1
|
Wasai-Hara S, Itakura M, Fernandes Siqueira A, Takemoto D, Sugawara M, Mitsui H, Sato S, Inagaki N, Yamazaki T, Imaizumi-Anraku H, Shimoda Y, Minamisawa K. Bradyrhizobium ottawaense efficiently reduces nitrous oxide through high nosZ gene expression. Sci Rep 2023; 13:18862. [PMID: 37914789 PMCID: PMC10620151 DOI: 10.1038/s41598-023-46019-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
N2O is an important greenhouse gas influencing global warming, and agricultural land is the predominant (anthropogenic) source of N2O emissions. Here, we report the high N2O-reducing activity of Bradyrhizobium ottawaense, suggesting the potential for efficiently mitigating N2O emission from agricultural lands. Among the 15 B. ottawaense isolates examined, the N2O-reducing activities of most (13) strains were approximately five-fold higher than that of Bradyrhizobium diazoefficiens USDA110T under anaerobic conditions. This robust N2O-reducing activity of B. ottawaense was confirmed by N2O reductase (NosZ) protein levels and by mitigation of N2O emitted by nodule decomposition in laboratory system. While the NosZ of B. ottawaense and B. diazoefficiens showed high homology, nosZ gene expression in B. ottawaense was over 150-fold higher than that in B. diazoefficiens USDA110T, suggesting the high N2O-reducing activity of B. ottawaense is achieved by high nos expression. Furthermore, we examined the nos operon transcription start sites and found that, unlike B. diazoefficiens, B. ottawaense has two transcription start sites under N2O-respiring conditions, which may contribute to the high nosZ expression. Our study indicates the potential of B. ottawaense for effective N2O reduction and unique regulation of nos gene expression towards the high performance of N2O mitigation in the soil.
Collapse
Affiliation(s)
- Sawa Wasai-Hara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | - Daisaku Takemoto
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Minamisawa K. Mitigation of greenhouse gas emission by nitrogen-fixing bacteria. Biosci Biotechnol Biochem 2022; 87:7-12. [PMID: 36354103 DOI: 10.1093/bbb/zbac177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Chemical nitrogen fixation by the Haber-Bosch method permitted industrial-scale fertilizer production that supported global population growth, but simultaneously released reactive nitrogen into the environment. This minireview highlights the potential for bacterial nitrogen fixation and mitigation of greenhouse gas (GHG) emissions from soybean and rice fields. Nitrous oxide (N2O), a GHG, is mainly emitted from agricultural use of nitrogen fertilizer and symbiotic nitrogen fixation. Some rhizobia have a denitrifying enzyme system that includes an N2O reductase and are able to mitigate N2O emission from the rhizosphere of leguminous plants. Type II methane (CH4)-oxidizing bacteria (methanotrophs) are endophytes in paddy rice roots and fix N2 using CH4 (a GHG) as an energy source, mitigating the emission of CH4 and reducing nitrogen fertilizer usage. Thus, symbiotic nitrogen fixation shows potential for GHG mitigation in soybean and rice fields while simultaneously supporting sustainable agriculture.
Collapse
Affiliation(s)
- Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Mehmood MA, Fu Y, Zhao H, Cheng J, Xie J, Jiang D. Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus. STRESS BIOLOGY 2022; 2:32. [PMID: 37676387 PMCID: PMC10441917 DOI: 10.1007/s44154-022-00049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/27/2022] [Indexed: 09/08/2023]
Abstract
Rice sheath blight pathogen, Rhizoctonia solani, produces numerous sclerotia to overwinter. As a rich source of nutrients in the soil, sclerotia may lead to the change of soil microbiota. For this purpose, we amended the sclerotia of R. solani in soil and analyzed the changes in bacterial microbiota within the soil at different time points. At the phyla level, Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chloroflexi and Firmicutes showed varied abundance in the amended soil samples compared to those in the control. An increased abundance of ammonia-oxidizing bacterium (AOB) Nitrosospira and Nitrite oxidizing bacteria (NOB) i.e., Nitrospira was observed, where the latter is reportedly involved in the nitrifier denitrification. Moreover, Thiobacillus, Gemmatimonas, Anaeromyxobacter and Geobacter, the vital players in denitrification, N2O reduction and reductive nitrogen transformation, respectively, depicted enhanced abundance in R. solani sclerotia-amended samples. Furthermore, asymbiotic nitrogen-fixing bacteria, notably, Azotobacter as well as Microvirga and Phenylobacterium with nitrogen-fixing potential also enriched in the amended samples compared to the control. Plant growth promoting bacteria, such as Kribbella, Chitinophaga and Flavisolibacter also enriched in the sclerotia-amended soil. As per our knowledge, this study is of its kind where pathogenic fungal sclerotia activated microbes with a potential role in N transformation and provided clues about the ecological functions of R. solani sclerotia on the stimulation of bacterial genera involved in different processes of N-cycle within the soil in the absence of host plants.
