1
|
Han Y, Yu Z, Chen Y, Guo X, Liu Y, Zhang H, Li Z, Chen L. PM2.5 induces developmental neurotoxicity in cortical organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124913. [PMID: 39245199 DOI: 10.1016/j.envpol.2024.124913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
There is mounting evidence implicating the potential neurotoxic effects of PM2.5 during brain development, as it has been observed to traverse both the placental barrier and the fetal blood-brain barrier. However, the current utilization of 2D cell culture and animal models falls short in providing an accurate representation of human brain development. Consequently, the precise mechanisms underlying PM2.5-induced developmental neurotoxicity in humans remain obscure. To address this research gap, we constructed three-dimensional (3D) cortical organoids that faithfully recapitulate the initial stages of human cerebral cortex development. Our goal is to investigate the mechanisms of PM2.5-induced neurotoxicity using 3D brain organoids that express cortical layer proteins. Our findings demonstrate that exposure to PM2.5 concentrations of 5 μg/mL and 50 μg/mL induces neuronal apoptosis and disrupts normal neural differentiation, thereby suggesting a detrimental impact on neurodevelopment. Furthermore, transcriptomic analysis revealed PM2.5 exposure induced aberrations in mitochondrial complex I functionality, which is reminiscent of Parkinson's syndrome, potentially mediated by misguided axon guidance and compromised synaptic maintenance. This study is a pioneering assessment of the neurotoxicity of PM2.5 pollution on human brain tissues based on 3D cortical organoids, and the results are of great significance in guiding the formulation of the next air pollution prevention and control policies in China to achieve the sustainable improvement of air quality and to formulate pollution abatement strategies that can maximize the benefits to public health.
Collapse
Affiliation(s)
- Yuqing Han
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Zhenjie Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Xiaoyu Guo
- Academy of Medical Engineering and Translational Medicine, Department of Medicine, Tianjin University, Tianjin, 300072, China.
| | - Yeming Liu
- Academy of Medical Engineering and Translational Medicine, Department of Medicine, Tianjin University, Tianjin, 300072, China.
| | - Hao Zhang
- Shanxi Meijin Coal Coking Co. Ltd., Shanxi, 030400, China.
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Department of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Jafarigol F, Yousefi S, Darvishi Omrani A, Rashidi Y, Buonanno G, Stabile L, Sabanov S, Amouei Torkmahalleh M. The relative contributions of traffic and non-traffic sources in ultrafine particle formations in Tehran mega city. Sci Rep 2024; 14:10399. [PMID: 38710723 PMCID: PMC11074259 DOI: 10.1038/s41598-023-49444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/08/2023] [Indexed: 05/08/2024] Open
Abstract
Emissions of ultrafine particles (UFPs; diameter < 100 nm) are strongly associated with traffic-related emissions and are a growing global concern in urban environments. The aim of this study was to investigate the variations of particle number concentration (PNC) with a diameter > 10 nm at nine stations and understand the major sources of UFPs (primary vs. secondary) in Tehran megacity. The study was carried out in Tehran in 2020. NOx and PNC were reported from a total of nine urban site locations in Tehran and BC concentrations were examined at two monitoring stations. Data from all stations showed diurnal changes with peak morning and evening rush hours. The hourly PNC was correlated with NOx. PNCs in Tehran were higher compared to those of many cities reported in the literature. The highest concentrations were at District 19 station (traffic) and the lowest was at Punak station (residential) such that the average PNC varied from 8.4 × 103 to 5.7 × 104 cm-3. In Ray and Sharif stations, the average contributions of primary and secondary sources of PNC were 67 and 33%, respectively. Overall, we conclude that a decrease in primary emission leads to a decrease in the total concentration of aerosols, despite an increase in the formation of new particles by photo nucleation.
Collapse
Affiliation(s)
- Farzaneh Jafarigol
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Somayeh Yousefi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Yousef Rashidi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Sergei Sabanov
- Department of Mining Engineering, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
4
|
Zeng Y, Li M, Zou T, Chen X, Li Q, Li Y, Ge L, Chen S, Xu H. The Impact of Particulate Matter (PM2.5) on Human Retinal Development in hESC-Derived Retinal Organoids. Front Cell Dev Biol 2021; 9:607341. [PMID: 33644046 PMCID: PMC7907455 DOI: 10.3389/fcell.2021.607341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence demonstrated that PM2.5 could cross the placenta and fetal blood-brain barrier, causing neurotoxicity of embryonic development. The retina, an embryologic extension of the central nervous system, is extremely sensitive and vulnerable to environmental insults. The adverse effects of PM2.5 exposure on the retina during embryonic neurodevelopment are still largely unknown. Our goal was to investigate the effect of PM2.5 on human retinal development, which was recapitulated by human embryonic stem cell (hESC)-derived retinal organoids (hEROs). In the present study, using the hEROs as the model, the influences and the mechanisms of PM2.5 on the developing retina were analyzed. It demonstrated that the formation rate of the hERO-derived neural retina (NR) was affected by PM2.5 in a concentration dosage-dependent manner. The areas of hEROs and the thickness of hERO-NRs were significantly reduced after PM2.5 exposure at the concentration of 25, 50, and 100 μg/ml, which was due to the decrease of proliferation and the increase of apoptosis. Although we did not spot significant effects on retinal differentiation, PM2.5 exposure did lead to hERO-NR cell disarranging and structural disorder, especially retinal ganglion cell dislocation. Transcriptome analysis showed that PM2.5 treatment was significantly associated with the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways and reduced the level of the fibroblast growth factors (FGFs), particularly FGF8 and FGF10. These results provided evidence that PM2.5 exposure potentially inhibited proliferation and increased apoptosis at the early development stage of the human NR, probably through the MAPK and PI3K/Akt pathway. Our study suggested that exposure to PM2.5 suppressed cell proliferation and promoted cell apoptosis, thereby contributing to abnormal human retinal development.
