1
|
Abstract
The island of Hunga Tonga Hunga Ha'apai (HTHH) in the Kingdom of Tonga was formed by Surtseyan eruptions and persisted for 7 years before being obliterated by a massive volcanic eruption on 15 January 2022. Before it was destroyed, HTHH was an unparalleled natural laboratory to study primary succession on a newly formed landmass. We characterized the microbial communities found on the surface sediments of HTHH using a combination of quantitative PCR, marker gene sequencing, and shotgun metagenomic analyses. Contrary to expectations, photosynthetic cyanobacteria were not detected in these sediments, even though they are typically dominant in the earliest stages of primary succession in other terrestrial environments. Instead, our results suggest that the early sediment communities were composed of a diverse array of bacterial taxa, including trace gas oxidizers, anoxygenic photosynthesizers, and chemolithotrophs capable of metabolizing inorganic sulfur, with these bacteria likely sourced from nearby active geothermal environments. While the destruction of HTHH makes it impossible to revisit the site to conduct in situ metabolic measurements or observe how the microbial communities might have continued to change over time, our results do suggest that the early microbial colonizers have unique origins and metabolic capabilities. IMPORTANCE The volcanic island of Hunga Tonga Hunga Ha'apai in the Kingdom of Tonga represents a very rare example of new island formation and thus a unique opportunity to study how organisms colonize a new landmass. We found that the island was colonized by diverse microbial communities shortly after its formation in 2015, with these microbes likely originating from nearby geothermal environments. Primary succession in this system was distinct from that typically observed in other terrestrial environments, with the early microbial colonizers relying on unique metabolic strategies to survive on the surface of this newly formed island, including the capacity to generate energy via sulfur and trace gas metabolism.
Collapse
|
2
|
Arsyadi A, Guo Y, Ebihara A, Sakagami N, Sakoda M, Tago K, Kamijo T, Ohta H, Nishizawa T. A Nitrate-Transforming Bacterial Community Dominates in the Miscanthus Rhizosphere on Nitrogen-Deficient Volcanic Deposits of Miyake-jima. Microorganisms 2023; 11:260. [PMID: 36838234 PMCID: PMC9961740 DOI: 10.3390/microorganisms11020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The perennial gramineous grass Miscanthus condensatus functions as a major pioneer plant in colonizing acidic volcanic deposits on Miyake-jima, Japan, despite a lack of nitrogen nutrients. The nitrogen cycle in the rhizosphere is important for the vigorous growth of M. condensatus in this unfavorable environment. In the present study, we identified the nitrogen-cycling bacterial community in the M. condensatus rhizosphere on these volcanic deposits using a combination of metagenomics and culture-based analyses. Our results showed a large number of functional genes related to denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in the rhizosphere, indicating that nitrate-transforming bacteria dominated the rhizosphere biome. Furthermore, nitrite reductase genes (i.e., nirK and nirS) related to the denitrification and those genes related to DNRA (i.e., nirB and nrfA) were mainly annotated to the classes Alpha-proteobacteria, Beta-proteobacteria, and Gamma-proteobacteria. A total of 304 nitrate-succinate-stimulated isolates were obtained from the M. condensatus rhizosphere and were classified into 34 operational taxonomic units according to amplified 16S rRNA gene restriction fragment pattern analysis. Additionally, two strains belonging to the genus Cupriavidus in the class Beta-proteobacteria showed a high in vitro denitrifying activity; however, metagenomic results indicated that the DNRA-related rhizobacteria appeared to take a major role in the nitrogen cycle of the M. condensatus rhizosphere in recent Miyake-jima volcanic deposits. This study elucidates the association between the Miscanthus rhizosphere and the nitrate-reducing bacterial community on newly placed volcanic deposits, which furthers our understanding of the transformation of nitrogen nutrition involved in the early development of vegetation.
Collapse
Affiliation(s)
- Ahmad Arsyadi
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Yong Guo
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Akiko Ebihara
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Nobuo Sakagami
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Midori Sakoda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8604, Japan
| | - Takashi Kamijo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroyuki Ohta
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Tomoyasu Nishizawa
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Rincón-Molina CI, Martínez-Romero E, Aguirre-Noyola JL, Manzano-Gómez LA, Zenteno-Rojas A, Rogel MA, Rincón-Molina FA, Ruíz-Valdiviezo VM, Rincón-Rosales R. Bacterial Community with Plant Growth-Promoting Potential Associated to Pioneer Plants from an Active Mexican Volcanic Complex. Microorganisms 2022; 10:microorganisms10081568. [PMID: 36013987 PMCID: PMC9413462 DOI: 10.3390/microorganisms10081568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Microorganisms in extreme volcanic environments play an important role in the development of plants on newly exposed substrates. In this work, we studied the structure and diversity of a bacterial community associated to Andropogon glomeratus and Cheilanthes aemula at El Chichón volcano. The genetic diversity of the strains was revealed by genomic fingerprints and by 16S rDNA gene sequencing. Furthermore, a metagenomic analysis of the rhizosphere samples was carried out for pioneer plants growing inside and outside the volcano. Multifunctional biochemical tests and plant inoculation assays were evaluated to determine their potential as plant growth-promoting bacteria (PGPB). Through metagenomic analysis, a total of 33 bacterial phyla were identified from A. glomeratus and C. aemula rhizosphere samples collected inside the volcano, and outside the volcano 23 bacterial phyla were identified. For both rhizosphere samples, proteobacteria was the most abundant phylum. With a cultivable approach, 174 bacterial strains were isolated from the rhizosphere and tissue of plants growing outside the volcanic complex. Isolates were classified within the genera Acinetobacter, Arthrobacter, Bacillus, Burkholderia, Cupriavidus, Enterobacter, Klebsiella, Lysinibacillus, Pantoea, Pseudomonas, Serratia, Stenotrophomonas and Pandoraea. The evaluated strains were able to produce indole compounds, solubilize phosphate, synthesize siderophores, showed ACC deaminase and nitrogenase activity, and they had a positive effect on the growth and development of Capsicum chinense. The wide diversity of bacteria associated to pioneer plants at El Chichón volcano with PGPB qualities represent an alternative for the recovery of eroded environments, and they can be used efficiently as biofertilizers for agricultural crops growing under adverse conditions.