Collapse
Affiliation(s)
- Mirza Abid Mehmood
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
- Plant Pathology, Institute of Plant Protection, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Huizhang Zhao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
4
|
Sun X, Zhang X, Xia Y, Tao R, Zhang M, Mei Y, Qu M. Simulation of the effects of microplastics on the microbial community structure and nitrogen cycle of paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151768. [PMID: 34808183 DOI: 10.1016/j.scitotenv.2021.151768] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are ubiquitous in farmland soils. However, few studies have evaluated their effects on the microbial community structure and nitrogen cycle of farmland soils. Here, 0.3% and 1% (mass percentage) of polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA) MPs were added to paddy soil to evaluate their impact on the paddy soil microenvironment. The alpha index of the PLA MP treatment was significantly different from that of the control group (p-value < 0.05). In contrast, the indices of the PET and PVC MP treatments were not different from the control (p-value > 0.05). Among the MP treatments, the alpha index of the PLA MP group was significantly different from the PET and PVC MP groups (p-value < 0.05). PCoA analysis also indicated that there were differences between PLA and other MP groups, and different MP concentrations and exposure times had a great impact on microbial composition. The three MPs affected NH4+ metabolism by changing the abundance of a NH2OH-forming gene (amoA) and an organic nitrogen-forming gene (gdh), as well as the abundances of Thiobacillus, Bradyrhizobium, Anaeromyxobacter, Geobacter, and Desulfobacca. Further, the MPs affected NO3- metabolism by regulating the abundance of the nirS and nirK genes and the abundance of Nitrospirae. In contrast, NO2- metabolism was not significantly affected by the MPs due to the low concentration of NO2-, which was attributed to the high abundance of nirS and nirK in the sample. Taken together, our findings indicated that MP addition may have an inhibitory effect on the nitrogen cycle in paddy soils and that the effect of degradable MPs may be greater than that of their non-degradable counterparts. Given the increasing severity of worldwide MP contamination, additional studies are required to assess their impact on global ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Xia Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoying Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiang Xia
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meng Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
5
|
Bueno E, Mania D, Mesa S, Bedmar EJ, Frostegård Å, Bakken LR, Delgado MJ. Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Int J Mol Sci 2022; 23:1486. [PMID: 35163408 PMCID: PMC8836242 DOI: 10.3390/ijms23031486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The greenhouse gas nitrous oxide (N2O) has strong potential to drive climate change. Soils are a major source of N2O, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the napEDABC, nirK, norCBQD, and nosRZDYFLX genes, which sequentially reduce nitrate (NO3-) to nitrite (NO2-), nitric oxide (NO), N2O, and dinitrogen (N2). In this bacterium, the regulatory network and environmental cues governing the expression of denitrification genes rely on the FixK2 and NnrR transcriptional regulators. To understand the role of FixK2 and NnrR proteins in N2O turnover, we monitored real-time kinetics of NO3-, NO2-, NO, N2O, N2, and oxygen (O2) in a fixK2 and nnrR mutant using a robotized incubation system. We confirmed that FixK2 and NnrR are regulatory determinants essential for NO3- respiration and N2O reduction. Furthermore, we demonstrated that N2O reduction by B. diazoefficiens is independent of canonical inducers of denitrification, such as the nitrogen oxide NO3-, and it is negatively affected by acidic and alkaline conditions. These findings advance the understanding of how specific environmental conditions and two single regulators modulate N2O turnover in B. diazoefficiens.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Daniel Mania
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Socorro Mesa
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - María J. Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| |
Collapse
|
6
|
Ikezawa H, Nagumo Y, Hattori M, Nonaka M, Ohyama T, Harada N. Suppressive effect of the deep placement of lime nitrogen on N 2O emissions in a soybean field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150246. [PMID: 34798753 DOI: 10.1016/j.scitotenv.2021.150246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Deep placement of slow-release nitrogen (N) fertilizers improves the growth and yield of soybean with a high N use efficiency. This study examined the effectiveness of deep placement of lime nitrogen (LN) in reducing N2O emissions in a soybean field and compared it with conventional fertilization. Before sowing soybeans, the starter N fertilizer (16 kg-N ha-1 ammonium sulfate) was mixed in the surface soil and the following four treatments were installed: the control with only the starter N (CT), conventional top-dressing of 60 kg-N ha-1 coated urea (CV), deep placement (20 cm depth) of 100 kg-N ha-1 urea (DU), and deep placement (20 cm depth) of 100 kg-N ha-1 LN (DL). The seasonal patterns of N2O emission rates measured using the closed chamber method differed among the treatments: in CT, N2O emissions were relatively low; in CV, N2O emissions derived from the top-dressed coated urea were observed from 91 days after sowing; in DU and DL, deeply-placed N was converted to N2O in the early growth stages. The cumulative N2O emissions in DL (1.8 kg-N ha-1) during the soybean cultivation period were significantly lower than those in DU (3.1 kg-N ha-1) and CV (2.8 kg-N ha-1), and slightly higher than CT (1.2 kg-N ha-1). The magnitude of N2O emissions was significantly lower in DL than DU, indicating that the choice of N fertilizer is important to reduce N2O emissions. Focusing on N2O emissions per unit coarse grain yield of soybeans, the value in DL was 0.45 g-N kg-1, which was significantly lower than 0.74 g-N kg-1 in CV. In conclusion, the deep placement of LN has the potential to be a sustainable farming method that can promote yields and reduce N2O emissions in soybean cultivation for high yield with N fertilization.
