1
|
Lobodin KV, Chetverina HV, Chetverin AB. Probing the legitimate initiation of RNA synthesis by Qβ replicase with oligonucleotide primers. FEBS Lett 2024; 598:579-586. [PMID: 38408766 DOI: 10.1002/1873-3468.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Oligoribonucleotides complementary to the template 3' terminus were tested for their ability to initiate RNA synthesis on legitimate templates capable of exponential amplification by Qβ replicase. Oligonucleotides shorter than the distance to the nearest predicted template hairpin proved able to serve as primers, with the optimal length varying for different templates, suggesting that during initiation the template retains its native fold incorporating the 3' terminus. The priming activity of an oligonucleotide is greatly enhanced by its 5'-triphosphate group, the effect being strongly dependent on Mg2+ ions. This indicates that, unlike other studied RNA polymerases, Qβ replicase binds the 5'-triphosphate of the initiating nucleotide GTP, and this binding is needed for the replication of legitimate templates.
Collapse
Affiliation(s)
- Kirill V Lobodin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Helena V Chetverina
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | | |
Collapse
|
2
|
Thongchol J, Lill Z, Hoover Z, Zhang J. Recent Advances in Structural Studies of Single-Stranded RNA Bacteriophages. Viruses 2023; 15:1985. [PMID: 37896763 PMCID: PMC10610835 DOI: 10.3390/v15101985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Positive-sense single-stranded RNA (ssRNA) bacteriophages (phages) were first isolated six decades ago. Since then, extensive research has been conducted on these ssRNA phages, particularly those infecting E. coli. With small genomes of typically 3-4 kb that usually encode four essential proteins, ssRNA phages employ a straightforward infectious cycle involving host adsorption, genome entry, genome replication, phage assembly, and host lysis. Recent advancements in metagenomics and transcriptomics have led to the identification of ~65,000 sequences from ssRNA phages, expanding our understanding of their prevalence and potential hosts. This review article illuminates significant investigations into ssRNA phages, with a focal point on their structural aspects, providing insights into the various stages of their infectious cycle.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (J.T.); (Z.L.); (Z.H.)
| |
Collapse
|
3
|
Lobodin KV, Chetverina HV, Chetverin AB. Slippage at the initiation of RNA synthesis by Qβ replicase results in a periodic polyG pattern. FEBS Lett 2023; 597:458-471. [PMID: 36477752 DOI: 10.1002/1873-3468.14556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
The repetitive copying of template nucleotides due to transcriptional slippage has not been reported for RNA-directed RNA polymerases of positive-strand RNA phages. We unexpectedly observed that, with GTP as the only substrate, Qβ replicase, the RNA-directed RNA polymerase of bacteriophage Qβ, synthesizes by transcriptional slippage polyG strands, which on denaturing electrophoresis produce a ladder with at least three clusters of bolder bands. The ≈ 15-nt-long G15 , the major product of the shortest cluster, is tightly bound by the enzyme but can be released by the ribosomal protein S1, which, as a Qβ replicase subunit, normally promotes the release of a completed transcript. 7-deaza-GTP suppresses the polyG synthesis and abolishes the periodic pattern, suggesting that the N7 atom is needed for the initiation of RNA synthesis and the formation of the structure recognized by protein S1. The results provide new insights into the mechanism of RNA synthesis by the RNA-directed RNA polymerase of a single-stranded RNA phage.
Collapse
Affiliation(s)
- Kirill V Lobodin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Helena V Chetverina
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | | |
Collapse
|
4
|
Wang J, Yashiro Y, Sakaguchi Y, Suzuki T, Tomita K. Mechanistic insights into tRNA cleavage by a contact-dependent growth inhibitor protein and translation factors. Nucleic Acids Res 2022; 50:4713-4731. [PMID: 35411396 PMCID: PMC9071432 DOI: 10.1093/nar/gkac228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Contact-dependent growth inhibition is a mechanism of interbacterial competition mediated by delivery of the C-terminal toxin domain of CdiA protein (CdiA–CT) into neighboring bacteria. The CdiA–CT of enterohemorrhagic Escherichia coli EC869 (CdiA–CTEC869) cleaves the 3′-acceptor regions of specific tRNAs in a reaction that requires the translation factors Tu/Ts and GTP. Here, we show that CdiA–CTEC869 has an intrinsic ability to recognize a specific sequence in substrate tRNAs, and Tu:Ts complex promotes tRNA cleavage by CdiA–CTEC869. Uncharged and aminoacylated tRNAs (aa-tRNAs) were cleaved by CdiA–CTEC869 to the same extent in the presence of Tu/Ts, and the CdiA–CTEC869:Tu:Ts:tRNA(aa-tRNA) complex formed in the presence of GTP. CdiA–CTEC869 interacts with domain II of Tu, thereby preventing the 3′-moiety of tRNA to bind to Tu as in canonical Tu:GTP:aa-tRNA complexes. Superimposition of the Tu:GTP:aa-tRNA structure onto the CdiA–CTEC869:Tu structure suggests that the 3′-portion of tRNA relocates into the CdiA–CTEC869 active site, located on the opposite side to the CdiA–CTEC869 :Tu interface, for tRNA cleavage. Thus, CdiA–CTEC869 is recruited to Tu:GTP:Ts, and CdiA–CT:Tu:GTP:Ts recognizes substrate tRNAs and cleaves them. Tu:GTP:Ts serves as a reaction scaffold that increases the affinity of CdiA–CTEC869 for substrate tRNAs and induces a structural change of tRNAs for efficient cleavage by CdiA–CTEC869.
