1
|
Downing BE, Nayak DD. Innovations in the electron transport chain fuel archaeal methane metabolism. Trends Biochem Sci 2025; 50:425-437. [PMID: 40133173 DOI: 10.1016/j.tibs.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Methanogenic archaea (or methanogens) produce methane as a by-product of energy metabolism. Strategies for energy conservation differ across methanogens. Some lineages use an electron transport chain (ETC) with an endogenously produced heterodisulfide as an electron acceptor. Of late, culture-independent -omics techniques and genome editing tools have provided new insights into the evolution and function of bioenergetic complexes in methanogen ETCs, which will be the primary focus of this review. We will also discuss how the ETC enhances metabolic flexibility in methanogens and can even permit anaerobic respiration decoupled from methanogenesis. Finally, we expand on how innovations in the ETC might have enabled anaerobic methane oxidation in a closely related group of microorganisms called anaerobic methanotrophic archaea (ANME).
Collapse
Affiliation(s)
- Blake E Downing
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Dipti D Nayak
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Lyu X, Yu H, Lu Y. Diversity and function of soluble heterodisulfide reductases in methane-metabolizing archaea. Microbiol Spectr 2025; 13:e0323824. [PMID: 40130855 PMCID: PMC12054007 DOI: 10.1128/spectrum.03238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
Soluble heterodisulfide reductase subunit A (HdrA) is an ancient protein central to energy metabolism, facilitating the recycling of intermediates in methane metabolism and performing flavin-based electron bifurcation for energy conservation. In this study, we investigated the functional diversity and evolutionary dynamics of HdrA in methane-metabolizing archaea. An analysis of 1,152 HdrA sequences from 624 genomes revealed that HdrA diversified through internal domain modifications, resulting in 28 distinct classes and 4 major types (types I, Ia, II, and III). Functional genes in HdrA gene clusters revealed variations in mid-potential electron donors, including NADH, F420H2, H2, and formate. Two major types of HdrA have not previously been studied in detail. Type II HdrA resulted from a fusion of two different classes of type I HdrA. Particularly, a consistent gene cluster containing type II HdrA, molybdopterin oxidoreductase, and F420 dehydrogenase was identified in anaerobic methane-oxidizing archaea and methanogens. Protein sequence and structural predictions suggested that the molybdopterin oxidoreductase protein had lost its catalytic function, and F420H2 served as the mid-potential electron donor or acceptor for the Hdr protein complex. This gene cluster may expand to include additional type I HdrA and HdrD, potentially supporting two electron bifurcation events to lower electron potential for ferredoxin reduction. Type III HdrA, with an inserted GltD domain compared to type I HdrA, appears to have altered the electron transfer route and may use NADH as its mid-potential electron donor or acceptor. The remarkable functional flexibility of HdrA likely helps methane-metabolizing archaea adapt to diverse anaerobic environments.IMPORTANCEAll methanogenic archaea use heterodisulfide of coenzymes M and B as the terminal electron acceptor. In anaerobic methane- and alkane-oxidizing archaea, the reverse reaction occurs. The cycling of heterodisulfide is vital to the energy conservation of these anaerobic microorganisms. Soluble heterodisulfide reductase is an ancient protein fulfilling this function via flavin-based electron bifurcation or confurcation. Despite being present in the vast majority of methane- and alkane-metabolizing archaea, the diversity and evolution of this key protein have not been investigated. This study reveals substantial domain variation and structural changes in the key bifurcating subunit HdrA in methane- and alkane-metabolizing archaea. The resulting flexibility of HdrA enables the protein complex to vary its interacting subunits and electron carriers based on the organisms' primary metabolism. Our findings shed light on how methane- and alkane-metabolizing archaea thrive in various anaerobic environments, contributing to our broader understanding of carbon cycling and energy conservation.
Collapse
Affiliation(s)
- Xingyu Lyu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hang Yu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Chen SC, Chen S, Musat N, Kümmel S, Ji J, Lund MB, Gilbert A, Lechtenfeld OJ, Richnow HH, Musat F. Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis. Nat Commun 2024; 15:9628. [PMID: 39511174 PMCID: PMC11543930 DOI: 10.1038/s41467-024-53932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Microbial formation and oxidation of volatile alkanes in anoxic environments significantly impacts biogeochemical cycles on Earth. The discovery of archaea oxidizing volatile alkanes via deeply branching methyl-coenzyme M reductase variants, dubbed alkyl-CoM reductases (ACR), prompted the hypothesis of archaea-catalysed alkane formation in nature (alkanogenesis). A combination of metabolic modelling, anaerobic physiology assays, and isotope labeling of Candidatus Syntrophoarchaeum archaea catalyzing the anaerobic oxidation of butane (AOB) show a back flux of CO2 to butane, demonstrating reversibility of the entire AOB pathway. Back fluxes correlate with thermodynamics and kinetics of the archaeal catabolic system. AOB reversibility supports a biological formation of butane, and generally of higher volatile alkanes, helping to explain the presence of isotopically light alkanes and deeply branching ACR genes in sedimentary basins isolated from gas reservoirs.
Collapse
Affiliation(s)
- Song-Can Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Niculina Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jiaheng Ji
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marie Braad Lund
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Alexis Gilbert
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Oliver J Lechtenfeld
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Florin Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Tan X, Lu Y, Nie WB, Evans P, Wang XW, Dang CC, Wang X, Liu BF, Xing DF, Ren NQ, Xie GJ. Nitrate-dependent anaerobic methane oxidation coupled to Fe(III) reduction as a source of ammonium and nitrous oxide. WATER RESEARCH 2024; 256:121571. [PMID: 38583332 DOI: 10.1016/j.watres.2024.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
'Candidatus Methanoperedens nitroreducens' is an archaeal methanotroph with global importance that links carbon and nitrogen cycles and great potential for sustainable operation of wastewater treatment. It has been reported to mediate the anaerobic oxidation of methane through a reverse methanogenesis pathway while reducing nitrate to nitrite. Here, we demonstrate that 'Ca. M. nitroreducens' reduces ferric iron forming ammonium (23.1 %) and nitrous oxide (N2O, 46.5 %) from nitrate. These results are supported with the upregulation of genes coding for proteins responsible for dissimilatory nitrate reduction to ammonium (nrfA), N2O formation (norV, cyt P460), and multiple multiheme c-type cytochromes for ferric iron reduction. Concomitantly, an increase in the N2O-reducing SJA-28 lineage and a decrease in the nitrite-reducing 'Candidatus Methylomirabilis oxyfera' are consistent with the changes in 'Ca. M. nitroreducens' end products. These findings demonstrate the highly flexible physiology of 'Ca. M. nitroreducens' in anaerobic ecosystems with diverse electron acceptor conditions, and further reveals its roles in linking methane oxidation to global biogeochemical cycles. 'Ca. M. nitroreducens' could significantly affect the bioavailability of nitrogen sources as well as the emission of greenhouse gas in natural ecosystems and wastewater treatment plants.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wen-Bo Nie
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Paul Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Osorio-Rodriguez D, Metcalfe KS, McGlynn SE, Yu H, Dekas AE, Ellisman M, Deerinck T, Aristilde L, Grotzinger JP, Orphan VJ. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Proc Natl Acad Sci U S A 2023; 120:e2302156120. [PMID: 38079551 PMCID: PMC10743459 DOI: 10.1073/pnas.2302156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.
Collapse
Affiliation(s)
- Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Kyle S. Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Shawn E. McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo152-8550, Japan
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Anne E. Dekas
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Tom Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL60208
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
7
|
Yan Z, Du K, Yan Y, Huang R, Zhu F, Yuan X, Wang S, Ferry JG. Respiration-driven methanotrophic growth of diverse marine methanogens. Proc Natl Acad Sci U S A 2023; 120:e2303179120. [PMID: 37729205 PMCID: PMC10523532 DOI: 10.1073/pnas.2303179120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
Anaerobic marine environments are the third largest producer of the greenhouse gas methane. The release to the atmosphere is prevented by anaerobic 'methanotrophic archaea (ANME) dependent on a symbiotic association with sulfate-reducing bacteria or direct reduction of metal oxides. Metagenomic analyses of ANME are consistent with a reverse methanogenesis pathway, although no wild-type isolates have been available for validation and biochemical investigation. Herein is reported the characterization of methanotrophic growth for the diverse marine methanogens Methanosarcina acetivorans C2A and Methanococcoides orientis sp. nov. Growth was dependent on reduction of either ferrihydrite or humic acids revealing a respiratory mode of energy conservation. Acetate and/or formate were end products. Reversal of the well-characterized methanogenic pathways is remarkably like the consensus pathways for uncultured ANME based on extensive metagenomic analyses.