Collapse
Affiliation(s)
- Hiromu Ikezawa
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Yoshifumi Nagumo
- Niigata Agricultural Research Institute, 857 Nagakura-cho, Nagaoka 940-0826, Japan
| | - Makoto Hattori
- Niigata Agricultural Research Institute, 857 Nagakura-cho, Nagaoka 940-0826, Japan
| | - Masanori Nonaka
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Takuji Ohyama
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Naoki Harada
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
7
|
Zhao R, Li X, Bei S, Li D, Li H, Christie P, Bender SF, Zhang J. Enrichment of nosZ-type denitrifiers by arbuscular mycorrhizal fungi mitigates N 2 O emissions from soybean stubbles. Environ Microbiol 2021; 23:6587-6602. [PMID: 34672071 DOI: 10.1111/1462-2920.15815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
Hotspots of N2 O emissions are generated from legume residues during decomposition. Arbuscular mycorrhizal fungi (AMF) from co-cultivated intercropped plants may proliferate into the microsites and interact with soil microbes to reduce N2 O emissions. Yet, the mechanisms by which or how mycorrhizal hyphae affect nitrifiers and denitrifiers in the legume residues remain ambiguous. Here, a split-microcosm experiment was conducted to assess hyphae of Rhizophagus aggregatus from neighbouring maize on overall N2 O emissions from stubbles of nodulated or non-nodulated soybean. Soil microbes from fields intercropped with maize/soybean amended with fertilizer nitrogen (SS-N1) or unamended (SS-N0) were added to the soybean chamber only. AMF hyphae consistently reduced N2 O emissions by 20.8%-61.5%. Generally, AMF hyphae promoted the abundance of N2 O-consuming (nosZ-type) denitrifiers and altered their community composition. The effects were partly associated with increasing MBC and DOC. By contrast, AMF reduced the abundance of nirK-type denitrifiers in the nodulated SS-N0 treatment only and that of AOB in the non-nodulated SS-N1 treatment. Taken together, our results show that AMF reduced N2 O emissions from soybean stubbles, mainly through the promotion of N2 O-consuming denitrifiers. This holds promise for mitigating N2 O emissions by manipulating the efficacious AMF and their associated microbes in cereal/legume intercropping systems.
Collapse
Affiliation(s)
- Ruotong Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xia Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
- School of Life Science, Shanxi Datong University, Datong, 037009, China
| | - Shuikuan Bei
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Dandan Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Haigang Li
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Key Laboratory of Grassland Resource (IMAU), Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Peter Christie
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - S Franz Bender
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zurich, CH-8046, Switzerland
| | - Junling Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Siqueira AF, Sugawara M, Arashida H, Minamisawa K, Sánchez C. Levels of Periplasmic Nitrate Reductase during Denitrification are Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes Environ 2020; 35. [PMID: 32554940 PMCID: PMC7511789 DOI: 10.1264/jsme2.me19129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Soybean plants host endosymbiotic dinitrogen (N2)-fixing bacteria from the genus Bradyrhizobium. Under oxygen-limiting conditions, Bradyrhizobium diazoefficiens and Bradyrhizobium japonicum perform denitrification by sequentially reducing nitrate (NO3–) to nitrous oxide (N2O) or N2. The anaerobic reduction of NO3– to N2O was previously shown to be lower in B. japonicum than in B. diazoefficiens due to impaired periplasmic nitrate reductase (Nap) activity in B. japonicum. We herein demonstrated that impaired Nap activity in B. japonicum was due to low Nap protein levels, which may be related to a decline in the production of FixP and FixO proteins by the cbb3-type oxidase.