Collapse
Affiliation(s)
- Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
5
|
Valand R, Magnusson P, Dziendzikowska K, Gajewska M, Wilczak J, Oczkowski M, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Marcus Eide D, Sapierzyński R, Gromadzka-Ostrowska J, Duale N, Øvrevik J, Myhre O. Gene expression changes in rat brain regions after 7- and 28 days inhalation exposure to exhaust emissions from 1st and 2nd generation biodiesel fuels - The FuelHealth project. Inhal Toxicol 2018; 30:299-312. [DOI: 10.1080/08958378.2018.1520370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Renate Valand
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Magnusson
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Katarzyna Dziendzikowska
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Gajewska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dag Marcus Eide
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rafał Sapierzyński
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Nur Duale
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Zhang T, Zheng X, Wang X, Zhao H, Wang T, Zhang H, Li W, Shen H, Yu L. Maternal Exposure to PM 2.5 during Pregnancy Induces Impaired Development of Cerebral Cortex in Mice Offspring. Int J Mol Sci 2018; 19:ijms19010257. [PMID: 29337904 PMCID: PMC5796203 DOI: 10.3390/ijms19010257] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a serious environmental health problem closely related to the occurrence of central nervous system diseases. Exposure to particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) during pregnancy may affect the growth and development of infants. The present study was to investigate the effects of maternal exposure to PM2.5 during pregnancy on brain development in mice offspring. Pregnant mice were randomly divided into experimental groups of low-, medium-, or high-dosages of PM2.5, a mock-treated group which was treated with the same amount of phosphate buffer solution (PBS), and acontrol group which was untreated. The ethology of offspring mice on postnatal days 1, 7, 14, 21, and 30, along with neuronal development and apoptosis in the cerebral cortex were investigated. Compared with the control, neuronal mitochondrial cristae fracture, changed autophagy characteristics, significantly increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cell rate, and mRNA levels of apoptosis-related caspase-8 and caspase-9 were found in cerebral cortex of mice offspring from the treatment groups, with mRNA levels of Bcl-2 and ratio of Bcl-2 to Bax decreased. Treatment groups also demonstrated enhanced protein expressions of apoptosis-related cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, along with declined proliferating cell nuclear antigen (PCNA), Bcl-2, and ratio of Bcl-2 to Bax. Open field experiments and tail suspension experiments showed that exposure to high dosage of PM2.5 resulted in decreased spontaneous activities but increased static accumulation time in mice offspring, indicating anxiety, depression, and social behavioral changes. Our results suggested that maternal exposure to PM2.5 during pregnancy might interfere with cerebral cortex development in mice offspring by affecting cell apoptosis.
Collapse
Affiliation(s)
- Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China.
| | - Xinrui Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China.
| | - Hui Zhao
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Tingting Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Hongxia Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Wanwei Li
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China.
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Li Yu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Umezawa M, Onoda A, Takeda K. Developmental Toxicity of Nanoparticles on the Brain. YAKUGAKU ZASSHI 2017; 137:73-78. [DOI: 10.1248/yakushi.16-00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masakazu Umezawa
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Atsuto Onoda
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| | - Ken Takeda
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
8
|
Yao Y, Miao W, Liu Z, Han W, Shi K, Shen Y, Li H, Liu Q, Fu Y, Huang D, Shi FD. Dimethyl Fumarate and Monomethyl Fumarate Promote Post-Ischemic Recovery in Mice. Transl Stroke Res 2016; 7:535-547. [PMID: 27614618 PMCID: PMC5065588 DOI: 10.1007/s12975-016-0496-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/21/2023]
Abstract
Oxidative stress plays an important role in cerebral ischemia-reperfusion injury. Dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) are antioxidant agents that can activate the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and induce the expression of antioxidant proteins. Here, we evaluated the impact of DMF and MMF on ischemia-induced brain injury and whether the Nrf2 pathway mediates the effects provided by DMF and MMF in cerebral ischemia-reperfusion injury. Using a mouse model of transient focal brain ischemia, we show that DMF and MMF significantly reduce neurological deficits, infarct volume, brain edema, and cell death. Further, DMF and MMF suppress glial activation following brain ischemia. Importantly, the protection of DMF and MMF was mostly evident during the subacute stage and was abolished in Nrf2-/- mice, indicating that the Nrf2 pathway is required for the beneficial effects of DMF and MMF. Together, our data indicate that DMF and MMF have therapeutic potential in cerebral ischemia-reperfusion injury and their protective role is likely mediated by the Nrf2 pathway.
Collapse
Affiliation(s)
- Yang Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Weimin Miao
- The State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Zhijia Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Han
- Department of Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaibin Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yi Shen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Handong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ying Fu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - DeRen Huang
- Neurology and Neuroscience Associates, Unity Health Network, Akron, OH, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
9
|
Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-dos-Santos-Franco A. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure. PLoS One 2015; 10:e0142816. [PMID: 26569396 PMCID: PMC4646654 DOI: 10.1371/journal.pone.0142816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/27/2015] [Indexed: 02/04/2023] Open
Abstract
Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT) has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA), an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1%) or vehicle (distillated water) during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure). Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.
Collapse
Affiliation(s)
- Cristiane Miranda da Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Mayara Peres Leal
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Robson Alexandre Brochetti
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Tárcio Braga
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Luana Beatriz Vitoretti
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Amílcar Sabino Damazo
- Department of Basic Science in Health, Faculty of Medical Sciences, Federal University of Cuiabá, Cuiabá, Brazil
| | - Ana Paula Ligeiro-de-Oliveira
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Adriana Lino-dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- * E-mail:
| |
Collapse
|