Collapse
Affiliation(s)
- Zhen Yan
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu215123, China
| | - Kaifeng Du
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Yunfeng Yan
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Rui Huang
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Fanping Zhu
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16801
| |
Collapse
|
8
|
McIlroy SJ, Leu AO, Zhang X, Newell R, Woodcroft BJ, Yuan Z, Hu S, Tyson GW. Anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens' has a pleomorphic life cycle. Nat Microbiol 2023; 8:321-331. [PMID: 36635574 DOI: 10.1038/s41564-022-01292-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/21/2022] [Indexed: 01/14/2023]
Abstract
'Candidatus Methanoperedens' are anaerobic methanotrophic (ANME) archaea with global importance to methane cycling. Here meta-omics and fluorescence in situ hybridization (FISH) were applied to characterize a bioreactor dominated by 'Candidatus Methanoperedens nitroreducens' performing anaerobic methane oxidation coupled to nitrate reduction. Unexpectedly, FISH revealed the stable co-existence of two 'Ca. M. nitroreducens' morphotypes: the archetypal coccobacilli microcolonies and previously unreported planktonic rods. Metagenomic analysis showed that the 'Ca. M. nitroreducens' morphotypes were genomically identical but had distinct gene expression profiles for proteins associated with carbon metabolism, motility and cell division. In addition, a third distinct phenotype was observed, with some coccobacilli 'Ca. M. nitroreducens' storing carbon as polyhydroxyalkanoates. The phenotypic variation of 'Ca. M. nitroreducens' probably aids their survival and dispersal in the face of sub-optimal environmental conditions. These findings further demonstrate the remarkable ability of members of the 'Ca. Methanoperedens' to adapt to their environment.
Collapse
Affiliation(s)
- Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia.
| | - Andy O Leu
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Rhys Newell
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
9
|
Shao N, Fan Y, Chou CW, Yavari S, Williams RV, Amster IJ, Brown SM, Drake IJ, Duin EC, Whitman WB, Liu Y. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea. Commun Biol 2022; 5:1113. [PMID: 36266535 PMCID: PMC9584954 DOI: 10.1038/s42003-022-04057-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Methanogens and anaerobic methane-oxidizing archaea (ANME) are important players in the global carbon cycle. Methyl-coenzyme M reductase (MCR) is a key enzyme in methane metabolism, catalyzing the last step in methanogenesis and the first step in anaerobic methane oxidation. Divergent mcr and mcr-like genes have recently been identified in uncultured archaeal lineages. However, the assembly and biochemistry of MCRs from uncultured archaea remain largely unknown. Here we present an approach to study MCRs from uncultured archaea by heterologous expression in a methanogen, Methanococcus maripaludis. Promoter, operon structure, and temperature were important determinants for MCR production. Both recombinant methanococcal and ANME-2 MCR assembled with the host MCR forming hybrid complexes, whereas tested ANME-1 MCR and ethyl-coenzyme M reductase only formed homogenous complexes. Together with structural modeling, this suggests that ANME-2 and methanogen MCRs are structurally similar and their reaction directions are likely regulated by thermodynamics rather than intrinsic structural differences.
Collapse
Affiliation(s)
- Nana Shao
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Yu Fan
- EMTEC IT, ExxonMobil Technical Computing Company, Annandale, NJ, USA
| | - Chau-Wen Chou
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Shadi Yavari
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | | | | | - Stuart M Brown
- Energy Sciences, ExxonMobil Technology & Engineering Company, Annandale, NJ, USA
| | - Ian J Drake
- Biomedical Sciences, ExxonMobil Technology & Engineering Company, Annandale, NJ, USA
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | | | - Yuchen Liu
- Energy Sciences, ExxonMobil Technology & Engineering Company, Annandale, NJ, USA.
| |
Collapse
|
10
|
Wegener G, Laso-Pérez R, Orphan VJ, Boetius A. Anaerobic Degradation of Alkanes by Marine Archaea. Annu Rev Microbiol 2022; 76:553-577. [PMID: 35917471 DOI: 10.1146/annurev-micro-111021-045911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alkanes are saturated apolar hydrocarbons that range from its simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rafael Laso-Pérez
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Current affiliation: Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Victoria J Orphan
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Division of Geological and Planetary Sciences and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany;
| |
Collapse
|
11
|
Zhang X, McIlroy SJ, Vassilev I, Rabiee H, Plan M, Cai C, Virdis B, Tyson GW, Yuan Z, Hu S. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. WATER RESEARCH 2022; 221:118743. [PMID: 35724480 DOI: 10.1016/j.watres.2022.118743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic oxidation of methane (AOM) is an important microbial process mitigating methane (CH4) emission from natural sediments. Anaerobic methanotrophic archaea (ANME) have been shown to mediate AOM coupled to the reduction of several compounds, either directly (i.e. nitrate, metal oxides) or in consortia with syntrophic bacterial partners (i.e. sulfate). However, the mechanisms underlying extracellular electron transfer (EET) between ANME and their bacterial partners or external electron acceptors are poorly understood. In this study, we investigated electron and carbon flow for an anaerobic methanotrophic consortium dominated by 'Candidatus Methanoperedens nitroreducens' in a CH4-fed microbial electrolysis cell (MEC). Acetate was identified as a likely intermediate for the methanotrophic consortium, which stimulated the growth of the known electroactive genus Geobacter. Electrochemical characterization, stoichiometric calculations of the system, along with stable isotope-based assays, revealed that acetate was not produced from CH4 directly. In the absence of CH4, current was still generated and the microbial community remained largely unchanged. A substantial portion of the generated current in the absence of CH4 was linked to the oxidation of the intracellular polyhydroxybutyrate (PHB) and the breakdown of extracellular polymeric substances (EPSs). The ability of 'Ca. M. nitroreducens' to use stored PHB as a carbon and energy source, and its ability to donate acetate as a diffusible electron carrier expands the known metabolic diversity of this lineage that likely underpins its success in natural systems.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia.
