1
|
Yang LY, Li S, Shangguan HY, Qiao ZH, Huang XR, Zhou SYD, Li H, Su XX, Sun X, Zhu YG, Yang XR. Diversity and Activity of Soil N 2O-Reducing Bacteria Shaped by Urbanization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17295-17303. [PMID: 39291625 DOI: 10.1021/acs.est.4c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas with various production pathways. N2O reductase (N2OR) is the primary N2O sink, but the distribution of its gene clades, typically nosZI and atypically nosZII, along urbanization gradients remains poorly understood. Here we sampled soils from forests, parks, and farmland across eight provinces in eastern China, using high-throughput sequencing to distinguish between two N2O-reducing bacteria clades. A deterministic process mainly determined assemblies of the nosZI communities. Homogeneous selection drove nosZI deterministic processes, and both homogeneous and heterogeneous selection influenced nosZII. This suggests nosZII is more sensitive to environmental changes than nosZI, with significant changes in community structure over time or space. Ecosystems with stronger anthropogenic disturbance, such as urban areas, provide diverse ecological niches for N2O-reducing bacteria (especially nosZII) to adapt to environmental fluctuations. Structural equation modeling (SEM) and correlation analyses revealed that pH significantly influences the community composition of both N2O-reducing bacteria clades. This study underscores urbanization's impact on N2O-reducing bacteria in urban soils, highlighting the importance of nosZII and survival strategies. It offers novel insights into the role of atypical denitrifiers among N2O-reducing bacteria, underscoring their potential ecological importance in mitigating N2O emissions from urban soils.
Collapse
Affiliation(s)
- Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hua-Yuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhi-Hong Qiao
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Xuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
2
|
He Q, Qin H, Yang L, Tan W, Ji D, Zhang J, Zhang X. N 2O emission in temperate seagrass meadows: Fluxes, pathway and molecular mechanism. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106542. [PMID: 38788475 DOI: 10.1016/j.marenvres.2024.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Seagrass meadows act as filters for nitrogen in coastal areas, but whether they are a source or sink for N2O has been still controversy. Additionally, the production pathways of N2O as well as the microbial driving mechanism in seagrass meadows are seldom reported. In this study, the air-sea fluxes, sediment release potential, and production pathway of N2O in a temperate Zostera marina and Z. japonica mixed meadow were investigated by using gas chromatography and 15N isotopic tracing methods. The qPCR and metagenome sequencing were used to compare the difference in functional gene abundance and expression between seagrass vegetated and non-grass sediments. The results showed that the N2O air-sea fluxes in the meadow ranged from -1.97 to -1.77 nmol m⁻2 h⁻1, which was slightly lower in the seagrass region than in the adjacent bare region. Seagrass sediment N2O release potential dramatically increased after warming and nitrogen enrichment treatments. Heterotrophic nitrification was firstly investigated in seagrass meadows, and the process (26.80%-62.41%) and denitrification (37.55%-72.83%) contributed significantly to N2O production in the meadow, affected deeply by sediment organic content, while the contribution of autotrophic nitrification can be neglected. Compared with the bare sediments, the ammonia monooxygenase genes amoA, amoB and amoC, and nitrite oxidoreductase genes nxrA and nxrB, as well as nitrite reductase gene nirS and nitric oxide reductase gene norB were down-regulated, while the nitrous oxide reductase gene nosZ was up-regulated in the seagrass sediments, explaining less N2O emission in seagrass regions from the perspective of molecular. The nosZII-bearing bacteria like Bacteroidia, Polyangia, Anaerolineae, and Verrucomicrobiae could play important roles in N2O reduction in the seagrass meadow. The result is of great significance for highlighting the ability of seagrass meadows to mitigate climate changes.
Collapse
Affiliation(s)
- Qianling He
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Huawei Qin
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Lin Yang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Wenwen Tan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Daode Ji
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Jianbai Zhang
- Yantai Marine Economic Research Institute, Yantai, 264000, China.
| | - Xiaoli Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
3
|
Watanabe T, Yabe T, Tsuji JM, Fukui M. Desulfoferula mesophilus gen. nov. sp. nov., a mesophilic sulfate-reducing bacterium isolated from a brackish lake sediment. Arch Microbiol 2023; 205:368. [PMID: 37923857 DOI: 10.1007/s00203-023-03711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
A novel sulfate-reducing bacterium (strain 12FAKT) was isolated from sediment sampled from a brackish lake in Japan. Respiratory growth was observed with formate and pyruvate as an electron donor. Sulfate, thiosulfate, elemental sulfur and dimethyl sulfoxide were utilized as an electron acceptor. The isolate grew over a temperature range of 18-42 °C (optimum 35-37 °C), a NaCl concentration range of 50-450 mM (optimum 150-300 mM) and a pH range of 6.6-7.5. The 12FAKT genome consists of a circular chromosome with a length of 4.5 Mbp and G + C content of 63.6%. Based on 16S rRNA gene sequence similarity, the closest cultured relative was Desulfarculus baarsii 2st14T (92.2%). Genome-based phylogenetic analysis placed strain 12FAKT within the family Desulfarculaceae but did not affiliate the strain with any existing genus. Taken together, we propose a novel species of a novel genus, Desulfoferula mesophilus gen. nov. sp. nov. with the type strain 12FAKT (= DSM 115219T = JCM 39399T).