Collapse
Affiliation(s)
- Jing Wang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa,Chiba277-8562, Japan
| | - Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa,Chiba277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa,Chiba277-8562, Japan
| |
Collapse
|
5
|
Sunami T, Ichihashi N, Nishikawa T, Kazuta Y, Yomo T. Effect of Liposome Size on Internal RNA Replication Coupled with Replicase Translation. Chembiochem 2016; 17:1282-9. [DOI: 10.1002/cbic.201500662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Takeshi Sunami
- Institute for Academic Initiatives; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Bioinformatics Engineering; Graduate School of Information Science and Technology; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takehiro Nishikawa
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yasuaki Kazuta
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Bioinformatics Engineering; Graduate School of Information Science and Technology; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Graduate School of Frontier Biosciences; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
6
|
Sustainable proliferation of liposomes compatible with inner RNA replication. Proc Natl Acad Sci U S A 2015; 113:590-5. [PMID: 26711996 DOI: 10.1073/pnas.1516893113] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although challenging, the construction of a life-like compartment via a bottom-up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze-thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably.
Collapse
|
7
|
Gytz H, Mohr D, Seweryn P, Yoshimura Y, Kutlubaeva Z, Dolman F, Chelchessa B, Chetverin AB, Mulder FAA, Brodersen DE, Knudsen CR. Structural basis for RNA-genome recognition during bacteriophage Qβ replication. Nucleic Acids Res 2015; 43:10893-906. [PMID: 26578560 PMCID: PMC4678825 DOI: 10.1093/nar/gkv1212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023] Open
Abstract
Upon infection of Escherichia coli by bacteriophage Qβ, the virus-encoded β-subunit recruits host translation elongation factors EF-Tu and EF-Ts and ribosomal protein S1 to form the Qβ replicase holoenzyme complex, which is responsible for amplifying the Qβ (+)-RNA genome. Here, we use X-ray crystallography, NMR spectroscopy, as well as sequence conservation, surface electrostatic potential and mutational analyses to decipher the roles of the β-subunit and the first two oligonucleotide-oligosaccharide-binding domains of S1 (OB1–2) in the recognition of Qβ (+)-RNA by the Qβ replicase complex. We show how three basic residues of the β subunit form a patch located adjacent to the OB2 domain, and use NMR spectroscopy to demonstrate for the first time that OB2 is able to interact with RNA. Neutralization of the basic residues by mutagenesis results in a loss of both the phage infectivity in vivo and the ability of Qβ replicase to amplify the genomic RNA in vitro. In contrast, replication of smaller replicable RNAs is not affected. Taken together, our data suggest that the β-subunit and protein S1 cooperatively bind the (+)-stranded Qβ genome during replication initiation and provide a foundation for understanding template discrimination during replication initiation.
Collapse
Affiliation(s)
- Heidi Gytz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Durita Mohr
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Paulina Seweryn
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yuichi Yoshimura
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zarina Kutlubaeva
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Fleur Dolman
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bosene Chelchessa
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander B Chetverin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Awai T, Ichihashi N, Yomo T. Activities of 20 aminoacyl-tRNA synthetases expressed in a reconstituted translation system in Escherichia coli. Biochem Biophys Rep 2015; 3:140-143. [PMID: 29124177 PMCID: PMC5668874 DOI: 10.1016/j.bbrep.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/18/2023] Open
Abstract
A significant challenge in the field of in vitro synthetic biology is the construction of a self-reproducing cell-free translation system, which reproduces its components, such as translation proteins, through translation and transcription by itself. As a first step for such construction, in this study we expressed and evaluated the activity of 20 aminoacyl-tRNA synthetases (aaRSs), a major component of a translation system, in a reconstituted translation system (PURE system). We found that 19 aaRS with the exception of phenylalanyl-tRNA synthetase (PheRS) are expressed as soluble proteins and their activities are comparable to those expressed in Escherichia coli . This study provides basic information on the properties of aaRSs expressed in the PURE system, which will be helpful for the future reconstitution of a self-reproducing translation system. We expressed 20 aminoacyl-tRNA synthetases in a reconstituted translation system. All aminoacyl-tRNA synthetases (aaRSs) are expressed as soluble proteins. All aaRSs with the exception of phenylalanyl-tRNA synthetase are active. Their activities are comparable to those expressed in E. coli.