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia
| | - Manuel Plan
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chen Cai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
12
|
Garcia PS, Gribaldo S, Borrel G. Diversity and Evolution of Methane-Related Pathways in Archaea. Annu Rev Microbiol 2022; 76:727-755. [PMID: 35759872 DOI: 10.1146/annurev-micro-041020-024935] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase (Mcr) complex. Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| |
Collapse
|
13
|
A Reduced F 420-Dependent Nitrite Reductase in an Anaerobic Methanotrophic Archaeon. J Bacteriol 2022; 204:e0007822. [PMID: 35695516 PMCID: PMC9295563 DOI: 10.1128/jb.00078-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic methanotrophic archaea (ANME), which oxidize methane in marine sediments through syntrophic associations with sulfate-reducing bacteria, carry homologs of coenzyme F420-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a hyperthermophilic methanogen from deep-sea hydrothermal vents. M. jannaschii Fsr (MjFsr) and ANME-Fsr belong to two phylogenetically distinct groups, FsrI and FsrII, respectively. MjFsrI reduces sulfite to sulfide with reduced F420 (F420H2), protecting methyl coenzyme M reductase (Mcr), an essential enzyme for methanogens, from sulfite inhibition. However, the function of FsrIIs in ANME, which also rely on Mcr and live in sulfidic environments, is unknown. We have determined the catalytic properties of FsrII from a member of ANME-2c. Since ANME remain to be isolated, we expressed ANME2c-FsrII in a closely related methanogen, Methanosarcina acetivorans. Purified recombinant FsrII contained siroheme, indicating that the methanogen, which lacks a native sulfite reductase, produced this coenzyme. Unexpectedly, FsrII could not reduce sulfite or thiosulfate with F420H2. Instead, it acted as an F420H2-dependent nitrite reductase (FNiR) with physiologically relevant Km values (nitrite, 5 μM; F420H2, 14 μM). From kinetic, thermodynamic, and structural analyses, we hypothesize that in FNiR, F420H2-derived electrons are delivered at the oxyanion reduction site at a redox potential that is suitable for reducing nitrite (E0' [standard potential], +440 mV) but not sulfite (E0', -116 mV). These findings and the known nitrite sensitivity of Mcr suggest that FNiR may protect nondenitrifying ANME from nitrite toxicity. Remarkably, by reorganizing the reductant processing system, Fsr transforms two analogous oxyanions in two distinct archaeal lineages with different physiologies and ecologies. IMPORTANCE Coenzyme F420-dependent sulfite reductase (Fsr) protects methanogenic archaea inhabiting deep-sea hydrothermal vents from the inactivation of methyl coenzyme M reductase (Mcr), one of their essential energy production enzymes. Anaerobic methanotrophic archaea (ANME) that oxidize methane and rely on Mcr, carry Fsr homologs that form a distinct clade. We show that a member of this clade from ANME-2c functions as F420-dependent nitrite reductase (FNiR) and lacks Fsr activity. This specialization arose from a distinct feature of the reductant processing system and not the substrate recognition element. We hypothesize FNiR may protect ANME Mcr from inactivation by nitrite. This is an example of functional specialization within a protein family that is induced by changes in electron transfer modules to fit an ecological need.
Collapse
|
14
|
He B, Cai C, McCubbin T, Muriel JC, Sonnenschein N, Hu S, Yuan Z, Marcellin E. A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility. Metabolites 2022; 12:314. [PMID: 35448501 PMCID: PMC9024614 DOI: 10.3390/metabo12040314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Methane is an abundant low-carbon fuel that provides a valuable energy resource, but it is also a potent greenhouse gas. Therefore, anaerobic oxidation of methane (AOM) is an essential process with central features in controlling the carbon cycle. Candidatus 'Methanoperedens nitroreducens' (M. nitroreducens) is a recently discovered methanotrophic archaeon capable of performing AOM via a reverse methanogenesis pathway utilizing nitrate as the terminal electron acceptor. Recently, reverse methanogenic pathways and energy metabolism among anaerobic methane-oxidizing archaea (ANME) have gained significant interest. However, the energetics and the mechanism for electron transport in nitrate-dependent AOM performed by M. nitroreducens is unclear. This paper presents a genome-scale metabolic model of M. nitroreducens, iMN22HE, which contains 813 reactions and 684 metabolites. The model describes its cellular metabolism and can quantitatively predict its growth phenotypes. The essentiality of the cytoplasmic heterodisulfide reductase HdrABC in the reverse methanogenesis pathway is examined by modeling the electron transfer direction and the specific energy-coupling mechanism. Furthermore, based on better understanding electron transport by modeling, a new energy transfer mechanism is suggested. The new mechanism involves reactions capable of driving the endergonic reactions in nitrate-dependent AOM, including the step reactions in reverse canonical methanogenesis and the novel electron-confurcating reaction HdrABC. The genome metabolic model not only provides an in silico tool for understanding the fundamental metabolism of ANME but also helps to better understand the reverse methanogenesis energetics and its thermodynamic feasibility.
Collapse
Affiliation(s)
- Bingqing He
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (B.H.); (T.M.)
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia; (C.C.); (S.H.); (Z.Y.)
| | - Chen Cai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia; (C.C.); (S.H.); (Z.Y.)
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (B.H.); (T.M.)
| | - Jorge Carrasco Muriel
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.C.M.); (N.S.)
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (J.C.M.); (N.S.)
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia; (C.C.); (S.H.); (Z.Y.)
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia; (C.C.); (S.H.); (Z.Y.)
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (B.H.); (T.M.)
| |
Collapse
|
15
|
Vavilin VA, Lokshina LY, Rytov SV. Anaerobic oxidation of methane coupled with sulphate reduction: high concentration of methanotrophic archaea might be responsible for low stable isotope fractionation factors in methane. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2022; 58:44-59. [PMID: 34846953 DOI: 10.1080/10256016.2021.2000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The changes in δ13CH4 and δ12C1H32H during sulphate-dependent anaerobic oxidation of methane (AOM) were described using dynamic modelling. The batch sulphate-dependent AOM at the nearly linear dynamics of methane oxidation with different enriched cultures originating from three marine sediments was simulated. The traditional Rayleigh equation for carbon and hydrogen stable isotopes in methane was derived from the basic dynamic isotope equation. The general and reduced models, taking into account the reaction stoichiometry and based on balances of chemical elements and their isotopes, describes a redistribution of stable isotope values in the sulphate-dependent AOM process. It was shown that AOM is the first and rate-limiting step in the whole AOM + SR (sulphate reduction) process. The different fractionation factors of carbon and hydrogen isotopes in methane were obtained for three marine sediments. It was concluded that during incubation the highest concentration of methanotrophic archaea might be responsible for the lowest fractionation factors of stable isotopes of carbon and hydrogen in methane. The interpretation of this phenomenon was suggested. Different concentrations of methanotrophic archaea can lead to variations of isotope fractionation factors.
Collapse
Affiliation(s)
- Vasily A Vavilin
- Water Problems Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lyudmila Y Lokshina
- Water Problems Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey V Rytov
- Water Problems Institute, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
16
|
Reconstruction and analysis of transcriptome regulatory network of Methanobrevibacter ruminantium M1. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Wang Y, Xie R, Hou J, Lv Z, Li L, Hu Y, Huang H, Wang F. The late Archaean to early Proterozoic origin and evolution of anaerobic methane-oxidizing archaea. MLIFE 2022; 1:96-100. [PMID: 38818328 PMCID: PMC10989977 DOI: 10.1002/mlf2.12013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/19/2022] [Indexed: 06/01/2024]
Abstract
Microorganisms, called anaerobic methane-oxidizing archaea (ANME), can reduce a large amount of greenhouse gas methane and therefore have the potential to cool the Earth. We collected nearly all ANMEs genomes in public databases and performed a comprehensive comparative genomic analysis and molecular dating. Our results show that ANMEs originated in the late Archaean to early Proterozoic eon. During this period of time, our planet Earth was experiencing the Great Oxygenation Event and Huronian Glaciation, a dramatic drop in the Earth's surface temperature. This suggests that the emergence of ANMEs may contribute to the reduction of methane at that time, which is an unappreciated potential cause that led to the Huronian Glaciation.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruize Xie
- School of OceanographyShanghai Jiao Tong UniversityShanghaiChina
| | - Jialin Hou
- School of OceanographyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhenbo Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hungchia Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fengping Wang
- School of OceanographyShanghai Jiao Tong UniversityShanghaiChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiChina
| |
Collapse
|
18
|
Qian L, Yu X, Zhou J, Gu H, Ding J, Peng Y, He Q, Tian Y, Liu J, Wang S, Wang C, Shu L, Yan Q, He J, Liu G, Tu Q, He Z. MCycDB: a curated database for comprehensively profiling methane cycling processes of environmental microbiomes. Mol Ecol Resour 2022; 22:1803-1823. [DOI: 10.1111/1755-0998.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Jiayin Zhou
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Hang Gu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Jijuan Ding
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering the University of Tennessee Knoxville TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems School of Life Sciences Xiamen University Xiamen 361005 China
| | - Jihua Liu
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Jianguo He
- School of Life Science Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Guangli Liu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
- College of Agronomy Hunan Agricultural University Changsha 410128 China
| |
Collapse
|
19
|
Hedlund BP, Zhang C, Wang F, Rinke C, Martin WF. Editorial: Ecology, Metabolism and Evolution of Archaea-Perspectives From Proceedings of the International Workshop on Geo-Omics of Archaea. Front Microbiol 2022; 12:827229. [PMID: 35126338 PMCID: PMC8816317 DOI: 10.3389/fmicb.2021.827229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai JiaoTong University, Shanghai, China
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - William F. Martin
- Institute for Molecular Evolution, University of Dusseldorf Medical School, Düsseldorf, Germany
| |
Collapse
|
20
|
Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. THE ISME JOURNAL 2022; 16:168-177. [PMID: 34285362 PMCID: PMC8692474 DOI: 10.1038/s41396-021-01047-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-coupled anaerobic oxidation of methane (AOM) is a major methane sink in marine sediments. Multiple lineages of anaerobic methanotrophic archaea (ANME) often coexist in sediments and catalyze this process syntrophically with sulfate-reducing bacteria (SRB), but the potential differences in ANME ecophysiology and mechanisms of syntrophy remain unresolved. A humic acid analog, anthraquinone 2,6-disulfonate (AQDS), could decouple archaeal methanotrophy from bacterial sulfate reduction and serve as the terminal electron acceptor for AOM (AQDS-coupled AOM). Here in sediment microcosm experiments, we examined variations in physiological response between two co-occurring ANME-2 families (ANME-2a and ANME-2c) and tested the hypothesis of sulfate respiration by ANME-2. Sulfate concentrations as low as 100 µM increased AQDS-coupled AOM nearly 2-fold matching the rates of sulfate-coupled AOM. However, the SRB partners remained inactive in microcosms with sulfate and AQDS and neither ANME-2 families respired sulfate, as shown by their cellular sulfur contents and anabolic activities measured using nanoscale secondary ion mass spectrometry. ANME-2a anabolic activity was significantly higher than ANME-2c, suggesting that ANME-2a was primarily responsible for the observed sulfate stimulation of AQDS-coupled AOM. Comparative transcriptomics showed significant upregulation of ANME-2a transcripts linked to multiple ABC transporters and downregulation of central carbon metabolism during AQDS-coupled AOM compared to sulfate-coupled AOM. Surprisingly, genes involved in sulfur anabolism were not differentially expressed during AQDS-coupled AOM with and without sulfate amendment. Collectively, this data indicates that ANME-2 archaea are incapable of respiring sulfate, but sulfate availability differentially stimulates the growth and AOM activity of different ANME lineages.