Collapse
Affiliation(s)
- Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Tatsuya Yabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan
| | - Jackson M Tsuji
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, Kanagawa, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
4
|
Conte C, Apostolaki ET, Vizzini S, Migliore L. A Tight Interaction between the Native Seagrass Cymodocea nodosa and the Exotic Halophila stipulacea in the Aegean Sea Highlights Seagrass Holobiont Variations. PLANTS (BASEL, SWITZERLAND) 2023; 12:350. [PMID: 36679063 PMCID: PMC9863530 DOI: 10.3390/plants12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Seagrasses harbour bacterial communities with which they constitute a functional unit called holobiont that responds as a whole to environmental changes. Epiphytic bacterial communities rapidly respond to both biotic and abiotic factors, potentially contributing to the host fitness. The Lessepsian migrant Halophila stipulacea has a high phenotypical plasticity and harbours a highly diverse epiphytic bacterial community, which could support its invasiveness in the Mediterranean Sea. The current study aimed to evaluate the Halophila/Cymodocea competition in the Aegean Sea by analysing each of the two seagrasses in a meadow zone where these intermingled, as well as in their monospecific zones, at two depths. Differences in holobionts were evaluated using seagrass descriptors (morphometric, biochemical, elemental, and isotopic composition) to assess host changes, and 16S rRNA gene to identify bacterial community structure and composition. An Indicator Species Index was used to identify bacteria significantly associated with each host. In mixed meadows, native C. nodosa was shown to be affected by the presence of exotic H. stipulacea, in terms of both plant descriptors and bacterial communities, while H. stipulacea responded only to environmental factors rather than C. nodosa proximity. This study provided evidence of the competitive advantage of H. stipulacea on C. nodosa in the Aegean Sea and suggests the possible use of associated bacterial communities as an ecological seagrass descriptor.
Collapse
Affiliation(s)
- Chiara Conte
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eugenia T. Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003 Heraklion, Crete, Greece
| | - Salvatrice Vizzini
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
- CoNISMa, National Interuniversity Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Luciana Migliore
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- eCampus University, Via Isimbardi 10, 22060 Novedrate (CO), Italy
| |
Collapse
|
5
|
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front Microbiol 2021; 12:703014. [PMID: 34621247 PMCID: PMC8491609 DOI: 10.3389/fmicb.2021.703014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrasses are marine angiosperms that can live completely or partially submerged in water and perform a variety of significant ecosystem services. Like terrestrial angiosperms, seagrasses can reproduce sexually and, the pollinated female flower develop into fruits and seeds, which represent a critical stage in the life of plants. Seed microbiomes include endophytic microorganisms that in terrestrial plants can affect seed germination and seedling health through phytohormone production, enhanced nutrient availability and defence against pathogens. However, the characteristics and origins of the seagrass seed microbiomes is unknown. Here, we examined the endophytic bacterial community of six microenvironments (flowers, fruits, and seeds, together with leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach (16S rRNA) was used to characterize the diversity and composition of H. ovalis bacterial microbiomes and identify core microbiome bacteria that were conserved across microenvironments. Distinct communities of bacteria were observed within specific seagrass microenvironments, including the reproductive tissues (flowers, fruits, and seeds). In particular, bacteria previously associated with plant growth promoting characteristics were mainly found within reproductive tissues. Seagrass seed-borne bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-pathogenic potential activity, may play a pivotal role in seed survival, as is common for terrestrial plants. We present the endophytic community of the seagrass seeds as foundation for the identification of potential beneficial bacteria and their selection in order to improve seagrass restoration.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Océane Attlan
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Sciences et Technologies, Université de la Réunion, Saint-Denis, France
| | - Mathew A Vanderklift
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
6
|
Ma X, Li X, Li J, Ren J, Chi L, Cheng X. Iron-carbon could enhance nitrogen removal in Sesuvium portulacastrum constructed wetlands for treating mariculture effluents. BIORESOURCE TECHNOLOGY 2021; 325:124602. [PMID: 33486413 DOI: 10.1016/j.biortech.2020.124602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
This study investigated an Iron-carbon (Fe-C) micro-electrolysis method to enhance nitrogen removal of Sesuvium portulacastrum constructed wetlands (CWs) when treating mariculture effluents. The main objective was to investigate the effects of Fe-C on nitrogen purification performance and microbial characteristics of Sesuvium portulacastrum CWs. Results showed that the presence of Fe-C and Sesuvium portulacastrum could improve nitrogen removal efficiency by 20-30% and 15-30%, respectively. CWs with 33% v/v Fe-C addition performed well on nitrogen removal: TAN, 41.49 ± 13.64%; NO2--N, 13.32%; NO3--N, 60.02 ± 6.17%; TIN, 63.40 ± 12.11%. Microbial analysis revealed that Fe-C altered the microbial communities, and improved the abundance of denitrification related genera. Based on microbial enzyme activities and genes abundance, the anammox and denitrification processes were promoted by Fe-C in CWs. These findings indicate that Sesuvium portulacastrum CWs with 33% v/v Fe-C represents an effective nitrogen removal for mariculture wastewater with insufficient carbon source.