Collapse
Affiliation(s)
- Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P., Cuernavaca 62210, Morelos, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P., Cuernavaca 62210, Morelos, Mexico
| | - Luis Alberto Manzano-Gómez
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, C.P., Tuxtla Gutierrez 29000, Chiapas, Mexico
| | - Adalberto Zenteno-Rojas
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P., Cuernavaca 62210, Morelos, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
- Correspondence: ; Tel.: +52-9616150461
| |
Collapse
|
4
|
Sharma G, Curtis PD. The Impacts of Microgravity on Bacterial Metabolism. Life (Basel) 2022; 12:774. [PMID: 35743807 PMCID: PMC9225508 DOI: 10.3390/life12060774] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
The inside of a space-faring vehicle provides a set of conditions unlike anything experienced by bacteria on Earth. The low-shear, diffusion-limited microenvironment with accompanying high levels of ionizing radiation create high stress in bacterial cells, and results in many physiological adaptations. This review gives an overview of the effect spaceflight in general, and real or simulated microgravity in particular, has on primary and secondary metabolism. Some broad trends in primary metabolic responses can be identified. These include increases in carbohydrate metabolism, changes in carbon substrate utilization range, and changes in amino acid metabolism that reflect increased oxidative stress. However, another important trend is that there is no universal bacterial response to microgravity, as different bacteria often have contradictory responses to the same stress. This is exemplified in many of the observed secondary metabolite responses where secondary metabolites may have increased, decreased, or unchanged production in microgravity. Different secondary metabolites in the same organism can even show drastically different production responses. Microgravity can also impact the production profile and localization of secondary metabolites. The inconsistency of bacterial responses to real or simulated microgravity underscores the importance of further research in this area to better understand how microbes can impact the people and systems aboard spacecraft.
Collapse
Affiliation(s)
| | - Patrick D. Curtis
- Department of Biology, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
5
|
Anderson D, Song YP, Wu YT. Environmental Variables Including Heavy Metals Significantly Shape the Soil Bacterial Community Structure in the Tatun Volcano Group, Northern Taiwan. Microbes Environ 2022; 37:ME22005. [PMID: 36273895 PMCID: PMC9763040 DOI: 10.1264/jsme2.me22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023] Open
Abstract
Recent studies suggested the presence of magma chambers from the Tatun volcano group under northern Taiwan's surface, the result of episodic volcanism for 0.2-2.8 million years. However, the microbial community in volcanic soil has not yet been characterized. Therefore, the present study investigated the spatial distribution of microbial communities and their relationships with environmental variables, including heavy metals. Next-generation sequencing was used to analyze the microbial community structures in three areas with different land uses: Lengshuikeng (recreational area), Zhuzihu (agricultural area), and Huangzuishan (conservation area). High contents of environmental factors, such as nitrogen (0.46-1.14%) and phosphorus (2.01-13.88 ppm), were detected. Large concentrations of heavy metals, such as copper (55.90-127.60 ppm) and zinc (36.13-147.73 ppm), were found among the three sites, whereas those of lead (83.13 ppm) and chromium (48.33 ppm) were higher in the Zhuzihu area. The most prevalent phylum across all sites was Proteobacteria, followed by Actinobacteria, Acidobacteria, and Chloroflexi, while the most abundant bacterial species was Koribacteraceae: NA_01, followed by Cyanobacteria: NA. A network ana-lysis showed that Koribacteracea: NA_01 positively correlated with bacterial groups, including Flavisolibacter sp., Oxalobacteraceae: NA, and Actinomycetales: NA_01. Based on Shannon and Simpson's diversity indices, the diversity of bacteria was significantly less in the Huangzuishan area than in the Lengshuikeng and Zhuzihu areas. Bacterial assemblages also significantly differed (P<0.05) among the three sites. The present results provide clear evidence to show that environmental variables, including heavy metals, are key factors affecting the bacterial community structure in volcanic soil.