Collapse
|
21
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
22
|
Merkel AY, Chernyh NA, Pimenov NV, Bonch-Osmolovskaya EA, Slobodkin AI. Diversity and Metabolic Potential of the Terrestrial Mud Volcano Microbial Community with a High Abundance of Archaea Mediating the Anaerobic Oxidation of Methane. Life (Basel) 2021; 11:life11090953. [PMID: 34575103 PMCID: PMC8470020 DOI: 10.3390/life11090953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Terrestrial mud volcanoes (TMVs) are important natural sources of methane emission. The microorganisms inhabiting these environments remain largely unknown. We studied the phylogenetic composition and metabolic potential of the prokaryotic communities of TMVs located in the Taman Peninsula, Russia, using a metagenomic approach. One of the examined sites harbored a unique community with a high abundance of anaerobic methane-oxidizing archaea belonging to ANME-3 group (39% of all 16S rRNA gene reads). The high number of ANME-3 archaea was confirmed by qPCR, while the process of anaerobic methane oxidation was demonstrated by radioisotopic experiments. We recovered metagenome-assembled genomes (MAGs) of archaeal and bacterial community members and analyzed their metabolic capabilities. The ANME-3 MAG contained a complete set of genes for methanogenesis as well as of ribosomal RNA and did not encode proteins involved in dissimilatory nitrate or sulfate reduction. The presence of multiheme c-type cytochromes suggests that ANME-3 can couple methane oxidation with the reduction of metal oxides or with the interspecies electron transfer to a bacterial partner. The bacterial members of the community were mainly represented by autotrophic, nitrate-reducing, sulfur-oxidizing bacteria, as well as by fermentative microorganisms. This study extends the current knowledge of the phylogenetic and metabolic diversity of prokaryotes in TMVs and provides a first insight into the genomic features of ANME-3 archaea.
Collapse
|
23
|
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs. J Bacteriol 2021; 203:e0011721. [PMID: 34124941 PMCID: PMC8351635 DOI: 10.1128/jb.00117-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.
Collapse
|
24
|
Nie WB, Ding J, Xie GJ, Tan X, Lu Y, Peng L, Liu BF, Xing DF, Yuan Z, Ren N. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. WATER RESEARCH 2021; 194:116928. [PMID: 33618110 DOI: 10.1016/j.watres.2021.116928] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
ANaerobic MEthanotrophic (ANME) archaea are critical microorganisms mitigating methane emission from anoxic zones. In previous studies, sulfate-dependent anaerobic oxidation of methane (AOM) and nitrate-dependent AOM, performed by different clades of ANME archaea, were detected in marine sediments and freshwater environments, respectively. This study shows that simultaneous sulfate- and nitrate-dependent AOM can be mediated by a clade of ANME archaea, which may occur in estuaries and coastal zones, at the interface of marine and freshwater environments enriched with sulfate and nitrate. Long-term (~1,200 days) performance data of a bioreactor, metagenomic analysis and batch experiments demonstrated that ANME-2d not only conducted AOM coupled to reduction of nitrate to nitrite, but also coupled to the conversion of sulfate to sulfide, in collaboration with sulfate-reducing bacteria (SRB). Sulfide was oxidized back to sulfate by sulfide-oxidizing autotrophic denitrifiers with nitrate or nitrite as electron acceptors, in turn alleviating sulfide accumulation. In addition, dissimilatory nitrate reduction to ammonium performed by ANME-2d was detected, providing substrates to Anammox. Metatranscriptomic analysis revealed significant upregulation of flaB in ANME-2d and pilA in Desulfococcus, which likely resulted in the formation of unique nanonets connecting cells and expanding within the biofilm, and putatively providing structural links between ANME-2d and SRB for electron transfer. Simultaneous nitrate- and sulfate-dependent AOM as observed in this study could be an important link between the carbon, nitrogen and sulfur cycles in natural environments, such as nearshore environments.
Collapse
Affiliation(s)
- Wen-Bo Nie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China.
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane QLD, 4072, Australia
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
25
|
Fischer PQ, Sánchez‐Andrea I, Stams AJM, Villanueva L, Sousa DZ. Anaerobic microbial methanol conversion in marine sediments. Environ Microbiol 2021; 23:1348-1362. [PMID: 33587796 PMCID: PMC8048578 DOI: 10.1111/1462-2920.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023]
Abstract
Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.