Collapse
|
9
|
Wasai-Hara S, Hara S, Morikawa T, Sugawara M, Takami H, Yoneda J, Tokunaga T, Minamisawa K. Diversity of Bradyrhizobium in Non-Leguminous Sorghum Plants: B. ottawaense Isolates Unique in Genes for N 2O Reductase and Lack of the Type VI Secretion System. Microbes Environ 2020; 35. [PMID: 31932539 PMCID: PMC7104290 DOI: 10.1264/jsme2.me19102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diverse members of Bradyrhizobium diazoefficiens, B. japonicum, and B. ottawaense were isolated from the roots of field-grown sorghum plants in Fukushima, and classified into “Rhizobia” with nodulated soybeans, “Free-living diazotrophs”, and “Non-diazotrophs” by nitrogen fixation and nodulation assays. Genome analyses revealed that B. ottawaense members possessed genes for N2O reduction, but lacked those for the Type VI secretion system (T6SS). T6SS is a new bacterial weapon against microbial competitors. Since T6SS-possessing B. diazoefficiens and B. japonicum have mainly been isolated from soybean nodules in Japan, T6SS-lacking B. ottawaense members may be a cryptic lineage of soybean bradyrhizobia in Japan.
Collapse
Affiliation(s)
| | | | | | | | - Hideto Takami
- Yokohama Institute, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | | | | |
Collapse
|
10
|
Woliy K, Degefu T, Frostegård Å. Host Range and Symbiotic Effectiveness of N 2O Reducing Bradyrhizobium Strains. Front Microbiol 2019; 10:2746. [PMID: 31849890 PMCID: PMC6896821 DOI: 10.3389/fmicb.2019.02746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Emissions of the potent greenhouse gas N2O is one of the environmental problems associated with intensive use of synthetic N fertilizers, and novel N2O mitigation strategies are needed to minimize fertilizer applications and N2O release without affecting agricultural efficiencies. Increased incorporation of legume crops in agricultural practices offers a sustainable alternative. Legumes, in their symbiosis with nitrogen fixing bacteria, rhizobia, reduce the need for fertilizers and also respond to the need for increased production of plant-based proteins. Not all combinations of rhizobia and legumes result in efficient nitrogen fixation, and legume crops therefore often need to be inoculated with compatible rhizobial strains. Recent research has demonstrated that some rhizobia are also very efficient N2O reducers. Several nutritionally and economically important legumes form root nodules in symbiosis with bacteria belonging to Bradyrhizobium. Here, the host-ranges of fourteen N2O reducing Bradyrhizobium strains were tested on six legume hosts; cowpea, groundnut, mung bean, haricot bean, soybean, and alfalfa. The plants were grown for 35 days in pots in sterile sand supplemented with N-free nutrient solution. Cowpea was the most promiscuous host nodulated by all test strains, followed by groundnut (11 strains) and mungbean (4 strains). Three test strains were able to nodulate all these three legumes, while none nodulated the other three hosts. For cowpea, five strains increased the shoot dry weight and ten strains the shoot nitrogen content (pairwise comparison; p < 0.05). For groundnut the corresponding results were three and nine strains. The symbiotic effectiveness for the different strains ranged from 45 to 98% in cowpea and 34 to 95% in groundnut, relative to fertilized controls. The N2O reduction capacity of detached nodules from cowpea plants inoculated with one of these strains confirmed active N2O reduction inside the nodules. When released from senescent nodules such strains are expected to also act as sinks for N2O produced by denitrifying organisms in the soil microbial community. Our strategy to search among known N2O-reducing Bradyrhizobium strains for their N2-fixation effectiveness successfully identified several strains which can potentially be used for the production of legume inoculants with the dual capacities of efficacious N2-fixation and N2O reduction.
Collapse
Affiliation(s)
- Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, Addis Ababa, Ethiopia
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Sánchez C, Minamisawa K. Nitrogen Cycling in Soybean Rhizosphere: Sources and Sinks of Nitrous Oxide (N 2O). Front Microbiol 2019; 10:1943. [PMID: 31497007 PMCID: PMC6712156 DOI: 10.3389/fmicb.2019.01943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/07/2019] [Indexed: 01/29/2023] Open
Abstract
Nitrous oxide (N2O) is the third most important greenhouse gas after carbon dioxide and methane, and a prominent ozone-depleting substance. Agricultural soils are the primary anthropogenic source of N2O because of the constant increase in the use of industrial nitrogen (N) fertilizers. The soybean crop is grown on 6% of the world's arable land, and its production is expected to increase rapidly in the future. In this review, we summarize the current knowledge on N-cycle in the rhizosphere of soybean plants, particularly sources and sinks of N2O. Soybean root nodules are the host of dinitrogen (N2)-fixing bacteria from the genus Bradyrhizobium. Nodule decomposition is the main source of N2O in soybean rhizosphere, where soil organisms mediate the nitrogen transformations that produce N2O. This N2O is either emitted into the atmosphere or further reduced to N2 by the bradyrhizobial N2O reductase (N2OR), encoded by the nos gene cluster. The dominance of nos - indigenous populations of soybean bradyrhizobia results in the emission of N2O into the atmosphere. Hence, inoculation with nos + or nos ++ (mutants with enhanced N2OR activity) bradyrhizobia has proved to be promising strategies to reduce N2O emission in the field. We discussed these strategies, the molecular mechanisms underlying them, and the future perspectives to develop better options for global mitigation of N2O emission from soils.