Collapse
Affiliation(s)
- David Anderson
- Department of Tropical Agriculture and International Cooperation (DTAIC), National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Ying-Ping Song
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou 55750, Taiwan, ROC
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
6
|
Abstract
In this study, we identified the luminescent layers containing a significant amount of alginite in the Upper Jurassic–Lower Cretaceous Bazhenov Formation named “the alginite-rich layers”. Lithological and geochemical methods were used to determine distinctive features of these layers and to evaluate their impact on the total petroleum generation potential of the Bazhenov Formation. We have shown that the composition of the alginite-rich layers differs significantly from the organic-rich siliceous Bazhenov rocks. Rock-Eval pyrolysis, bulk kinetics of thermal decomposition, elemental analysis, and the composition of pyrolysis products indicate type I kerogen to be the predominant component of the organic matter (OM). Isotope composition of carbon, nitrogen, and sulfur was used to provide insights into their origin and formation pathways. The luminescent alginite-rich layers proved to be good regional stratigraphic markers of the Bazhenov Formation due to widespread distribution over the central part of Western Siberia. They can also be applied for maturity evaluation of the deposits from immature to middle of the oil window, since the luminescence of the layers changes the color and intensity during maturation.
Collapse
|
7
|
Rojas-Gätjens D, Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Mora-Amador R, Rojas-Jimenez K, Fuentes-Schweizer P, Pieper DH, Chavarría M. Temperature and elemental sulfur shape microbial communities in two extremely acidic aquatic volcanic environments. Extremophiles 2021; 25:85-99. [PMID: 33416983 DOI: 10.1007/s00792-020-01213-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Aquatic environments of volcanic origin provide an exceptional opportunity to study the adaptations of microorganisms to early planet life conditions. Here, we characterized the prokaryotic communities and physicochemical properties of seepage sites at the bottom of the Poas Volcano crater and the Agrio River, two geologically related extremely acidic environments located in Costa Rica. Both locations hold a low pH (1.79-2.20) and have high sulfate and iron concentrations (Fe = 47-206 mg/L, SO42- = 1170-2460 mg/L), but significant differences in their temperature (90.0-95.0 ºC in the seepages at Poas Volcano, 19.1-26.6 ºC in Agrio River) and in the elemental sulfur content. Based on the analysis of 16S rRNA gene sequences, we determined that Sulfobacillus spp. represented more than half of the sequences in Poas Volcano seepage sites, while Agrio River was dominated by Leptospirillum and members of the archaeal order Thermoplasmatales. Both environments share some chemical characteristics and part of their microbiota, however, the temperature and the reduced sulfur are likely the main distinguishing features, ultimately shaping their microbial communities. Our data suggest that in the Poas Volcano-Agrio River system there is a common metabolism but with specialization of species that adapt to the physicochemical conditions of each environment.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Alejandro Arce-Rodríguez
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Eduardo Libby
- Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica
| | - Raúl Mora-Amador
- Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica.,Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, San José, 11501-2060, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.,Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica. .,Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica. .,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
| |
Collapse
|
8
|
Metagenomic analysis reveals rapid development of soil biota on fresh volcanic ash. Sci Rep 2020; 10:21419. [PMID: 33293603 PMCID: PMC7723037 DOI: 10.1038/s41598-020-78413-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Little is known of the earliest stages of soil biota development of volcanic ash, and how rapidly it can proceed. We investigated the potential for soil biota development during the first 3 years, using outdoor mesocosms of sterile, freshly fallen volcanic ash from the Sakurajima volcano, Japan. Mesocosms were positioned in a range of climates across Japan and compared over 3 years, against the developed soils of surrounding natural ecosystems. DNA was extracted from mesocosms and community composition assessed using 16S rRNA gene sequences. Metagenome sequences were obtained using shotgun metagenome sequencing. While at 12 months there was insufficient DNA for sequencing, by 24 months and 36 months, the ash-soil metagenomes already showed a similar diversity of functional genes to the developed soils, with a similar range of functions. In a surprising contrast with our hypotheses, we found that the developing ash-soil community already showed a similar gene function diversity, phylum diversity and overall relative abundances of kingdoms of life when compared to developed forest soils. The ash mesocosms also did not show any increased relative abundance of genes associated with autotrophy (rbc, coxL), nor increased relative abundance of genes that are associated with acquisition of nutrients from abiotic sources (nifH). Although gene identities and taxonomic affinities in the developing ash-soils are to some extent distinct from the natural vegetation soils, it is surprising that so many of the key components of a soil community develop already by the 24-month stage. In this system, however, rapid development may be facilitated by the relatively moderate pH of the Sakurajima ash, proximity of our mesocosms to propagule sources, and the rapid establishment of a productive bryophyte and lichen layer on the surface. Ash from other volcanoes richer in acids or more distant from propagule sources could show a different pattern and slower soil biota development.