Collapse
Affiliation(s)
- Takako Awai
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Ortín J, Martín-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology 2015; 479-480:532-44. [PMID: 25824479 DOI: 10.1016/j.virol.2015.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
Abstract
The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes.
Collapse
Affiliation(s)
- Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid, Spain.
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Usui K, Ichihashi N, Kazuta Y, Matsuura T, Yomo T. Effects of ribosomes on the kinetics of Qβ replication. FEBS Lett 2013; 588:117-23. [PMID: 24269228 DOI: 10.1016/j.febslet.2013.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage Qβ utilizes some host cell translation factors during replication. Previously, we constructed a kinetic model that explains replication of long RNA molecules by Qβ replicase. Here, we expanded the previous kinetic model to include the effects of ribosome concentration on RNA replication. The expanded model quantitatively explained single- and double-strand formation kinetics during replication with various ribosome concentrations for two artificial long RNAs. This expanded model and the knowledge obtained in this study provide useful frameworks to understand the precise replication mechanism of Qβ replicase with ribosomes and to design amplifiable RNA genomes in translation-coupling systems.
Collapse
Affiliation(s)
- Kimihito Usui
- Japan Science and Technology Agency (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Norikazu Ichihashi
- Japan Science and Technology Agency (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, Yamadaoka 1-5, Suita, Osaka, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Yasuaki Kazuta
- Japan Science and Technology Agency (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Japan Science and Technology Agency (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, Yamadaoka 1-5, Suita, Osaka, Japan; Graduate School of Engineering, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Tetsuya Yomo
- Japan Science and Technology Agency (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, Yamadaoka 1-5, Suita, Osaka, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan.
| |
Collapse
|
11
|
Usui K, Ichihashi N, Kazuta Y, Matsuura T, Yomo T. Kinetic model of double-stranded RNA formation during long RNA replication by Qβ replicase. FEBS Lett 2013; 587:2565-71. [DOI: 10.1016/j.febslet.2013.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/29/2013] [Accepted: 06/25/2013] [Indexed: 11/28/2022]
|
12
|
Gunasekaran K, Bergquist PL, Sunna A. Facile production and rapid purification of functional recombinant Qβ replicase heterotetramer complex. Appl Biochem Biotechnol 2012; 169:651-9. [PMID: 23269632 DOI: 10.1007/s12010-012-0018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
We describe an improved method for the production of recombinant Qβ replicase heterotetramer. The successful expression of the soluble Qβ RNA polymerase complex depends on the EF-Ts and EF-Tu subunits being co-expressed prior to β-subunit expression. Efficient co-expression requires two different inducible operons to co-ordinate the expression of the heterotrimer. The complete heterotetramer enzyme complex is achieved by production of the recombinant S1-subunit of Qβ replicase in a separate host. This approach represents a facile way for producing and purifying large amounts of soluble and active recombinant Qβ replicase tetramer without the necessity of a His-tag for purification.
Collapse
Affiliation(s)
- Karthikeyan Gunasekaran
- Department of Chemistry and Biomolecular Sciences, and Environmental Biotechnology CRC, Macquarie University, North Ryde, 2109 Sydney, NSW, Australia
| | | | | |
Collapse
|
13
|
Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. ACTA ACUST UNITED AC 2012; 19:478-87. [PMID: 22520754 DOI: 10.1016/j.chembiol.2012.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/03/2023]
Abstract
Increasingly complex reactions are being constructed by bottom-up approaches with the aim of developing an artificial cell. We have been engaged in the construction of a translation-coupled replication system of genetic information from RNA and a reconstituted translation system. Here a mathematical model was established to gain a quantitative understanding of the complex reaction network. The sensitivity analysis predicted that the limiting factor for the present replication reaction was the appearance of parasitic replicators. We then confirmed experimentally that repression of such parasitic replicators by compartmentalization of the reaction in water-in-oil emulsions improved the duration of self-replication. We also found that the main source of the parasite was genomic RNA, probably by nonhomologous recombination. This result provided experimental evidence for the importance of parasite repression for the development of long-lasting genome replication systems.