Collapse
Affiliation(s)
- Peter Q. Fischer
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
- Faculty of GeosciencesUtrecht University, Princetonlaan 8aUtrecht3584 CBThe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
26
|
Organohalide-Respiring Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils. Appl Environ Microbiol 2021; 87:AEM.01643-20. [PMID: 33187999 DOI: 10.1128/aem.01643-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
Recent work revealed an active biological chlorine cycle in coastal Arctic tundra of northern Alaska. This raised the question of whether chlorine cycling was restricted to coastal areas or if these processes extended to inland tundra. The anaerobic process of organohalide respiration, carried out by specialized bacteria like Dehalococcoides, consumes hydrogen gas and acetate using halogenated organic compounds as terminal electron acceptors, potentially competing with methanogens that produce the greenhouse gas methane. We measured microbial community composition and soil chemistry along an ∼262-km coastal-inland transect to test for the potential of organohalide respiration across the Arctic Coastal Plain and studied the microbial community associated with Dehalococcoides to explore the ecology of this group and its potential to impact C cycling in the Arctic. Concentrations of brominated organic compounds declined sharply with distance from the coast, but the decrease in organic chlorine pools was more subtle. The relative abundances of Dehalococcoides were similar across the transect, except for being lower at the most inland site. Dehalococcoides correlated with other strictly anaerobic genera, plus some facultative ones, that had the genetic potential to provide essential resources (hydrogen, acetate, corrinoids, or organic chlorine). This community included iron reducers, sulfate reducers, syntrophic bacteria, acetogens, and methanogens, some of which might also compete with Dehalococcoides for hydrogen and acetate. Throughout the Arctic Coastal Plain, Dehalococcoides is associated with the dominant anaerobes that control fluxes of hydrogen, acetate, methane, and carbon dioxide. Depending on seasonal electron acceptor availability, organohalide-respiring bacteria could impact carbon cycling in Arctic wet tundra soils.IMPORTANCE Once considered relevant only in contaminated sites, it is now recognized that biological chlorine cycling is widespread in natural environments. However, linkages between chlorine cycling and other ecosystem processes are not well established. Species in the genus Dehalococcoides are highly specialized, using hydrogen, acetate, vitamin B12-like compounds, and organic chlorine produced by the surrounding community. We studied which neighbors might produce these essential resources for Dehalococcoides species. We found that Dehalococcoides species are ubiquitous across the Arctic Coastal Plain and are closely associated with a network of microbes that produce or consume hydrogen or acetate, including the most abundant anaerobic bacteria and methanogenic archaea. We also found organic chlorine and microbes that can produce these compounds throughout the study area. Therefore, Dehalococcoides could control the balance between carbon dioxide and methane (a more potent greenhouse gas) when suitable organic chlorine compounds are available to drive hydrogen and acetate uptake.
Collapse
|
27
|
Stanish LF, Sherwood OA, Lackey G, Osborn S, Robertson CE, Harris JK, Pace N, Ryan JN. Microbial and Biogeochemical Indicators of Methane in Groundwater Aquifers of the Denver Basin, Colorado. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:292-303. [PMID: 33296185 DOI: 10.1021/acs.est.0c04228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of methane and other hydrocarbons in domestic-use groundwater aquifers poses significant environmental and human health concerns. Isotopic measurements are often relied upon as indicators of groundwater aquifer contamination with methane. While these parameters are used to infer microbial metabolisms, there is growing evidence that isotopes present an incomplete picture of subsurface microbial processes. This study examined the relationships between microbiology and chemistry in groundwater wells located in the Denver-Julesburg Basin of Colorado, a rapidly urbanizing area with active oil and gas development. A primary goal was to determine if microbial data can reliably indicate the quantities and sources of groundwater methane. Comprehensive chemical and molecular analyses were performed on 39 groundwater well samples from five aquifers. Elevated methane concentrations were found in only one aquifer, and both isotopic and microbial data support a microbial origin. Microbial parameters had similar explanatory power as chemical parameters for predicting sample methane concentrations. Furthermore, a subset of samples with unique microbiology corresponded with unique chemical signatures that may be useful indicators of methane gas migration, potentially from nearby coal seams interacting with the aquifer. Microbial data may allow for more accurate determination of groundwater contamination and improved long-term water quality monitoring compared solely to isotopic and chemical data in areas with microbial methane.
Collapse
Affiliation(s)
- Lee F Stanish
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Owen A Sherwood
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Greg Lackey
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Stephen Osborn
- Department of Geological Sciences, California State Polytechnic University, Pomona, California 91768, United States
| | | | | | - Norman Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joseph N Ryan
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
28
|
The Diversity, Composition, and Putative Functions of Gill-Associated Bacteria of Bathymodiolin Mussel and Vesicomyid Clam from Haima Cold Seep, South China Sea. Microorganisms 2020; 8:microorganisms8111699. [PMID: 33143295 PMCID: PMC7694083 DOI: 10.3390/microorganisms8111699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023] Open
Abstract
The Haima cold seep, which is one of the two active cold seeps in the South China Sea, is known for its great ecological importance. The seep bivalves are assumed to depend mainly on their bacterial symbiosis for survival and growth. However, information on the bacterial diversity, composition, and putative function of gill-associated of dominant dwelling animals in Haima cold seep remain elusive. Herein, we adopted a high-throughput sequencing of 16S rRNA gene amplicons, and function prediction methods (Functional Annotation of Prokaryotic Taxa (FAPROTAX) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICURUSTs)) to purposely illustrate the taxonomic and phylogenetic diversity, composition, and putative functions of the symbionts in bathymodiolin mussel Gigantidas haimaensis (Bivalvia: Mytilidae: Gigantidas) and vesicomyid clam Archivesica marissinica (Bivalvia: Glossoidea: Vesicomyidae). The predominant microbes of both species were Proteobacteria and Gammaproteobacteria on the phylum and class level, respectively. The taxonomic and phylogenetic diversity of gill microbial communities in G. haimaensis were significantly different from those in A. marissinica (p < 0.05). Nine functional groups, including seven carbon-related biogeochemical groups, were identified through the FAPROTAX analysis. However, the most dominant groups for G. haimaensis and A. marissinica were both chemoheterotrophic. G. haimaensis and A. marissinica shared many pathways, however, 16 obtained Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups (42.11%) significantly differed between the two species (p < 0.05). These findings would provide insight into the functions of microbes in the element cycling and energy flow as well as the host-symbiont relationship of bivalves in the Haima cold seep environment.
Collapse
|
29
|
Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. ACTA ACUST UNITED AC 2020; 47:863-876. [DOI: 10.1007/s10295-020-02309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Abstract
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Dinesh Gupta
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| | - Michael S Guzman
- grid.250008.f 0000 0001 2160 9702 Biosciences and Biotechnology Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
30
|
Shi LD, Lv PL, Wang M, Lai CY, Zhao HP. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139310. [PMID: 32442771 DOI: 10.1016/j.scitotenv.2020.139310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Though methane-based selenate reduction has been reported, neither the selenate load nor the removal rate could satisfy practical applications, thus limiting this technique to bio-remediate selenate pollution. In the present study, using a membrane biofilm batch reactor (MBBR), we successfully enriched a consortium performing methane-dependent selenate reduction, with enhanced reduction rates from 16.1 to 28.9 μM-day-1 under a comparable Se concentration to industrial wastewaters (i.e., ~500 μM). During active reduction, 16S rRNA gene copies of Archaea and Bacteria were both increased more than one order of magnitude. Clone library construction and high-throughput sequencing indicated that Methanosarcina and Methylocystis were the only methane-oxidizing microorganisms. The presence of 20 mM bromoethanesulphonate or 0.15 mM acetylene both significantly, but not completely, inhibited methane-dependent selenate reduction, indicating the concurrent contributions of methanotrophic archaea and bacteria. Fluorescence in situ hybridization (FISH) revealed that archaea directly adhered to the surface of the membrane while bacteria were in the outer layer, together forming the mature biofilm. This study highlights the crucial role of both methanotrophic archaea and bacteria in methane-dependent selenate reduction, and lays foundations in applying methane to bio-remediate practical selenate pollution.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan-Long Lv
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae. mBio 2020; 11:mBio.01325-20. [PMID: 32605988 PMCID: PMC7327174 DOI: 10.1128/mbio.01325-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanoperedenaceae metagenome-assembled genomes (MAGs), recovered from diverse environments, revealed novel respiratory strategies acquired through lateral gene transfer (LGT) events from diverse archaea and bacteria. Comprehensive phylogenetic analyses suggests that LGT has allowed members of the Methanoperedenaceae to acquire genes for the oxidation of hydrogen and formate and the reduction of arsenate, selenate, and elemental sulfur. Numerous membrane-bound multiheme c-type cytochrome complexes also appear to have been laterally acquired, which may be involved in the direct transfer of electrons to metal oxides, humic substances, and syntrophic partners.IMPORTANCE AOM by microorganisms limits the atmospheric release of the potent greenhouse gas methane and has consequent importance for the global carbon cycle and climate change modeling. While the oxidation of methane coupled to sulfate by consortia of anaerobic methanotrophic (ANME) archaea and bacteria is well documented, several other potential electron acceptors have also been reported to support AOM. In this study, we identify a number of novel respiratory strategies that appear to have been laterally acquired by members of the Methanoperedenaceae, as they are absent from related archaea and other ANME lineages. Expanding the known metabolic potential for members of the Methanoperedenaceae provides important insight into their ecology and suggests their role in linking methane oxidation to several global biogeochemical cycles.