Collapse
|
9
|
Chen J, Guo Y, Li F, Zheng Y, Xu D, Liu H, Liu X, Wang X, Bao Y. Exploring the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115600. [PMID: 33254629 DOI: 10.1016/j.envpol.2020.115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Volcanic eruptions are important components of natural disturbances that provide a model to explore the effects of volcanic eruption disturbances on soil microorganisms. Despite widespread research, to the best of our knowledge, no studies of volcanic eruption disturbances have investigated the effects on soil microbial communities in the montane meadow steppe. To address this gap, we meticulously investigated the characteristics of the soil microbial communities from the volcano and steppe sites using Illumina MiSeq high-throughput sequencing. Hierarchical clustering analysis and principal coordinate analysis (PCoA) showed that the soil microbial communities from the volcano and steppe sites differed. The diversity and richness of the soil microbial communities from the steppe sites were significantly higher than at the volcano sites (P < 0.05), and the soil microbial communities in the steppe sites had higher stability. The effects of volcanic eruption disturbances on the bacterial community development are greater than its effects on the fungal communities. The environmental filtering of volcanic eruptions selectively retained some special microorganisms (i.e., Conexibacter, Agaricales, and Gaiellales) with strong adaptability to the environmental disturbances, enhanced metabolic activity for sodium and calcium reabsorption, and increased relative abundances of the lichenized saprotrophs. The soil microbial communities from the volcano and steppe sites cooperate to form complex networks of species interactions, which are strongly influenced by the interaction of the soil and vegetation factors. Our findings provide new information on the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Yuqing Guo
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Fansheng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Daolong Xu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Xinyu Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China.
| |
Collapse
|
10
|
Hernández M, Vera-Gargallo B, Calabi-Floody M, King GM, Conrad R, Tebbe CC. Reconstructing Genomes of Carbon Monoxide Oxidisers in Volcanic Deposits Including Members of the Class Ktedonobacteria. Microorganisms 2020; 8:microorganisms8121880. [PMID: 33260993 PMCID: PMC7761526 DOI: 10.3390/microorganisms8121880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Microorganisms can potentially colonise volcanic rocks using the chemical energy in reduced gases such as methane, hydrogen (H2) and carbon monoxide (CO). In this study, we analysed soil metagenomes from Chilean volcanic soils, representing three different successional stages with ages of 380, 269 and 63 years, respectively. A total of 19 metagenome-assembled genomes (MAGs) were retrieved from all stages with a higher number observed in the youngest soil (1640: 2 MAGs, 1751: 1 MAG, 1957: 16 MAGs). Genomic similarity indices showed that several MAGs had amino-acid identity (AAI) values >50% to the phyla Actinobacteria, Acidobacteria, Gemmatimonadetes, Proteobacteria and Chloroflexi. Three MAGs from the youngest site (1957) belonged to the class Ktedonobacteria (Chloroflexi). Complete cellular functions of all the MAGs were characterised, including carbon fixation, terpenoid backbone biosynthesis, formate oxidation and CO oxidation. All 19 environmental genomes contained at least one gene encoding a putative carbon monoxide dehydrogenase (CODH). Three MAGs had form I coxL operon (encoding the large subunit CO-dehydrogenase). One of these MAGs (MAG-1957-2.1, Ktedonobacterales) was highly abundant in the youngest soil. MAG-1957-2.1 also contained genes encoding a [NiFe]-hydrogenase and hyp genes encoding accessory enzymes and proteins. Little is known about the Ktedonobacterales through cultivated isolates, but some species can utilise H2 and CO for growth. Our results strongly suggest that the remote volcanic sites in Chile represent a natural habitat for Ktedonobacteria and they may use reduced gases for growth.
Collapse
Affiliation(s)
- Marcela Hernández
- Johann Heinrich von Thünen Institut, Institut für Biodiversität, 50, 38116 Braunschweig, Germany;
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
- Correspondence:
| | - Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | | | - Gary M. King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| | - Christoph C. Tebbe
- Johann Heinrich von Thünen Institut, Institut für Biodiversität, 50, 38116 Braunschweig, Germany;
| |
Collapse
|
11
|
Corinne BP, Corentin H, Hélène G, Eric DB, Sébastien T, Isabelle JD, Raphaël P. Analysis of bacterial and archaeal communities associated with Fogo volcanic soils of different ages. FEMS Microbiol Ecol 2020; 96:5848192. [PMID: 32463439 DOI: 10.1093/femsec/fiaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Basaltic rocks play a significant role in CO2 sequestration from the atmosphere during their weathering. Moreover, the primary microorganisms that colonize them, by providing mineral elements and nutrients, are shown to promote growth of diverse heterotrophic communities and plants, therefore positively impacting Earth's long-term climate balance. However, the first steps of microbial colonization and subsequent rock weathering remain poorly understood, especially regarding microbial communities over a chronological sequence. Here, we analyzed the microbial communities inhabiting the soil developed in crevices on lava flows derived from different eruptions on Fogo Island. Investigated soils show typically low carbon and nitrogen content and are relatively similar to one another regarding their phylogenetic composition, and similar to what was recorded in large soil surveys with dominance of Actinobacteria and Proteobacteria. Moreover, our results suggest a stronger effect of the organic carbon than the lava flow age in shaping microbial communities as well as the possibility of exogenous sources of bacteria as important colonizers. Furthermore, archaea reach up to 8.4% of the total microbial community, dominated by the Soil Crenarchaeotic Group, including the ammonium-oxidizer Candidatus Nitrososphaera sp. Therefore, this group might be largely responsible for ammonia oxidation under the environmental conditions found on Fogo.