Collapse
Affiliation(s)
- Xiaona Ma
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xian Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Jilong Ren
- School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Liang Chi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266071, China
| | - Xuewen Cheng
- School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
7
|
Oreska MPJ, McGlathery KJ, Aoki LR, Berger AC, Berg P, Mullins L. The greenhouse gas offset potential from seagrass restoration. Sci Rep 2020; 10:7325. [PMID: 32355280 PMCID: PMC7193639 DOI: 10.1038/s41598-020-64094-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Awarding CO2 offset credits may incentivize seagrass restoration projects and help reverse greenhouse gas (GHG) emissions from global seagrass loss. However, no study has quantified net GHG removal from the atmosphere from a seagrass restoration project, which would require coupled Corg stock and GHG flux enhancement measurements, or determined whether the creditable offset benefit can finance the restoration. We measured all of the necessary GHG accounting parameters in the 7-km2Zostera marina (eelgrass) meadow in Virginia, U.S.A., part of the largest, most cost-effective meadow restoration to date, to provide the first seagrass offset finance test-of-concept. Restoring seagrass removed 9,600 tCO2 from the atmosphere over 15 years but also enhanced both CH4 and N2O production, releasing 950 tCO2e. Despite tripling the N2O flux to 0.06 g m−2 yr−1 and increasing CH4 8-fold to 0.8 g m−2 yr−1, the meadow now offsets 0.42 tCO2e ha−1 yr−1, which is roughly equivalent to the seagrass sequestration rate for GHG inventory accounting but lower than the rates for temperate and tropical forests. The financial benefit for this highly successful project, $87 K at $10 MtCO2e−1, defrays ~10% of the restoration cost. Managers should also consider seagrass co-benefits, which provide additional incentives for seagrass restoration.
Collapse
Affiliation(s)
| | | | - Lillian R Aoki
- Department of Environmental Sciences, University of Virginia, VA, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Amélie C Berger
- Department of Environmental Sciences, University of Virginia, VA, USA
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, VA, USA
| | - Lindsay Mullins
- Department of Environmental Sciences, University of Virginia, VA, USA.,Department of Geosciences, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
8
|
Tsuchiya Y, Nakagawa T, Takahashi R. Quantification and Phylogenetic Analysis of Ammonia Oxidizers on Biofilm Carriers in a Full-Scale Wastewater Treatment Plant. Microbes Environ 2020; 35. [PMID: 32249239 PMCID: PMC7308565 DOI: 10.1264/jsme2.me19140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biofilm carriers have been used to remove ammonia in several wastewater treatment plants (WWTPs) in Japan. However, the abundance and species of ammonia oxidizers in the biofilms formed on the surface of carriers in full-scale operational WWTP tanks remain unclear. In the present study, we conducted quantitative PCR and PCR cloning of the amoA genes of ammonia-oxidizing bacteria and archaea (AOB and AOA) and a complete ammonia oxidizer (comammox) in the biofilm formed on the carriers in a full-scale WWTP. The quantification of amoA genes showed that the abundance of AOB and comammox was markedly greater in the biofilm than in the activated sludge suspended in a tank solution of the WWTP, while AOA was not detected in the biofilm or the activated sludge. A phylogenetic analysis of amoA genes revealed that as-yet-uncultivated comammox Nitrospira and uncultured AOB Nitrosomonas were predominant in the biofilm. The present results suggest that the biofilm formed on the surface of carriers enable comammox Nitrospira and AOB Nitrosomonas to co-exist and remain in the full-scale WWTP tank surveyed in this study.
Collapse
|
9
|
Affiliation(s)
- Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|