Collapse
|
32
|
Peng L, Nie WB, Ding J, Ni BJ, Liu Y, Han HJ, Xie GJ. Denitrifying Anaerobic Methane Oxidation and Anammox Process in a Membrane Aerated Membrane Bioreactor: Kinetic Evaluation and Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6968-6977. [PMID: 32348129 DOI: 10.1021/acs.est.0c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) coupled to anaerobic ammonium oxidation (anammox) is a promising technology for complete nitrogen removal with economic and environmental benefit. In this work, a model framework integrating DAMO and anammox process was constructed based on suspended-growth systems. The proposed model was calibrated and validated using experimental data from a sequencing batch reactor and a membrane aerated membrane bioreactor (MAMBR). The model managed to describe removal rates of ammonium (NH4+), nitrite (NO2-), and total nitrogen, as well as biomass changes of DAMO archaea, DAMO bacteria, and anaerobic ammonium oxidizing bacteria (AnAOB) in both reactors. The estimated parameter values revealed that DAMO archaea possessed properties of faster growth and higher biomass yield in suspended-growth systems compared to those in attached-growth systems (e.g., biofilm). Model simulation demonstrated that solid retention time (SRT) was effective in washing out DAMO bacteria, but retaining DAMO archaea and AnAOB in the MAMBR. The optimal SRT and nitritation efficiency (the ratio of the NO2- to the sum of NH4+ and NO2- in the MAMBR influent) were simulated so that 99% of total nitrogen was removed to meet the discharge standard. MAMBR further suggested to be operated with SRT between 15 and 30 days so that the optimal nitritation efficiency could be minimized to 49% for cost savings.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Wen-Bo Nie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Hong-Jun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
33
|
Wang Y, Wegener G, Ruff SE, Wang F. Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea. Environ Microbiol 2020; 23:530-541. [PMID: 32367670 DOI: 10.1111/1462-2920.15057] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/04/2023]
Abstract
Methyl-coenzyme M reductase (MCR) has been originally identified to catalyse the final step of the methanogenesis pathway. About 20 years ago anaerobic methane-oxidizing archaea (ANME) were discovered that use MCR enzymes to activate methane. ANME thrive at the thermodynamic limit of life, are slow-growing, and in most cases form syntrophic consortia with sulfate-reducing bacteria. Recently, archaea that have the ability to anaerobically oxidize non-methane multi-carbon alkanes such as ethane and n-butane were described in both enrichment cultures and environmental samples. These anaerobic multi-carbon alkane-oxidizing archaea (ANKA) use enzymes homologous to MCR named alkyl-coenzyme M reductase (ACR). Here we review the recent progresses on the diversity, distribution and functioning of both ANME and ANKA by presenting a detailed MCR/ACR-based phylogeny, compare their metabolic pathways and discuss the gaps in our knowledge of physiology of these organisms. To improve our understanding of alkane oxidation in archaea, we identified three directions for future research: (i) expanding cultivation attempts to validate omics-based metabolic models of yet-uncultured organisms, (ii) performing biochemical and structural analyses of key enzymes to understand thermodynamic and steric constraints and (iii) investigating the evolution of anaerobic alkane metabolisms and their impact on biogeochemical cycles.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - S Emil Ruff
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.,J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
34
|
Takai K. Recent Topics on Deep-Sea Microbial Communities in Microbes and Environments. Microbes Environ 2020; 34:345-346. [PMID: 31902911 PMCID: PMC6934399 DOI: 10.1264/jsme2.me3404rh] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
35
|
Abstract
Current understanding of the diversity, biology, and ecology of Archaea is very limited, especially considering how few of the known phyla have been cultured or genomically explored. The reconstruction of “Ca. Methanomixophus” MAGs not only expands the known range of metabolic versatility of the members of Archaeoglobi but also suggests that the phylogenetic distribution of MCR and MTR complexes is even wider than previously anticipated. Euryarchaeal lineages have been believed to have a methanogenic last common ancestor. However, members of euryarchaeal Archaeoglobi have long been considered nonmethanogenic and their evolutionary history remains elusive. Here, three high-quality metagenomic-assembled genomes (MAGs) retrieved from high-temperature oil reservoir and hot springs, together with three newly assembled Archaeoglobi MAGs from previously reported hot spring metagenomes, are demonstrated to represent a novel genus of Archaeoglobaceae, “Candidatus Methanomixophus.” All “Ca. Methanomixophus” MAGs encode an M methyltransferase (MTR) complex and a traditional type of methyl-coenzyme M reductase (MCR) complex, which is different from the divergent MCR complexes found in “Ca. Polytropus marinifundus.” In addition, “Ca. Methanomixophus dualitatem” MAGs preserve the genomic capacity for dissimilatory sulfate reduction. Comparative phylogenetic analysis supports a laterally transferred origin for an MCR complex and vertical heritage of the MTR complex in this lineage. Metatranscriptomic analysis revealed concomitant in situ activity of hydrogen-dependent methylotrophic methanogenesis and heterotrophic fermentation within populations of “Ca. Methanomixophus hydrogenotrophicum” in a high-temperature oil reservoir. IMPORTANCE Current understanding of the diversity, biology, and ecology of Archaea is very limited, especially considering how few of the known phyla have been cultured or genomically explored. The reconstruction of “Ca. Methanomixophus” MAGs not only expands the known range of metabolic versatility of the members of Archaeoglobi but also suggests that the phylogenetic distribution of MCR and MTR complexes is even wider than previously anticipated.
Collapse
|
36
|
Kallistova AY, Savvichev AS, Rusanov II, Pimenov NV. Thermokarst Lakes, Ecosystems with Intense Microbial Processes of the Methane Cycle. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Cassarini C, Rene ER, Bhattarai S, Vogt C, Musat N, Lens PNL. Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. CHEMOSPHERE 2019; 236:124290. [PMID: 31310977 DOI: 10.1016/j.chemosphere.2019.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to evaluate the performance of a biotrickling filter (BTF) packed with polyurethane foam and pall rings for the enrichment of microorganisms mediating anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) by activity tests and microbial community analysis. A BTF was inoculated with microorganisms from a known AOM active deep sea sediment collected at a depth of 528 m below the sea level (Alpha Mound, Gulf of Cadiz). The microbial community analysis was performed by catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and 16S rRNA sequence analysis. The AOM occurrence and rates in the BTF were assessed by performing batch activity assays using 13C-labelled methane (13CH4). After an estimated start-up time of ∼20 days, AOM rates of ∼0.3 mmol l-1 day-1 were observed in the BTF, values almost 20 times higher than previously reported in a polyurethane foam packed BTF. The microbial community consisted mainly of anaerobic methanotrophs (ANME-2, 22% of the total number of cells) and sulfate reducing bacteria (SRB, 47% of the total number of cells). This study showed that the BTF is a suitable reactor configuration for the enrichment of microbial communities involved in AOM coupled to SR at ambient pressure and temperature with a relatively short start-up time.
Collapse
Affiliation(s)
- Chiara Cassarini
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands; National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Susma Bhattarai
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Carsten Vogt
- Helmholtz-Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoser Strasse 15, 04318, Leipzig, Germany
| | - Niculina Musat
- Helmholtz-Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoser Strasse 15, 04318, Leipzig, Germany
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands; National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
38
|
Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, Qi YL, Li YX, Huang MJ, Jiao JY, Chen YT, Mao YP, Shu WS, Hozzein W, Hedlund BP, Tyson GW, Zhang T, Li WJ. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat Commun 2019; 10:4574. [PMID: 31594929 PMCID: PMC6783470 DOI: 10.1038/s41467-019-12574-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/12/2019] [Indexed: 01/10/2023] Open
Abstract
Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor. Methane metabolism by some lineages of Archaea contributes to the cycling of carbon on Earth. Here, the authors show high diversity of methyl-coenzyme M reductase (Mcr), a key enzyme associated with archaeal methane/alkane metabolism, in hot spring Archaea, and investigate their ecological roles and evolution.