Collapse
Affiliation(s)
- Biderre-Petit Corinne
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Hochart Corentin
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Sorbonne Université, F-66650 Banyuls sur Mer, France
| | - Gardon Hélène
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Dugat-Bony Eric
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, F-78850, Thiverval-Grignon, France
| | - Terrat Sébastien
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jouan-Dufournel Isabelle
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Paris Raphaël
- CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Lathifah AN, Guo Y, Sakagami N, Suda W, Higuchi M, Nishizawa T, Prijambada ID, Ohta H. Comparative Characterization of Bacterial Communities in Moss-Covered and Unvegetated Volcanic Deposits of Mount Merapi, Indonesia. Microbes Environ 2019; 34:268-277. [PMID: 31327812 PMCID: PMC6759343 DOI: 10.1264/jsme2.me19041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Microbial colonization, followed by succession, on newly exposed volcanic substrates represents the beginning of the development of an early ecosystem. During early succession, colonization by mosses or plants significantly alters the pioneer microbial community composition through the photosynthetic carbon input. To provide further insights into this process, we investigated the three-year-old volcanic deposits of Mount Merapi, Indonesia. Samples were collected from unvegetated (BRD) and moss-covered (BRUD) sites. Forest site soil (FRS) near the volcanic deposit-covered area was also collected for reference. An analysis of BRD and BRUD revealed high culturable cell densities (1.7-8.5×105 CFU g-1) despite their low total C (<0.01%). FRS possessed high CFU (3×106 g-1); however, its relative value per unit of total C (2.6%) was lower than that of the deposit samples. Based on the tag pyrosequencing of 16S rRNA genes, the BRD bacterial community was characterized by a higher number of betaproteobacterial families (or genus), represented by chemolithotrophic Methylophilaceae, Leptothrix, and Sulfuricellaceae. In contrast, BRUD was predominated by different betaproteobacterial families, such as Oxalobacteraceae, Comamonadaceae, and Rhodocyclaceae. Some bacterial (Oxalobacteraceae) sequences were phylogenetically related to those of known moss-associated bacteria. Within the FRS community, Proteobacteria was the most abundant phylum, followed by Acidobacteria, whereas Burkholderiaceae was the most dominant bacterial family within FRS. These results suggest that an inter-family succession of Betaproteobacteria occurred in response to colonization by mosses, followed by plants.
Collapse
Affiliation(s)
- Annisa N. Lathifah
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Yong Guo
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Nobuo Sakagami
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Wataru Suda
- Department of Computational Biology, Graduate School of Frontier Science, The University of TokyoKashiwaJapan
| | - Masanobu Higuchi
- Department of Botany, National Museum of Nature and Science4–1–1, Amakubo, IbarakiJapan
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Irfan D. Prijambada
- Graduate School of Biotechnology, University of Gadjah MadaYogyakartaIndonesia
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| |
Collapse
|
13
|
Byloos B, Monsieurs P, Mysara M, Leys N, Boon N, Van Houdt R. Characterization of the bacterial communities on recent Icelandic volcanic deposits of different ages. BMC Microbiol 2018; 18:122. [PMID: 30249184 PMCID: PMC6154810 DOI: 10.1186/s12866-018-1262-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022] Open
Abstract
Background Basalt is the most common igneous rock on the Earth’s surface covering. Basalt-associated microorganisms drive the cycling and sequestration of different elements such as nitrogen, carbon and other nutrients, which facilitate subsequent pioneer and plant development, impacting long-term regulation of the Earth’s temperature and biosphere. The initial processes of colonization and subsequent rock weathering by microbial communities are still poorly understood and relatively few data are available on the diversity and richness of the communities inhabiting successive and chronological lava flows. In this study, the bacterial communities present on lava deposits from different eruptions of the 1975–84 Krafla Fires (32-, 35- and 39-year old, respectively) at the Krafla, Iceland, were determined. Results Three sites were sampled for each deposit (32-, 35- and 39-year old), two proximal sites (at 10 m distance) and one more distant site (at 100 m from the two other sites). The determined chemical composition and metal concentrations were similar for the three basalt deposits. No significant differences were observed in the total number of cells in each flow. 16S rRNA gene amplicon sequencing showed that the most abundant classified phylum across the 3 flows was Proteobacteria, although predominance of Acidobacteria, Actinobacteria and Firmicutes was observed for some sampling sites. In addition, a considerable fraction of the operational taxonomic units remained unclassified. Alpha diversity (Shannon, inverse Simpson and Chao), HOMOVA and AMOVA only showed a significant difference for Shannon between the 32- and 39-year old flow (p < 0.05). Nonmetric multidimensional scaling (NMDS) analysis showed that age significantly (p = 0.026) influenced the leftward movement along NMDS axis 1. Conclusions Although NMDS indicated that the (relatively small) age difference of the deposits appeared to impact the bacterial community, this analysis was not consistent with AMOVA and HOMOVA, indicating no significant difference in community structure. The combined results drive us to conclude that the (relatively small) age differences of the deposits do not appear to be the main factor shaping the microbial communities. Probably other factors such as spatial heterogeneity, associated carbon content, exogenous rain precipitations and wind also affect the diversity and dynamics. Electronic supplementary material The online version of this article (10.1186/s12866-018-1262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Byloos
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200, B-2400, Mol, Belgium.,Center for Microbial Ecology & Technology (CMET), Ghent University, Ghent, Belgium
| | - Pieter Monsieurs
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200, B-2400, Mol, Belgium
| | - Mohamed Mysara
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200, B-2400, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200, B-2400, Mol, Belgium
| | - Nico Boon
- Center for Microbial Ecology & Technology (CMET), Ghent University, Ghent, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, Boeretang 200, B-2400, Mol, Belgium.