Collapse
|
14
|
Takeshita D, Yamashita S, Tomita K. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Structure 2012; 20:1661-9. [PMID: 22884418 DOI: 10.1016/j.str.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
The genomic RNA of Qβ virus is replicated by Qβ replicase, a template-dependent RNA polymerase complex. Qβ replicase has an intrinsic template-independent RNA 3'-adenylation activity, which is required for efficient viral RNA amplification in the host cells. However, the mechanism of the template-independent 3'-adenylation of RNAs by Qβ replicase has remained elusive. We determined the structure of a complex that includes Qβ replicase, a template RNA, a growing RNA complementary to the template RNA, and ATP. The structure represents the terminal stage of RNA polymerization and reveals that the shape and size of the nucleotide-binding pocket becomes available for ATP accommodation after the 3'-penultimate template-dependent C-addition. The stacking interaction between the ATP and the neighboring Watson-Crick base pair, between the 5'-G in the template and the 3'-C in the growing RNA, contributes to the nucleotide specificity. Thus, the template for the template-independent 3'-adenylation by Qβ replicase is the RNA and protein ribonucleoprotein complex.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
15
|
Molecular basis for RNA polymerization by Qβ replicase. Nat Struct Mol Biol 2012; 19:229-37. [PMID: 22245970 DOI: 10.1038/nsmb.2204] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/15/2011] [Indexed: 12/17/2022]
Abstract
Core Qβ replicase comprises the Qβ virus-encoded RNA-dependent RNA polymerase (β-subunit) and the host Escherichia coli translational elongation factors EF-Tu and EF-Ts. The functions of the host proteins in the viral replicase are not clear. Structural analyses of RNA polymerization by core Qβ replicase reveal that at the initiation stage, the 3'-adenine of the template RNA provides a stable platform for de novo initiation. EF-Tu in Qβ replicase forms a template exit channel with the β-subunit. At the elongation stages, the C-terminal region of the β-subunit, assisted by EF-Tu, splits the temporarily double-stranded RNA between the template and nascent RNAs before translocation of the single-stranded template RNA into the exit channel. Therefore, EF-Tu in Qβ replicase modulates RNA elongation processes in a distinct manner from its established function in protein synthesis.
Collapse
|
16
|
Ichihashi N, Matsuura T, Hosoda K, Yomo T. Identification of two forms of Q{beta} replicase with different thermal stabilities but identical RNA replication activity. J Biol Chem 2010; 285:37210-7. [PMID: 20858892 DOI: 10.1074/jbc.m110.117846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme Qβ replicase is an RNA-dependent RNA polymerase, which plays a central role in infection by the simple single-stranded RNA virus bacteriophage Qβ. This enzyme has been used in a number of applications because of its unique activity in amplifying RNA from an RNA template. Determination of the thermal stability of Qβ replicase is important to gain an understanding of its function and potential applications, but data reported to date have been contradictory. Here, we provide evidence that these previous inconsistencies were due to the heterogeneous forms of the replicase with different stabilities. We purified two forms of replicase expressed in Escherichia coli, which differed in their thermal stability but showed identical RNA replication activity. Furthermore, we found that the replicase undergoes conversion between these forms due to oxidation, and the Cys-533 residue in the catalytic β subunit and Cys-82 residue in the EF-Tu subunit of the replicase are essential prerequisites for this conversion to occur. These results strongly suggest that the thermal stable replicase contains the intersubunit disulfide bond between these cysteines. The established strategies for isolating and purifying a thermally stable replicase should increase the usefulness of Qβ replicase in various applications, and the data regarding thermal stability obtained in this study may yield insight into the precise mechanism of infection by bacteriophage Qβ.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
17
|
Vasiliev NN, Jenner L, Yusupov MM, Chetverin AB. Isolation and crystallization of a chimeric Qβ replicase containing Thermus thermophilus EF-Ts. BIOCHEMISTRY (MOSCOW) 2010; 75:989-94. [DOI: 10.1134/s0006297910080067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc Natl Acad Sci U S A 2010; 107:15733-8. [PMID: 20798060 DOI: 10.1073/pnas.1006559107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.