Collapse
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
12
|
Hidalgo-García A, Torres MJ, Salas A, Bedmar EJ, Girard L, Delgado MJ. Rhizobium etli Produces Nitrous Oxide by Coupling the Assimilatory and Denitrification Pathways. Front Microbiol 2019; 10:980. [PMID: 31134023 PMCID: PMC6514139 DOI: 10.3389/fmicb.2019.00980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
More than two-thirds of the powerful greenhouse gas nitrous oxide (N2O) emissions from soils can be attributed to microbial denitrification and nitrification processes. Bacterial denitrification reactions are catalyzed by the periplasmic (Nap) or membrane-bound (Nar) nitrate reductases, nitrite reductases (NirK/cd 1Nir), nitric oxide reductases (cNor, qNor/ CuANor), and nitrous oxide reductase (Nos) encoded by nap/nar, nir, nor and nos genes, respectively. Rhizobium etli CFN42, the microsymbiont of common bean, is unable to respire nitrate under anoxic conditions and to perform a complete denitrification pathway. This bacterium lacks the nap, nar and nos genes but contains genes encoding NirK and cNor. In this work, we demonstrated that R. etli is able to grow with nitrate as the sole nitrogen source under aerobic and microoxic conditions. Genetic and functional characterization of a gene located in the R. etli chromosome and annotated as narB demonstrated that growth under aerobic or microoxic conditions with nitrate as nitrogen source as well as nitrate reductase activity requires NarB. In addition to be involved in nitrate assimilation, NarB is also required for NO and N2O production by NirK and cNor, respectively, in cells grown microoxically with nitrate as the only N source. Furthermore, β-glucuronidase activity from nirK::uidA and norC::uidA fusions, as well as NorC expression and Nir and Nor activities revealed that expression of nor genes under microoxic conditions also depends on nitrate reduction by NarB. Our results suggest that nitrite produced by NarB from assimilatory nitrate reduction is detoxified by NirK and cNor denitrifying enzymes that convert nitrite into NO which in turn is reduced to N2O, respectively.
Collapse
Affiliation(s)
- Alba Hidalgo-García
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Torres
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ana Salas
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - María J Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
13
|
Hara S, Morikawa T, Wasai S, Kasahara Y, Koshiba T, Yamazaki K, Fujiwara T, Tokunaga T, Minamisawa K. Identification of Nitrogen-Fixing Bradyrhizobium Associated With Roots of Field-Grown Sorghum by Metagenome and Proteome Analyses. Front Microbiol 2019; 10:407. [PMID: 30915047 PMCID: PMC6422874 DOI: 10.3389/fmicb.2019.00407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
Sorghum (Sorghum bicolor) is cultivated worldwide for food, bioethanol, and fodder production. Although nitrogen fixation in sorghum has been studied since the 1970s, N2-fixing bacteria have not been widely examined in field-grown sorghum plants because the identification of functional diazotrophs depends on the culture method used. The aim of this study was to identify functional N2-fixing bacteria associated with field-grown sorghum by using “omics” approaches. Four lines of sorghum (KM1, KM2, KM4, and KM5) were grown in a field in Fukushima, Japan. The nitrogen-fixing activities of the roots, leaves, and stems were evaluated by acetylene reduction and 15N2-feeding assays. The highest nitrogen-fixing activities were detected in the roots of lines KM1 and KM2 at the late growth stage. Bacterial cells extracted from KM1 and KM2 roots were analyzed by metagenome, proteome, and isolation approaches and their DNA was isolated and sequenced. Nitrogenase structural gene sequences in the metagenome sequences were retrieved using two nitrogenase databases. Most sequences were assigned to nifHDK of Bradyrhizobium species, including non-nodulating Bradyrhizobium sp. S23321 and photosynthetic B. oligotrophicum S58T. Amplicon sequence and metagenome analysis revealed a relatively higher abundance (2.9–3.6%) of Bradyrhizobium in the roots. Proteome analysis indicated that three NifHDK proteins of Bradyrhizobium species were consistently detected across sample replicates. By using oligotrophic media, we purified eight bradyrhizobial isolates. Among them, two bradyrhizobial isolates possessed 16S rRNA and nif genes similar to those in S23321 and S58T which were predicted as functional diazotrophs by omics approaches. Both free-living cells of the isolates expressed N2-fixing activity in a semi-solid medium according to an acetylene reduction assay. These results suggest that major functional N2-fixing bacteria in sorghum roots are unique bradyrhizobia that resemble photosynthetic B. oligotrophicum S58T and non-nodulating Bradyrhizobium sp. S23321. Based on our findings, we discuss the N2-fixing activity level of sorghum plants, phylogenetic and genomic comparison with diazotrophic bacteria in other crops, and Bradyrhizobium diversity in N2 fixation and nodulation.