| |
Collapse
|
14
|
Issotta F, Moya-Beltrán A, Mena C, Covarrubias PC, Thyssen C, Bellenberg S, Sand W, Quatrini R, Vera M. Insights into the biology of acidophilic members of the Acidiferrobacteraceae family derived from comparative genomic analyses. Res Microbiol 2018; 169:608-617. [PMID: 30142431 DOI: 10.1016/j.resmic.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The family Acidiferrobacteraceae (order Acidiferrobacterales) currently contains Gram negative, neutrophilic sulfur oxidizers such as Sulfuricaulis and Sulfurifustis, as well as acidophilic iron and sulfur oxidizers belonging to the Acidiferrobacter genus. The diversity and taxonomy of the genus Acidiferrobacter has remained poorly explored. Although several metagenome and bioleaching studies have identified its presence worldwide, only two strains, namely Acidiferrobacter thiooxydans DSM 2932T, and Acidiferrobacter spp. SP3/III have been isolated and made publically available. Using 16S rRNA sequence data publically available for the Acidiferrobacteraceae, we herein shed light into the molecular taxonomy of this family. Results obtained support the presence of three clades Acidiferrobacter, Sulfuricaulis and Sulfurifustis. Genomic analyses of the genome sequences of A. thiooxydansT and Acidiferrobacter spp. SP3/III indicate that ANI relatedness between the SPIII/3 strain and A. thiooxydansT is below 95-96%, supporting the classification of strain SP3/III as a new species within this genus. In addition, approximately 70% of Acidiferrobacter sp. SPIII/3 predicted genes have a conserved ortholog in A. thiooxydans strains. A comparative analysis of iron, sulfur oxidation pathways, genome plasticity and cell-cell communication mechanisms of Acidiferrobacter spp. are also discussed.
Collapse
Affiliation(s)
- Francisco Issotta
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristóbal Mena
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile
| | - Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Thyssen
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany
| | - Sören Bellenberg
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany
| | - Wolfgang Sand
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany; College of Environmental Science and Engineering, Donghua University, 2999 North Ren Min Rd., Song Jiang District, Shanghai, 201620, PR China; Technische Universität Bergakademie Freiberg, Institut für Biowissenschaften, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile.
| |
Collapse
|
15
|
Kerfahi D, Tateno R, Takahashi K, Cho H, Kim H, Adams JM. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates. MICROBIAL ECOLOGY 2017; 73:775-790. [PMID: 27734114 DOI: 10.1007/s00248-016-0873-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to -3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10-100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.
Collapse
Affiliation(s)
- Dorsaf Kerfahi
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Koichi Takahashi
- Department of Biology, Faculty of Science, Shinshu University, Asahi, Matsumoto, Japan
| | - HyunJun Cho
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyoki Kim
- Celemics, Inc. 612 Avison Biomedical Research Center, Yonsei Medical Center, Seoul, Republic of Korea
| | - Jonathan M Adams
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Holanda R, Hedrich S, Ňancucheo I, Oliveira G, Grail BM, Johnson DB. Isolation and characterisation of mineral-oxidising “Acidibacillus” spp. from mine sites and geothermal environments in different global locations. Res Microbiol 2016; 167:613-23. [DOI: 10.1016/j.resmic.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
17
|
Aszalós JM, Krett G, Anda D, Márialigeti K, Nagy B, Borsodi AK. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes. Extremophiles 2016; 20:603-20. [PMID: 27315168 DOI: 10.1007/s00792-016-0849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Collapse
Affiliation(s)
- Júlia Margit Aszalós
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
18
|
Gagliano AL, Tagliavia M, D'Alessandro W, Franzetti A, Parello F, Quatrini P. So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites. GEOBIOLOGY 2016; 14:150-162. [PMID: 26560641 DOI: 10.1111/gbi.12167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4(+) concentration. At the same time, abundant availability of NH4(+) and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils.