Collapse
|
19
|
Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proc Natl Acad Sci U S A 2010; 107:10884-9. [PMID: 20534494 DOI: 10.1073/pnas.1003015107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The RNA-dependent RNA polymerase core complex formed upon infection of Escherichia coli by the bacteriophage Qbeta is composed of the viral catalytic beta-subunit as well as the host translation elongation factors EF-Tu and EF-Ts, which are required for initiation of RNA replication. We have determined the crystal structure of the complex between the beta-subunit and the two host proteins to 2.5-A resolution. Whereas the basic catalytic machinery in the viral subunit appears similar to other RNA-dependent RNA polymerases, a unique C-terminal region of the beta-subunit engages in extensive interactions with EF-Tu and may contribute to the separation of the transient duplex formed between the template and the nascent product to allow exponential amplification of the phage genome. The evolution of resistance by the host appears to be impaired because of the interactions of the beta-subunit with parts of EF-Tu essential in recognition of aminoacyl-tRNA.
Collapse
|
20
|
Urabe H, Ichihashi N, Matsuura T, Hosoda K, Kazuta Y, Kita H, Yomo T. Compartmentalization in a Water-in-Oil Emulsion Repressed the Spontaneous Amplification of RNA by Qβ Replicase. Biochemistry 2010; 49:1809-13. [PMID: 20108973 DOI: 10.1021/bi901805u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroya Urabe
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Norikazu Ichihashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Tomoaki Matsuura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Kazufumi Hosoda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Yasuaki Kazuta
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Hiroshi Kita
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST)
| | - Tetsuya Yomo
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST)
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
21
|
Ichihashi N, Matsuura T, Kita H, Hosoda K, Sunami T, Tsukada K, Yomo T. Importance of translation-replication balance for efficient replication by the self-encoded replicase. Chembiochem 2009; 9:3023-8. [PMID: 19021140 DOI: 10.1002/cbic.200800518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In all living systems, the genetic information is replicated by the self-encoded replicase (Rep); this can be said to be a self-encoding system. Recently, we constructed a self-encoding system in liposomes as an artificial cell model, consisting of a reconstituted translation system and an RNA encoding the catalytic subunit of Qbeta Rep and the RNA was replicated by the self-encoded Rep produced by the translation reaction. In this system, both the ribosome (Rib) and Rep bind to the same RNA for translation and replication, respectively. Thus, there could be a dilemma: effective RNA replication requires high levels of Rep translation, but excessive translation in turn inhibits replication. Herein, we actually observed the competition between the Rib and Rep, and evaluated the effect for RNA replication by constructing a kinetic model that quantitatively explained the behavior of the self-encoding system. Both the experimental and theoretical results consistently indicated that the balance between translation and replication is critical for an efficient self-encoded system, and we determined the optimum balance.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Tsukada K, Okazaki M, Kita H, Inokuchi Y, Urabe I, Yomo T. Quantitative analysis of the bacteriophage Qβ infection cycle. Biochim Biophys Acta Gen Subj 2009; 1790:65-70. [DOI: 10.1016/j.bbagen.2008.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
|
23
|
Kita H, Matsuura T, Sunami T, Hosoda K, Ichihashi N, Tsukada K, Urabe I, Yomo T. Replication of Genetic Information with Self-Encoded Replicase in Liposomes. Chembiochem 2008; 9:2403-10. [DOI: 10.1002/cbic.200800360] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Davis WG, Blackwell JL, Shi PY, Brinton MA. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 2007; 81:10172-87. [PMID: 17626087 PMCID: PMC2045417 DOI: 10.1128/jvi.00531-07] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3'(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3'(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3' SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3' SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3' SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3' end of the genome and the RC. eEF1A bound with similar efficiencies to the 3'-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.
Collapse
Affiliation(s)
- William G Davis
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
25
|
Hosoda K, Matsuura T, Kita H, Ichihashi N, Tsukada K, Yomo T. Kinetic analysis of the entire RNA amplification process by Qbeta replicase. J Biol Chem 2007; 282:15516-27. [PMID: 17412690 DOI: 10.1074/jbc.m700307200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of the RNA replication reaction by Qbeta replicase were investigated. Qbeta replicase is an RNA-dependent RNA polymerase responsible for replicating the RNA genome of coliphage Qbeta and plays a key role in the life cycle of the Qbeta phage. Although the RNA replication reaction using this enzyme has long been studied, a kinetic model that can describe the entire RNA amplification process has yet to be determined. In this study, we propose a kinetic model that is able to account for the entire RNA amplification process. The key to our proposed kinetic model is the consideration of nonproductive binding (i.e. binding of an enzyme to the RNA where the enzyme cannot initiate the reaction). By considering nonproductive binding and the notable enzyme inactivation we observed, the previous observations that remained unresolved could also be explained. Moreover, based on the kinetic model and the experimental results, we determined rate and equilibrium constants using template RNAs of various lengths. The proposed model and the obtained constants provide important information both for understanding the basis of Qbeta phage amplification and the applications using Qbeta replicase.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|