1
|
Wu H, Nakazawa T, Takenaka A, Kodera R, Morimoto R, Sakamoto M, Honda Y. Transcriptional shifts in delignification-defective mutants of the white-rot fungus Pleurotus ostreatus. FEBS Lett 2020; 594:3182-3199. [PMID: 32697375 DOI: 10.1002/1873-3468.13890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
White-rot fungi efficiently degrade lignin and, thus, play a pivotal role in the global carbon cycle. However, the mechanisms of lignin degradation are largely unknown. Recently, mutations in four genes, namely wtr1, chd1, pex1, and gat1, were shown to abrogate the wood lignin-degrading ability of Pleurotus ostreatus. In this study, we conducted a comparative transcriptome analysis to identify genes that are differentially expressed in ligninolysis-deficient mutant strains. Putative ligninolytic genes that are highly expressed in parental strains are significantly downregulated in the mutant strains. On the contrary, many putative cellulolytic and xylanolytic genes are upregulated in the chd1-1, Δpex1, and Δgat1 strains. Identifying transcriptional alterations in mutant strains could provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Atsuki Takenaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Biosynthesis of d-lactic acid from lignocellulosic biomass. Biotechnol Lett 2018; 40:1167-1179. [DOI: 10.1007/s10529-018-2588-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022]
|
3
|
Production of optically pure d-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 2016; 101:1869-1875. [DOI: 10.1007/s00253-016-7976-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/02/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
|
4
|
Guo W, He R, Ma L, Jia W, Li D, Chen S. Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 2014; 98:6641-50. [DOI: 10.1007/s00253-014-5703-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
5
|
Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 2011; 92:67-76. [DOI: 10.1007/s00253-011-3356-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|
6
|
Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A. Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol 2011; 91:1537-44. [DOI: 10.1007/s00253-011-3342-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/15/2011] [Accepted: 04/16/2011] [Indexed: 11/30/2022]
|
7
|
Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 2010; 77:1892-5. [PMID: 21193678 DOI: 10.1128/aem.02076-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus mundtii QU 25, a newly isolated lactic acid bacterium, efficiently metabolized xylose into l-lactate. In batch fermentations, the strain produced 964 mM l-(+)-lactate from 691 mM xylose, with a yield of 1.41 mol/mol xylose consumed and an extremely high optical purity of ≥99.9% without acetate production.
Collapse
|
8
|
Oshiro M, Shinto H, Tashiro Y, Miwa N, Sekiguchi T, Okamoto M, Ishizaki A, Sonomoto K. Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. J Biosci Bioeng 2010; 108:376-84. [PMID: 19804860 DOI: 10.1016/j.jbiosc.2009.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
We proposed a kinetic simulation model of xylose metabolism in Lactococcus lactis IO-1 that describes the dynamic behavior of metabolites using the simulator WinBEST-KIT. This model was developed by comparing the experimental time-course data of metabolites in batch cultures grown in media with initial xylose concentrations of 20.3-57.8 g/l with corresponding calculated data. By introducing the terms of substrate activation, substrate inhibition, and product inhibition, the revised model showed a squared correlation coefficient (r2) of 0.929 between the experimental time-course of metabolites and the calculated data. Thus, the revised model is assumed to be one of the best candidates for kinetic simulation describing the dynamic behavior of metabolites. Sensitivity analysis revealed that pyruvate flux distribution is important for higher lactate production. To confirm the validity of our kinetic model, the results of the sensitivity analysis were compared with enzyme activities observed during increasing lactate production by adding natural rubber serum powder to the xylose medium. The experimental results on pyruvate flux distribution were consistent with the prediction by sensitivity analysis.
Collapse
Affiliation(s)
- Mugihito Oshiro
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 2009; 5:306. [PMID: 19756045 PMCID: PMC2758719 DOI: 10.1038/msb.2009.65] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/05/2009] [Indexed: 11/09/2022] Open
Abstract
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple-knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico predictions and experimental growth indicated that unreported reactions existed within this extensively analyzed metabolic network. These putative reactions were then confirmed by metabolome analysis and in vitro enzymatic assays. Novel reactions regarding the breakdown of sedoheptulose-7-phosphate to erythrose-4-phosphate and dihydroxyacetone phosphate were observed in transaldolase-deficient mutants, without any noticeable changes in gene expression. These reactions, triggered by an accumulation of sedoheptulose-7-phosphate, were catalyzed by the universally conserved glycolytic enzymes ATP-dependent phosphofructokinase and aldolase. The emergence of an alternative pathway not requiring any changes in gene expression, but rather relying on the accumulation of an intermediate metabolite may be a novel mechanism mediating the robustness of these metabolic networks.
Collapse
Affiliation(s)
- Kenji Nakahigashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yoshihiro Toya
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nobuyoshi Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Miki Hasegawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hisami Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yuki Takai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masayuki Honma
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hirotada Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
10
|
Raweesri P, Riangrungrojana P, Pinphanichakarn P. alpha-L-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. BIORESOURCE TECHNOLOGY 2008; 99:8981-6. [PMID: 18606539 DOI: 10.1016/j.biortech.2008.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 05/10/2023]
Abstract
alpha-l-Arabinofuranosidase was purified from culture filtrates of the thermoalkaliphilic Streptomyces sp. PC22 to about 108-fold purity by (NH(4))(2)SO(4) precipitation followed by column chromatography. Its approximate molecular weight was 404kDa, with a subunit mass of approximately 79kDa. The evaluated K(m) and V(max) values with p-nitrophenyl-alpha-l-arabinofuranoside as substrate were 0.23mM and 124 U.mg(-1), respectively. The purified enzyme was optimally active at 65 degrees C and pH 6.0 and showed a mild but significant synergistic effect in combination with other xylanolytic enzymes, including xylanase, beta-xylosidase and acetyl esterase, on the degradation of oat-spelt xylan, corn cob and corn husk substrates with a 1.25, 1.32 and 1.21-fold increase in the amount of reducing sugar released, respectively, compared to the expected (additive) amounts for the individual enzymes acting alone. Sequential reactions using two xylan-backbone degrading enzymes (xylanase/beta-xylosidase) and two debranching enzymes (alpha-l-arabinofuranosidase/acetyl esterase) were also determined. The highest degree of synergy was obtained in sequential reactions with the debranching enzyme digestion preceding the xylan-backbone degrading enzymes.
Collapse
Affiliation(s)
- P Raweesri
- Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|