Collapse
Affiliation(s)
- A L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Sezione di Palermo, Palermo, Italy
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - M Tagliavia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Institute for Coastal Marine Environment (CNR-IAMC) U.O.S. of Capo Granitola, Campobello di Mazara, Italy
| | - W D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Sezione di Palermo, Palermo, Italy
| | - A Franzetti
- Department of Earth and Environmental Sciences, University of Milano- Bicocca, Milano, Italy
| | - F Parello
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - P Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Fujimura R, Kim SW, Sato Y, Oshima K, Hattori M, Kamijo T, Ohta H. Unique pioneer microbial communities exposed to volcanic sulfur dioxide. Sci Rep 2016; 6:19687. [PMID: 26791101 PMCID: PMC4726209 DOI: 10.1038/srep19687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/16/2015] [Indexed: 12/04/2022] Open
Abstract
Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.
Collapse
Affiliation(s)
- Reiko Fujimura
- Ibaraki University College of Agriculture, Ibaraki 300-0332, Japan
| | - Seok-Won Kim
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan
| | - Yoshinori Sato
- National Research Institute for Cultural Properties, Tokyo, Tokyo, 110-8713, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan
| | - Takashi Kamijo
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroyuki Ohta
- Ibaraki University College of Agriculture, Ibaraki 300-0332, Japan
| |
Collapse
|
20
|
Mori JF, Lu S, Händel M, Totsche KU, Neu TR, Iancu VV, Tarcea N, Popp J, Küsel K. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix. MICROBIOLOGY-SGM 2015; 162:62-71. [PMID: 26506965 DOI: 10.1099/mic.0.000205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new acidophilic iron-oxidizing strain (C25) belonging to the novel genus Acidithrix was isolated from pelagic iron-rich aggregates ('iron snow') collected below the redoxcline of an acidic lignite mine lake. Strain C25 catalysed the oxidation of ferrous iron [Fe(II)] under oxic conditions at 25 °C at a rate of 3.8 mM Fe(II) day(-1) in synthetic medium and 3.0 mM Fe(II) day(-1) in sterilized lake water in the presence of yeast extract, producing the rust-coloured, poorly crystalline mineral schwertmannite [Fe(III) oxyhydroxylsulfate]. During growth, rod-shaped cells of strain C25 formed long filaments, and then aggregated and degraded into shorter fragments, building large cell-mineral aggregates in the late stationary phase. Scanning electron microscopy analysis of cells during the early growth phase revealed that Fe(III)-minerals were formed as single needles on the cell surface, whereas the typical pincushion-like schwertmannite was observed during later growth phases at junctions between the cells, leaving major parts of the cell not encrusted. This directed mechanism of biomineralization at specific locations on the cell surface has not been reported from other acidophilic iron-oxidizing bacteria. Strain C25 was also capable of reducing Fe(III) under micro-oxic conditions which led to a dissolution of the Fe(III)-minerals. Thus, strain C25 appeared to have ecological relevance for both the formation and transformation of the pelagic iron-rich aggregates at oxic/anoxic transition zones in the acidic lignite mine lake.
Collapse
Affiliation(s)
- Jiro F Mori
- Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Shipeng Lu
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Händel
- Hydrogeology, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Uwe Totsche
- Hydrogeology, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Vasile Vlad Iancu
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Nicolae Tarcea
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany.,Institute of Photonic Technology, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany.,The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization. Sci Rep 2015; 5:12978. [PMID: 26268667 PMCID: PMC4534789 DOI: 10.1038/srep12978] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/16/2015] [Indexed: 12/02/2022] Open
Abstract
Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes.
Collapse
|
22
|
Wang Y, Yasuda T, Sharmin S, Kanao T, Kamimura K. Analysis of the microbial community in moderately acidic drainage from the Yanahara pyrite mine in Japan. Biosci Biotechnol Biochem 2014; 78:1274-82. [DOI: 10.1080/09168451.2014.915735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Acid rock drainage (ARD) originating from the Yasumi-ishi tunnel near the main tunnel of the Yanahara mine in Japan was characterized to be moderately acidic (pH 4.1) and contained iron at a low concentration (51 mg/L). The composition of the microbial community was determined by sequence analysis of 16S rRNA genes using PCR and denaturing gradient gel electrophoresis. The analysis of the obtained sequences showed their similarity to clones recently detected in other moderately acidic mine drainages. Uncultured bacteria related to Ferrovum- and Gallionella-like clones were dominant in the microbial community. Analyses using specific primers for acidophilic iron- or sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, Leptospirillum spp., Acidithiobacillus caldus, Acidithiobacillus thiooxidans, and Sulfobacillus spp. revealed the absence of these bacteria in the microbial community in ARD from the Yasumi-ishi tunnel. Clones affiliated with a member of the order Thermoplasmatales were detected as the dominant archaea in the ARD microbial population.