Collapse
Affiliation(s)
- Shintaro Hara
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Morikawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sawa Wasai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yasuhiro Kasahara
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Is Endophyte-Plant Co-Denitrification a Source of Nitrous Oxides Emission? —An Experimental Investigation with Soybean. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Saeki Y, Nakamura M, Mason MLT, Yano T, Shiro S, Sameshima-Saito R, Itakura M, Minamisawa K, Yamamoto A. Effect of Flooding and the nosZ Gene in Bradyrhizobia on Bradyrhizobial Community Structure in the Soil. Microbes Environ 2017; 32:154-163. [PMID: 28592720 PMCID: PMC5478539 DOI: 10.1264/jsme2.me16132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
We investigated the effects of the water status (flooded or non-flooded) and presence of the nosZ gene in bradyrhizobia on the bradyrhizobial community structure in a factorial experiment that examined three temperature levels (20°C, 25°C, and 30°C) and two soil types (andosol and gray lowland soil) using microcosm incubations. All microcosms were inoculated with Bradyrhizobium japonicum USDA6T, B. japonicum USDA123, and B. elkanii USDA76T, which do not possess the nosZ gene, and then half received B. diazoefficiens USDA110Twt (wt for the wild-type) and the other half received B. diazoefficiens USDA110ΔnosZ. USDA110Twt possesses the nosZ gene, which encodes N2O reductase; 110ΔnosZ, a mutant variant, does not. Changes in the community structure after 30- and 60-d incubations were investigated by denaturing-gradient gel electrophoresis and an image analysis. USDA6T and 76T strains slightly increased in non-flooded soil regardless of which USDA110T strain was present. In flooded microcosms with the USDA110Twt strain, USDA110Twt became dominant, whereas in microcosms with the USDA110ΔnosZ, a similar change in the community structure occurred to that in non-flooded microcosms. These results suggest that possession of the nosZ gene confers a competitive advantage to B. diazoefficiens USDA110T in flooded soil. We herein demonstrated that the dominance of B. diazoefficiens USDA110Twt within the soil bradyrhizobial population may be enhanced by periods of flooding or waterlogging systems such as paddy-soybean rotations because it appears to have the ability to thrive in moderately anaerobic soil.
Collapse
Affiliation(s)
- Yuichi Saeki
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| | - Misato Nakamura
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| | - Maria Luisa T. Mason
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
- College of Agriculture, Central Luzon State UniversityScience City of Muñoz, 3120 Nueva EcijaPhilippines
| | - Tsubasa Yano
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| | - Sokichi Shiro
- Faculty of Life and Environmental Science, Shimane UniversityShimane 690–8504Japan
| | - Reiko Sameshima-Saito
- College of Agriculture, Academic Institute, Shizuoka UniversityShizuoka 422–8529Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku UniversitySendai, Miyagi 980–8577Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo UniversityKyoto 603–8555Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku UniversitySendai, Miyagi 980–8577Japan
| | - Akihiro Yamamoto
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| |
Collapse
|
16
|
|
17
|
Akiyama H, Hoshino YT, Itakura M, Shimomura Y, Wang Y, Yamamoto A, Tago K, Nakajima Y, Minamisawa K, Hayatsu M. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Sci Rep 2016; 6:32869. [PMID: 27633524 PMCID: PMC5025649 DOI: 10.1038/srep32869] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 11/11/2022] Open
Abstract
Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens. Here, we show that N2O emission can be reduced at the field scale by inoculation with a mixed culture of indigenous nosZ+ strains of B. diazoefficiens USDA110 group isolated from Japanese agricultural fields. Our results also suggested that nodule nitrogen is the main source of N2O production during nodule decomposition. Isolating nosZ+ strains from local soybean fields would be more applicable and feasible for many soybean-producing countries than generating mutants.