Collapse
Affiliation(s)
- Zheng-Shuang Hua
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Yu-Lin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, 999077, Hong Kong, SAR, PR China
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, 4072, QLD, Australia
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Yan-Ling Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Yu-Xian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Min-Jun Huang
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Ya-Ting Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Yan-Ping Mao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, 999077, Hong Kong, SAR, PR China.,College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, 510631, Guangzhou, PR China
| | - Wael Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.,Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Gene W Tyson
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, 4072, QLD, Australia. .,Advanced Water Management Centre, University of Queensland, St Lucia, 4072, QLD, Australia.
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, 999077, Hong Kong, SAR, PR China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China. .,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, PR China.
| |
Collapse
|
39
|
Bhattarai S, Cassarini C, Lens PNL. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiol Mol Biol Rev 2019; 83:e00074-18. [PMID: 31366606 PMCID: PMC6710461 DOI: 10.1128/mmbr.00074-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In marine anaerobic environments, methane is oxidized where sulfate-rich seawater meets biogenic or thermogenic methane. In those niches, a few phylogenetically distinct microbial types, i.e., anaerobic methanotrophs (ANME), are able to grow through anaerobic oxidation of methane (AOM). Due to the relevance of methane in the global carbon cycle, ANME have drawn the attention of a broad scientific community for 4 decades. This review presents and discusses the microbiology and physiology of ANME up to the recent discoveries, revealing novel physiological types of anaerobic methane oxidizers which challenge the view of obligate syntrophy for AOM. An overview of the drivers shaping the distribution of ANME in different marine habitats, from cold seep sediments to hydrothermal vents, is given. Multivariate analyses of the abundance of ANME in various habitats identify a distribution of distinct ANME types driven by the mode of methane transport. Intriguingly, ANME have not yet been cultivated in pure culture, despite intense attempts. Further advances in understanding this microbial process are hampered by insufficient amounts of enriched cultures. This review discusses the advantages, limitations, and potential improvements for ANME laboratory-based cultivation systems.
Collapse
Affiliation(s)
- S Bhattarai
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
| | - C Cassarini
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| | - P N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
40
|
A Membrane-Bound Cytochrome Enables Methanosarcina acetivorans To Conserve Energy from Extracellular Electron Transfer. mBio 2019; 10:mBio.00789-19. [PMID: 31431545 PMCID: PMC6703419 DOI: 10.1128/mbio.00789-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The discovery of a methanogen that can conserve energy to support growth solely from the oxidation of organic carbon coupled to the reduction of an extracellular electron acceptor expands the possible environments in which methanogens might thrive. The potential importance of c-type cytochromes for extracellular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some Archaea was previously proposed, but these studies with Methanosarcina acetivorans provide the first genetic evidence for cytochrome-based extracellular electron transfer in Archaea. The results suggest parallels with Gram-negative bacteria, such as Shewanella and Geobacter species, in which multiheme outer-surface c-type cytochromes are an essential component for electrical communication with the extracellular environment. M. acetivorans offers an unprecedented opportunity to study mechanisms for energy conservation from the anaerobic oxidation of one-carbon organic compounds coupled to extracellular electron transfer in Archaea with implications not only for methanogens but possibly also for Archaea that anaerobically oxidize methane. Extracellular electron exchange in Methanosarcina species and closely related Archaea plays an important role in the global carbon cycle and enhances the speed and stability of anaerobic digestion by facilitating efficient syntrophic interactions. Here, we grew Methanosarcina acetivorans with methanol provided as the electron donor and the humic analogue, anthraquione-2,6-disulfonate (AQDS), provided as the electron acceptor when methane production was inhibited with bromoethanesulfonate. AQDS was reduced with simultaneous methane production in the absence of bromoethanesulfonate. Transcriptomics revealed that expression of the gene for the transmembrane, multiheme, c-type cytochrome MmcA was higher in AQDS-respiring cells than in cells performing methylotrophic methanogenesis. A strain in which the gene for MmcA was deleted failed to grow via AQDS reduction but grew with the conversion of methanol or acetate to methane, suggesting that MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced expression of genes for methanol conversion to methyl-coenzyme M and the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-respiring cells through a pathway that is similar to methyl-coenzyme M oxidation in methanogenic cells. However, during AQDS respiration the Rnf complex and reduced methanophenazine probably transfer electrons to MmcA, which functions as the terminal reductase for AQDS reduction. Extracellular electron transfer may enable the survival of methanogens in dynamic environments in which oxidized humic substances and Fe(III) oxides are intermittently available. The availability of tools for genetic manipulation of M. acetivorans makes it an excellent model microbe for evaluating c-type cytochrome-dependent extracellular electron transfer in Archaea.
Collapse
|
41
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methanotrophs: in hot pursuit. FEMS Microbiol Ecol 2019; 95:5543213. [DOI: 10.1093/femsec/fiz125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTMethane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Matthew B Stott
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Ian R McDonald
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| |
Collapse
|
42
|
Liang L, Wang Y, Sivan O, Wang F. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1287-1295. [PMID: 31209798 DOI: 10.1007/s11427-018-9554-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022]
Abstract
Anaerobic oxidation of methane (AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized, researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments.
Collapse
Affiliation(s)
- Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Orit Sivan
- Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
43
|
Vavilin V, Lokshina L, Rytov S. Using kinetic isotope effect to evaluate the significance of the sequential and parallel steps: formation of microbial consortium during reversible anaerobic methane oxidation coupled with sulfate reduction. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2056-2067. [PMID: 31318343 DOI: 10.2166/wst.2019.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to describe the dynamics of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) using experimental data from a continuous incubation experiments published earlier in order to show that formation of consortia of anaerobic archaea (ANME) and Desulfosarcina-like bacteria (DSS) may have a significant effect on sulfur isotope fractionation. The dynamic simulation of reversible AOM by ANME coupled with SR by DSS was performed. This simulation took into account biomass growth and fractionation of stable isotopes of sulfur. Two kinetic schemes with and without ANME + DSS consortium formation were tested. The respective models were applied at five influent methane concentrations. A good fit to experimental data was obtained only when assuming active ANME and DSS biomass accumulation. The assumption about incorporation of reversibility of anaerobic methane oxidation and sulfate reduction did not improve the model's fit to experimental data. In accordance with both the models, sulfur isotope fractionation was smallest for the highest influent methane concentration. The model considering the formation of consortia of ANME + DSS is proved to be more appropriate.
Collapse
Affiliation(s)
- Vasily Vavilin
- Water Problems Institute, Russian Academy of Sciences, 3 Gubkina str., Moscow 119333, Russian Federation E-mail:
| | - Lyudmila Lokshina
- Water Problems Institute, Russian Academy of Sciences, 3 Gubkina str., Moscow 119333, Russian Federation E-mail:
| | - Sergey Rytov
- Water Problems Institute, Russian Academy of Sciences, 3 Gubkina str., Moscow 119333, Russian Federation E-mail:
| |
Collapse
|
44
|
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Appl Environ Microbiol 2019; 85:AEM.02638-18. [PMID: 30709818 DOI: 10.1128/aem.02638-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/19/2019] [Indexed: 11/20/2022] Open
Abstract
Methane is a primary greenhouse gas which is responsible for global warming. The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles, and it is considered to be the overriding methane sink in marine ecosystem. However, there have been few studies regarding the role of S-AOM process and the distribution of ANME archaea in intertidal ecosystem. The intertidal zone is a buffer zone between sea and land and plays an important role in global geochemical cycle. In the present study, the abundance, potential methane oxidation rate, and community structure of ANME archaea in the intertidal zone were studied by quantitative PCR, stable isotope tracing method and high-throughput sequencing. The results showed that the potential S-AOM activity ranged from 0 to 0.77 nmol 13CO2 g-1 (dry sediment) day-1 The copy number of 16S rRNA gene of ANME archaea reached 106 ∼ 107 copies g-1 (dry sediment). The average contribution of S-AOM to total anaerobic methane oxidation was up to 34.5%, while denitrifying anaerobic methane oxidation accounted for the rest, which implied that S-AOM process was an essential methane sink that cannot be overlooked in intertidal ecosystem. The simulated column experiments also indicated that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.IMPORTANCE The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles. We conducted a research into the spatial-temporal pattern of S-AOM process and the distribution of ANME archaea in coastal sediments collected from the intertidal zone. The results implied that S-AOM process was a methane sink that cannot be overlooked in the intertidal ecosystem. We also found that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.