Collapse
Affiliation(s)
- Yang Wang
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takashi Yasuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Sultana Sharmin
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Tadayoshi Kanao
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kazuo Kamimura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
23
|
Isobe K, Ohte N. Ecological perspectives on microbes involved in N-cycling. Microbes Environ 2014; 29:4-16. [PMID: 24621510 PMCID: PMC4041230 DOI: 10.1264/jsme2.me13159] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/09/2014] [Indexed: 11/12/2022] Open
Abstract
Nitrogen (N) cycles have been directly linked to the functional stability of ecosystems because N is an essential element for life. Furthermore, the supply of N to organisms regulates primary productivity in many natural ecosystems. Microbial communities have been shown to significantly contribute to N cycles because many N-cycling processes are microbially mediated. Only particular groups of microbes were implicated in N-cycling processes, such as nitrogen fixation, nitrification, and denitrification, until a few decades ago. However, recent advances in high-throughput sequencing technologies and sophisticated isolation techniques have enabled microbiologists to discover that N-cycling microbes are unexpectedly diverse in their functions and phylogenies. Therefore, elucidating the link between biogeochemical N-cycling processes and microbial community dynamics can provide a more mechanistic understanding of N cycles than the direct observation of N dynamics. In this review, we summarized recent findings that characterized the microbes governing novel N-cycling processes. We also discussed the ecological role of N-cycling microbial community dynamics, which is essential for advancing our understanding of the functional stability of ecosystems.
Collapse
Affiliation(s)
- Kazuo Isobe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Nobuhito Ohte
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
24
|
Guo Y, Fujimura R, Sato Y, Suda W, Kim SW, Oshima K, Hattori M, Kamijo T, Narisawa K, Ohta H. Characterization of early microbial communities on volcanic deposits along a vegetation gradient on the island of Miyake, Japan. Microbes Environ 2014; 29:38-49. [PMID: 24463576 PMCID: PMC4041228 DOI: 10.1264/jsme2.me13142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/24/2013] [Indexed: 01/05/2023] Open
Abstract
The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species.
Collapse
Affiliation(s)
- Yong Guo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509, Japan
- Ibaraki University College of Agriculture, 3–21–1 Chuou, Ami-machi, Ibaraki, Japan
| | - Reiko Fujimura
- Ibaraki University College of Agriculture, 3–21–1 Chuou, Ami-machi, Ibaraki, Japan
| | - Yoshinori Sato
- National Research Institute for Cultural Properties, Tokyo, 13–43 Ueno Park, Taito-ku, Tokyo 110–8713, Japan
| | - Wataru Suda
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8568, Japan
| | - Seok-won Kim
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8568, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8568, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Science, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8568, Japan
| | - Takashi Kamijo
- Faculty of Life and Environmental Science, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
| | - Kazuhiko Narisawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509, Japan
- Ibaraki University College of Agriculture, 3–21–1 Chuou, Ami-machi, Ibaraki, Japan
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509, Japan
- Ibaraki University College of Agriculture, 3–21–1 Chuou, Ami-machi, Ibaraki, Japan
| |
Collapse
|
25
|
Johnson DB, Hallberg KB, Hedrich S. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens". Appl Environ Microbiol 2014; 80:672-80. [PMID: 24242243 PMCID: PMC3911105 DOI: 10.1128/aem.03230-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
Abstract
A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria.
Collapse
Affiliation(s)
- D Barrie Johnson
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | | | | |
Collapse
|
26
|
Summers S, Whiteley AS, Kelly LC, Cockell CS. Land coverage influences the bacterial community composition in the critical zone of a sub-Arctic basaltic environment. FEMS Microbiol Ecol 2013; 86:381-93. [PMID: 23777316 DOI: 10.1111/1574-6941.12167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022] Open
Abstract
Silicate weathering improves soils by releasing bioessential nutrients from the bedrock to the soil ecosystem. However, whether bacteria are capable of inhabiting subsurface critical zones (zone of active rock weathering), and their role therein, are unknown. Next-generation sequencing and community fingerprinting permitted us to characterize communities from an Icelandic critical zone environment. Communities were compared with respect to physico-chemical properties of the environment to determine the factors influencing bacterial diversity. We showed that land coverage influenced critical zone communities. Analysis of tree-covered site (TCS) soils exhibited high cell densities (TCS = 2.25 × 10(7) g(-1) ), whereas lichen- and moss-covered sites (LMS) had lower cell densities (LMS = 1.06 × 10(7) cells g(-1) ), thought to be a result of the organic carbon produced by the trees. Differences in the bacterial community were observed from the abundance of 16S rRNA gene sequences affiliated with Acidobacteria and Proteobacteria, with TCS possessing higher abundances of Proteobacteria [no of sequences: LMS = 1526 (±497); TCS = 2214 (±531)], specifically Alpha- and Betaproteobacteria, and lower Acidobacteria numbers [no of sequences: LMS = 1244 (±338); TCS = 598 (±140)]. Diversity indices and 16S rRNA gene rarefaction showed that communities from TCS soils had lower α-diversity than sites without, indicative of specialized communities at sites with root-forming plants.
Collapse
Affiliation(s)
- Stephen Summers
- Centre for Ecology & Hydrology, Crowmarsh Gifford, UK; Department of Physical Sciences, CEPSAR, The Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
27
|
Complete genome sequence of Leptospirillum ferrooxidans strain C2-3, isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. J Bacteriol 2012; 194:4122-3. [PMID: 22815442 DOI: 10.1128/jb.00696-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A diazotrophic, acidophilic, iron-oxidizing bacterium, Leptospirillum ferrooxidans, known to be difficult to cultivate, was isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. Here, we report the complete genome sequence of a cultured strain, C2-3.
Collapse
|