching as a function of pH. Chemotaxis of alkaliphilic Bacillus depends upon flagellar motility but also requires a distinct voltage-gated NaChBac-type channel. The two alkaliphile Na(+) channels provide new vistas on the diverse adaptations of sensory responses in bacteria.
Collapse
Affiliation(s)
- Shun Fujinami
- NITE Bioresource Information Center, Department of Biotechnology, National Institute of Technology and Evaluation, Nishihara, Shibuya-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
18
|
Matsuno T, Mie Y, Yoshimune K, Yumoto I. Physiological role and redox properties of a small cytochrome c5, cytochrome c-552, from alkaliphile, Pseudomonas alcaliphila AL15-21T. J Biosci Bioeng 2009; 108:465-70. [DOI: 10.1016/j.jbiosc.2009.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 05/14/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
19
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
20
|
Ogami S, Hijikata S, Tsukahara T, Mie Y, Matsuno T, Morita N, Hara I, Yamazaki K, Inoue N, Yokota A, Hoshino T, Yoshimune K, Yumoto I. A novel membrane-anchored cytochrome c-550 of alkaliphilic Bacillus clarkii K24-1U: expression, molecular features and properties of redox potential. Extremophiles 2009; 13:491-504. [PMID: 19266156 DOI: 10.1007/s00792-009-0234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
A membrane-anchored cytochrome c-550, which is highly expressed in obligately alkaliphilic Bacillus clarkii K24-1U, was purified and characterized. The protein contained a conspicuous sequence of Gly(22)-Asn(34), in comparison with the other Bacillus small cytochromes c. Analytical data indicated that the original and lipase-treated intermediate forms of cytochrome c-550 bind to fatty acids of C(15), C(16) and C(17) chain lengths and C(15) chain length, respectively, and it was considered that these fatty acids are bound to glycerol-Cys(18). Since there was a possibility that the presence of a diacylglycerol anchor contributed to the formation of dimeric states of this protein (20 and 17 kDa in SDS-PAGE), a C18M (Cys(18) --> Met)-cytochrome c-550 was constructed. The molecular mass of the C18M-cytochrome c-550 was determined as 15 and 10 kDa in SDS-PAGE and 23 kDa in blue native PAGE. The C18M-cytochrome c-550 bound with or without Triton X-100 formed a tetramer as the original cytochrome c-550 bound with Triton X-100, as determined by gel filtration. The midpoint redox potential of cytochrome c-550 as determined by redox titration was +83 mV, while that determined by cyclic voltammetric measurement was +7 mV. The above results indicate that cytochrome c-550 is a novel cytochrome c.
Collapse
Affiliation(s)
- Shinichi Ogami
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stadnichuk IN, Yanyushin MF, Boychenko VA, Lukashev EP, Boldareva EN, Solovyev AA, Gorlenko VM. Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll a-containing bacterium Roseinatronobacter thiooxidans. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Sook BR, Block DR, Sumithran S, Montañez GE, Rodgers KR, Dawson JH, Eichenbaum Z, Dixon DW. Characterization of SiaA, a Streptococcal Heme-Binding Protein Associated with a Heme ABC Transport System. Biochemistry 2008; 47:2678-88. [DOI: 10.1021/bi701604y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian R. Sook
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Darci R. Block
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Suganya Sumithran
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Griselle E. Montañez
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Kenton R. Rodgers
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - John H. Dawson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Zehava Eichenbaum
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
23
|
Matsuno T, Morishita N, Yamazaki K, Inoue N, Sato Y, Ichise N, Hara I, Hoshino T, Matsuyama H, Yoshimune K, Yumoto I. Cytochrome c-552 from gram-negative alkaliphilic Pseudomonas alcaliphila AL15-21T alters the redox properties at high pH. J Biosci Bioeng 2007; 103:247-54. [PMID: 17434428 DOI: 10.1263/jbb.103.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022]
Abstract
A soluble class I cytochrome c of an alkaliphile was purified and characterized, and its primary structure was determined. This is the first example of a soluble class I cytochrome c in alkaliphiles. Cells the alkaliphilic gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 had a soluble cytochrome c content that was more than twofold that of strain AL15-21(T) cells grown at pH 7 under air-limited conditions. Cytochrome c-552, a soluble cytochrome c with a low molecular weight, was purified from strain AL15-21(T) cells grown at pH 10 under air-limited conditions. Cytochrome c-552 had a molecular mass of 7.5 kDa and exhibited an almost fully reduced state in the resting form, which exhibited absorption maxima at wavelengths of 552, 523 and 417 nm. In the oxidized state, it exhibited an absorption maximum at 412 nm when it was oxidized by ferricyanide, its isoelectric point (pI) was 4.3 and it contained one heme c as a prosthetic group. Cytochrome c-552 was autoreduced at pH 10, and the autoreduction was reproducible. On the other hand, the autoreduction of cytochrome c-552 was not observed at pH 7.0. When pH was increased from 7.0 to 8.3, its midpoint redox potentials (E(m) values) increased from +228 mV to +276 mV as determined by redox titrations, and from +217 mV to +275 mV as determined by cyclic voltammetric measurements. The amino acid sequence deduced by cytochrome c-552 gene analysis revealed that the sequence consists of 96 residues, including 19 residues as an amino-terminal signal peptide. A phylogenetic tree based on amino acid sequence indicated that the protein belongs to group 4, cytochrome c(5) in class I cytochrome c.
Collapse
Affiliation(s)
- Toshihide Matsuno
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA. Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Biochemistry 2007; 46:306-13. [PMID: 17198401 PMCID: PMC2597368 DOI: 10.1021/bi0619167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interaction between the cytochrome caa3 respiratory chain complex and F1F0-ATP synthase from extremely alkaliphilic Bacillus pseudofirmus OF4 has been hypothesized to be required for robust ATP synthesis by this alkaliphile under conditions of very low protonmotive force. Here, such an interaction was probed by differential scanning calorimetry (DSC) and by saturation transfer electron paramagnetic resonance (STEPR). When the two purified complexes were embedded in phospholipid vesicles individually [(caa3)PL, (F1F0)PL)] or in combination [(caa3 + F1F0)PL] and subjected to DSC analysis, they underwent exothermic thermodenaturation with transition temperatures at 69, 57, and 46/75 degrees C, respectively. The enthalpy change, deltaH (-8.8 kcal/mmol), of protein-phospholipid vesicles containing both cytochrome caa3 and F1F0 was smaller than that (-12.4 kcal/mmol) of a mixture of protein-phospholipid vesicles formed from each individual electron transfer complex [(caa3)PL + (F1F0)PL]. The rotational correlation time of spin-labeled caa3 (65 micros) in STEPR studies increased significantly when the complex was mixed with F1F0 prior to being embedded in phospholipid vesicles (270 micros). When the complexes were reconstituted separately and then mixed together, or either mitochondrial cytochrome bc1 or F1F0 was substituted for the alkaliphile F1F0, the correlation time was unchanged (65-70 micros). Varying the ratio of the two alkaliphile complexes in both the DSC and STEPR experiments indicated that the optimal stoichiometry is 1:1. These results demonstrate a physical interaction between the cytochrome caa3 and F1F0-ATP synthase from B. pseudofirmus OF4 in a reconstituted system. They support the suggestion that such an interaction between these complexes may contribute to sequestered proton transfers during alkaliphile oxidative phosphorylation at high pH.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Xing Gong
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - David B. Hicks
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Terry A. Krulwich
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Linda Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Chang-An Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|