Collapse
|
45
|
Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 2019; 4:603-613. [PMID: 30833729 PMCID: PMC6453112 DOI: 10.1038/s41564-019-0363-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
Abstract
Methanogenesis is an ancient metabolism of key ecological relevance, with direct impact on the evolution of Earth’s climate. Recent results suggest that the diversity of methane metabolisms and their derivations have probably been vastly underestimated. Here, by probing thousands of publicly available metagenomes for homologues of methyl-coenzyme M reductase complex (MCR), we have obtained ten metagenome-assembled genomes (MAGs) belonging to potential methanogenic, anaerobic methanotrophic and short-chain alkane oxidizing archaea. Five of these MAGs represent under-sampled (e.g., Verstraetearchaeota, Methanonatronarchaeia, ANME-1) or previously genomically undescribed (ANME-2c) archaeal lineages. The remaining five MAGs correspond to lineages that are only distantly related to previously known methanogens and span the entire archaeal phylogeny. Comprehensive comparative annotation significantly expands the metabolic diversity and energy conservation systems of MCR-bearing archaea. It also suggests the potential existence of a yet uncharacterized type of methanogenesis linked to short-chain alkane/fatty acid oxidation in a previously undescribed class of archaea (‘Ca. Methanoliparia’). We redefine a common core of marker genes specific to methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea, and propose a possible scenario for the evolutionary and functional transitions that led to the emergence of such metabolic diversity.
Collapse
|
46
|
He X, Chadwick G, Kempes C, Shi Y, McGlynn S, Orphan V, Meile C. Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environ Microbiol 2019; 21:631-647. [DOI: 10.1111/1462-2920.14507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Xiaojia He
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | | | - Yimeng Shi
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Shawn McGlynn
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
- Earth‐Life Science Institute Tokyo Institute of Technology Ookayama, Meguro‐ku Tokyo Japan
| | - Victoria Orphan
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | - Christof Meile
- Department of Marine Sciences University of Georgia Athens GA USA
| |
Collapse
|
47
|
An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 2019; 17:219-232. [DOI: 10.1038/s41579-018-0136-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/26/2018] [Indexed: 11/08/2022]
|
48
|
Suzuki S, Nealson KH, Ishii S. Genomic and in-situ Transcriptomic Characterization of the Candidate Phylum NPL-UPL2 From Highly Alkaline Highly Reducing Serpentinized Groundwater. Front Microbiol 2018; 9:3141. [PMID: 30619209 PMCID: PMC6305446 DOI: 10.3389/fmicb.2018.03141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 12/05/2022] Open
Abstract
Serpentinization is a process whereby water interacts with reduced mantle rock called peridotite to produce a new suite of minerals (e.g., serpentine), a highly alkaline fluid, and hydrogen. In previous reports, we identified abundance of microbes of the candidate phylum NPL-UPA2 in a serpentinization site called The Cedars. Here, we report the first metagenome assembled genome (MAG) of the candidate phylum as well as the in-situ gene expression. The MAG of the phylum NPL-UPA2, named Unc8, is only about 1 Mbp and its biosynthetic properties suggest it should be capable of independent growth. In keeping with the highly reducing niche of Unc8, its genome encodes none of the known oxidative stress response genes including superoxide dismutases. With regard to energy metabolism, the MAG of Unc8 encodes all enzymes for Wood-Ljungdahl acetogenesis pathway, a ferredoxin:NAD+ oxidoreductase (Rnf) and electron carriers for flavin-based electron bifurcation (Etf, Hdr). Furthermore, the transcriptome of Unc8 in the waters of The Cedars showed enhanced levels of gene expression in the key enzymes of the Wood-Ljungdahl pathway [e.g., Carbon monoxide dehydrogenase /Acetyl-CoA synthase complex (CODH/ACS), Rnf, Acetyl-CoA synthetase (Acd)], which indicated that the Unc8 is an acetogen. However, the MAG of Unc8 encoded no well-known hydrogenase genes, suggesting that the energy metabolism of Unc8 might be focused on CO as the carbon and energy sources for the acetate formation. Given that CO could be supplied via abiotic reaction associated with deep subsurface serpentinization, while available CO2 would be at extremely low concentrations in this high pH environment, CO-associated metabolism could provide advantageous approach. The CODH/ACS in Unc8 is a Bacteria/Archaea hybrid type of six-subunit complex and the electron carriers, Etf and Hdr, showed the highest similarity to those in Archaea, suggesting that archaeal methanogenic energy metabolism was incorporated into the bacterial acetogenesis in NPL-UPA2. Given that serpentinization systems are viewed as potential habitats for early life, and that acetogenesis via the Wood-Ljungdahl pathway is proposed as an energy metabolism of Last Universal Common Ancestor, a phylogenetically distinct acetogen from an early earth analog site may provide important insights in primordial lithotrophs and their habitat.
Collapse
Affiliation(s)
- Shino Suzuki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan.,Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Shun'ichi Ishii
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, United States.,R&D Center for Submarine Resources, JAMSTEC, Nankoku, Japan
| |
Collapse
|
49
|
Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME JOURNAL 2018; 13:250-262. [PMID: 30194429 DOI: 10.1038/s41396-018-0273-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022]
Abstract
Methane in the seabed is mostly oxidized to CO2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate-methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO2 by sulfate reduction. This previously unrecognized "cryptic" methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.
Collapse
|
50
|
Russell MJ. Green Rust: The Simple Organizing 'Seed' of All Life? Life (Basel) 2018; 8:E35. [PMID: 30150570 PMCID: PMC6161180 DOI: 10.3390/life8030035] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023] Open
Abstract
Korenaga and coworkers presented evidence to suggest that the Earth's mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes that produced the thick, dense, and relatively stable oceanic crust. In that setting, two distinct and major types of sub-marine hydrothermal vents were active: ~400 °C acidic springs, whose effluents bore vast quantities of iron into the ocean, and ~120 °C, highly alkaline, and reduced vents exhaling from the cooler, serpentinizing crust some distance from the heads of the plumes. When encountering the alkaline effluents, the iron from the plume head vents precipitated out, forming mounds likely surrounded by voluminous exhalative deposits similar to the banded iron formations known from the Archean. These mounds and the surrounding sediments, comprised micro or nano-crysts of the variable valence FeII/FeIII oxyhydroxide known as green rust. The precipitation of green rust, along with subsidiary iron sulfides and minor concentrations of nickel, cobalt, and molybdenum in the environment at the alkaline springs, may have established both the key bio-syntonic disequilibria and the means to properly make use of them-the elements needed to effect the essential inanimate-to-animate transitions that launched life. Specifically, in the submarine alkaline vent model for the emergence of life, it is first suggested that the redox-flexible green rust micro- and nano-crysts spontaneously precipitated to form barriers to the complete mixing of carbonic ocean and alkaline hydrothermal fluids. These barriers created and maintained steep ionic disequilibria. Second, the hydrous interlayers of green rust acted as engines that were powered by those ionic disequilibria and drove essential endergonic reactions. There, aided by sulfides and trace elements acting as catalytic promoters and electron transfer agents, nitrate could be reduced to ammonia and carbon dioxide to formate, while methane may have been oxidized to methyl and formyl groups. Acetate and higher carboxylic acids could then have been produced from these C1 molecules and aminated to amino acids, and thence oligomerized to offer peptide nests to phosphate and iron sulfides, and secreted to form primitive amyloid-bounded structures, leading conceivably to protocells.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Chemistry and Astrobiology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA.
| |
Collapse
|