Collapse
Affiliation(s)
- Hiroko Akiyama
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Yuko Takada Hoshino
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yumi Shimomura
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Yong Wang
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Akinori Yamamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Yasuhiro Nakajima
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
- Advanced Analysis Center, NARO, 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
18
|
Masuda S, Saito M, Sugawara C, Itakura M, Eda S, Minamisawa K. Identification of the Hydrogen Uptake Gene Cluster for Chemolithoautotrophic Growth and Symbiosis Hydrogen Uptake in Bradyrhizobium Diazoefficiens. Microbes Environ 2016; 31:76-8. [PMID: 26911707 PMCID: PMC4791120 DOI: 10.1264/jsme2.me15182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 11/12/2022] Open
Abstract
The hydrogen uptake (Hup) system of Bradyrhizobium diazoefficiens recycles the H2 released by nitrogenase in soybean nodule symbiosis, and is responsible for H2-dependent chemolithoautotrophic growth. The strain USDA110 has two hup gene clusters located outside (locus I) and inside (locus II) a symbiosis island. Bacterial growth under H2-dependent chemolithoautotrophic conditions was markedly weaker and H2 production by soybean nodules was markedly stronger for the mutant of hup locus I (ΔhupS1L1) than for the mutant of hup locus II (ΔhupS2L2). These results indicate that locus I is primarily responsible for Hup activity.
Collapse
Affiliation(s)
- Sachiko Masuda
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Masaki Saito
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Chiaki Sugawara
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| |
Collapse
|
19
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
20
|
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J 2015; 473:297-309. [PMID: 26564204 PMCID: PMC4724949 DOI: 10.1042/bj20150880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.
Collapse
|
21
|
Tortosa G, Hidalgo A, Salas A, Bedmar EJ, Mesa S, Delgado MJ. Nitrate and flooding induce N2O emissions from soybean nodules. Symbiosis 2015. [DOI: 10.1007/s13199-015-0341-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Bueno E, Mania D, Frostegard Ǻ, Bedmar EJ, Bakken LR, Delgado MJ. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Front Microbiol 2015; 6:537. [PMID: 26074913 PMCID: PMC4443521 DOI: 10.3389/fmicb.2015.00537] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/15/2015] [Indexed: 01/17/2023] Open
Abstract
Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium) within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR) activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks.
Collapse
Affiliation(s)
- Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spanish Council for Scientific Research Granada, Spain
| | - Daniel Mania
- Department of Environmental Sciences, Norwegian University of Life Sciences Ǻs, Norway
| | - Ǻsa Frostegard
- Department of Environmental Sciences, Norwegian University of Life Sciences Ǻs, Norway
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spanish Council for Scientific Research Granada, Spain
| | - Lars R Bakken
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences Ǻs, Norway
| | - Maria J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spanish Council for Scientific Research Granada, Spain
| |
Collapse
|
23
|
Shiina Y, Itakura M, Choi H, Saeki Y, Hayatsu M, Minamisawa K. Relationship between soil type and N₂O reductase genotype (nosZ) of indigenous soybean bradyrhizobia: nosZ-minus populations are dominant in Andosols. Microbes Environ 2014; 29:420-6. [PMID: 25476067 PMCID: PMC4262367 DOI: 10.1264/jsme2.me14130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022] Open
Abstract
Bradyrhizobium japonicum strains that have the nosZ gene, which encodes N2O reductase, are able to mitigate N2O emissions from soils (15). To examine the distribution of nosZ genotypes among Japanese indigenous soybean bradyrhizobia, we isolated bradyrhizobia from the root nodules of soybean plants inoculated with 32 different soils and analyzed their nosZ and nodC genotypes. The 1556 resultant isolates were classified into the nosZ+/nodC+ genotype (855 isolates) and nosZ-/nodC+ genotype (701 isolates). The 11 soil samples in which nosZ- isolates significantly dominated (P < 0.05; the χ(2) test) were all Andosols (a volcanic ash soil prevalent in agricultural fields in Japan), whereas the 17 soil samples in which nosZ+ isolates significantly dominated were mainly alluvial soils (non-volcanic ash soils). This result was supported by a principal component analysis of environmental factors: the dominance of the nosZ- genotype was positively correlated with total N, total C, and the phosphate absorption coefficient in the soils, which are soil properties typical of Andosols. Internal transcribed spacer sequencing of representative isolates showed that the nosZ+ and nosZ- isolates of B. japonicum fell mainly into the USDA110 (BJ1) and USDA6 (BJ2) groups, respectively. These results demonstrated that the group lacking nosZ was dominant in Andosols, which can be a target soil type for an N2O mitigation strategy in soybean fields. We herein discussed how the nosZ genotypes of soybean bradyrhizobia depended on soil types in terms of N2O respiration selection and genomic determinants for soil adaptation.
Collapse
Affiliation(s)
- Yoko Shiina
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Hyunseok Choi
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Yuichi Saeki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University, Miyazaki 889–2192,
Japan
| | - Masahito Hayatsu
- National Institute for Agro-Environmental Sciences, 3–1–3, Kannondai, Tsukuba, Ibaraki 305–8604,
Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| |
Collapse
|
24
|
Sánchez C, Itakura M, Okubo T, Matsumoto T, Yoshikawa H, Gotoh A, Hidaka M, Uchida T, Minamisawa K. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum. Environ Microbiol 2014; 16:3263-74. [PMID: 24947409 DOI: 10.1111/1462-2920.12546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/30/2022]
Abstract
The soybean endosymbiont Bradyrhizobium japonicum is able to scavenge the greenhouse gas N2O through the N2O reductase (Nos). In previous research, N2O emission from soybean rhizosphere was mitigated by B. japonicum Nos(++) strains (mutants with increased Nos activity). Here, we report the mechanism underlying the Nos(++) phenotype. Comparative analysis of Nos(++) mutant genomes showed that mutation of bll4572 resulted in Nos(++) phenotype. bll4572 encodes NasS, the nitrate (NO3(-))-sensor of the two-component NasST regulatory system. Transcriptional analyses of nosZ (encoding Nos) and other genes from the denitrification process in nasS and nasST mutants showed that, in the absence of NO3(-) , nasS mutation induces nosZ and nap (periplasmic nitrate reductase) via nasT. NO3(-) addition dissociated the NasS-NasT complex in vitro, suggesting the release of the activator NasT. Disruption of nasT led to a marked decrease in nosZ and nap transcription in cells incubated in the presence of NO3(-). Thus, although NasST is known to regulate the NO3(-)-mediated response of NO3(-) assimilation genes in bacteria, our results show that NasST regulates the NO3(-) -mediated response of nosZ and napE genes, from the dissimilatory denitrification pathway, in B. japonicum.
Collapse
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Isobe K, Ohte N. Ecological perspectives on microbes involved in N-cycling. Microbes Environ 2014; 29:4-16. [PMID: 24621510 PMCID: PMC4041230 DOI: 10.1264/jsme2.me13159] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/09/2014] [Indexed: 11/12/2022] Open
Abstract
Nitrogen (N) cycles have been directly linked to the functional stability of ecosystems because N is an essential element for life. Furthermore, the supply of N to organisms regulates primary productivity in many natural ecosystems. Microbial communities have been shown to significantly contribute to N cycles because many N-cycling processes are microbially mediated. Only particular groups of microbes were implicated in N-cycling processes, such as nitrogen fixation, nitrification, and denitrification, until a few decades ago. However, recent advances in high-throughput sequencing technologies and sophisticated isolation techniques have enabled microbiologists to discover that N-cycling microbes are unexpectedly diverse in their functions and phylogenies. Therefore, elucidating the link between biogeochemical N-cycling processes and microbial community dynamics can provide a more mechanistic understanding of N cycles than the direct observation of N dynamics. In this review, we summarized recent findings that characterized the microbes governing novel N-cycling processes. We also discussed the ecological role of N-cycling microbial community dynamics, which is essential for advancing our understanding of the functional stability of ecosystems.
Collapse
Affiliation(s)
- Kazuo Isobe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Nobuhito Ohte
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
26
|
Affiliation(s)
- Shin Haruta
- Graduate School of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|
27
|
Linked expressions of nap and nos genes in a Bradyrhizobium japonicum mutant with increased N(2)O reductase activity. Appl Environ Microbiol 2013; 79:4178-80. [PMID: 23624475 DOI: 10.1128/aem.00703-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the mechanisms underlying the increased N2O reductase activity in the Bradyrhizobium japonicum 5M09 mutant from enrichment culture under N2O respiration, we analyzed the expression of genes encoding denitrification reductases and regulators. Our results suggest a common regulation of nap (encoding periplasmic nitrate reductase) and nos (encoding N2O reductase).
Collapse
|
28
|
Affiliation(s)
- Masahito Hayatsu
- National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
| |
Collapse
|
29
|
Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K, Minamisawa K. The type III Secretion System of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl Environ Microbiol 2013; 79:1048-51. [PMID: 23204412 PMCID: PMC3568557 DOI: 10.1128/aem.03297-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022] Open
Abstract
The rhcJ and ttsI mutants of Bradyrhizobium japonicum USDA122 for the type III protein secretion system (T3SS) failed to secrete typical effector proteins and gained the ability to nodulate Rj2 soybean plants (Hardee), which are symbiotically incompatible with wild-type USDA122. This suggests that effectors secreted via the T3SS trigger incompatibility between these two partners.
Collapse
Affiliation(s)
- Takahiro Tsukui
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takakazu Kaneko
- Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Shin Okazaki
- Faculty of Agriculture, Tokyo University of Agricultural Technology, Tokyo, Japan
| | | | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|