1
|
Jiang L, Fang T, Hu T, Feng J, Yan P. Mir-338-3p targeting THBS1 attenuates glioma progression by inhibiting the PI3K/Akt pathway. Biol Direct 2024; 19:9. [PMID: 38267974 PMCID: PMC10807173 DOI: 10.1186/s13062-023-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Glioma is a brain tumor with high morbidity and mortality rates. Understanding its molecular pathogenesis can provide targets and therapeutic strategies for glioma treatment. miR-338-3p represses tumor growth in several cancers, including glioma. Thus, this study aimed to identify the regulatory effects of miR-338-3p/phosphoinositide 3-kinase (PI3K)/Akt/thrombospondins 1 (THBS1) on glioma progression. MATERIALS AND METHODS Quantitative reverse transcription polymerase chain reaction and western blotting were performed to evaluate the levels of miR-338-3p, THBS1, and PI3K/Akt phosphorylation-related proteins. TargetScan software predicted that miR-338-3p targeted THBS1. This was confirmed by performing the dual-luciferase assay. Wound-healing and cell-counting-kit-8 experiments were performed to analyze how THBS1 and miR-338-3p affect the ability of glioma cells to migrate and proliferate. The effect of miR-338-3p on tumorigenicity in mice was also analyzed. RESULTS miR-338-3p downregulation was observed in gliomas, whereas THBS1 showed the opposite trend. By suppressing the PI3K/Akt signaling pathway activation, miR-338-3p overregulated the ability of glioma cells to migrate and proliferate in vitro. Additionally, miR-338-3p inhibited the development of glioma tumors in vivo. Moreover, miR-338-3p directly targeted THBS1. THBS1 overexpression promoted glioma cell migration and proliferation by increasing PI3K/Akt phosphorylation. Nonetheless, miR-338-3p overregulation alleviated the effects of THBS1 overexpression. CONCLUSION The miR-338-3p/PI3K/Akt/THBS1 regulatory axis can modulate the progression of glioma cell proliferation and migration; thus, it can be considered a therapeutic biomarker.
Collapse
Affiliation(s)
- Lianglei Jiang
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China
| | - Ting Fang
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China
| | - Tingting Hu
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China
| | - Jun Feng
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China.
| | - Pengfei Yan
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China.
| |
Collapse
|
2
|
Gao X, Fan X, Zeng W, Liang J, Guo N, Yang X, Zhao Y. Overexpression of microRNA-107 suppressed proliferation, migration, invasion, and the PI3K/Akt signaling pathway and induced apoptosis by targeting Nin one binding (NOB1) protein in a hypopharyngeal squamous cell carcinoma cell line (FaDu). Bioengineered 2022; 13:7881-7893. [PMID: 35294329 PMCID: PMC9208451 DOI: 10.1080/21655979.2022.2051266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is one of the most common head and neck cancers, with a worst prognosis owing to its aggressivity. MicroRNA-107 (miR-107) is reported to regulate the progression of various cancers. Nevertheless, its implied function in HSCC remains unclear. This study is aimed to exploring the roles and potential mechanisms of miR-107 in HSCC. We found that miR-107 expression was significantly decreased in HSCC tissues compared with the para-cancer tissues. Moreover, miR-107 overexpression by miR-107 mimics decreased FaDu cell viability, led to cell cycle arrest in G1/S phase, accelerated apoptosis, and reduced cell migration and invasion. MiR-107 possibly resulted in deactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, evidenced by the decrease of phosphorylated (p-) PI3K and p-Akt. Besides, dual-luciferase reporter assay confirmed that miR-107 might bind to the 3’UTR of Nin one binding protein 1 (NOB1), and elevated NOB1 expression in HSCC tissues and a negative correlation between miR-107 and NOB1 were found. Rescue assays demonstrated the significant roles of miR-107 in FaDu cell behavior by modulating NOB1. In addition, the tumorigenic potential of miR-107 in vivo was conducted. It was found that miR-107 overexpression in FaDu cells significantly inhibited tumor growth and led to inactivation of the PI3K/Akt signaling. The above findings revealed that miR-107 could suppress FaDu cell proliferation, migration, invasion and induced apoptosis by targeting NOB1 through the PI3K/Akt pathway, suggesting that miR-107/NOB1 axis may exert a key role in FaDu HSCC development.
Collapse
Affiliation(s)
- Xin Gao
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Xinlong Fan
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Wei Zeng
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Jiwang Liang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Nan Guo
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Xiao Yang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Yuejiao Zhao
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| |
Collapse
|
3
|
Yi Q, Cui H, Liao Y, Xiong J, Ye X, Sun W. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis. Biomed Pharmacother 2021; 139:111720. [PMID: 34243620 DOI: 10.1016/j.biopha.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs(miRNAs) are small non-coding RNAs which have a critical role in various biological processes via direct binding and post-transcriptionally regulating targeted genes expression. More than one-half of human genes were regulated by miRNAs and their aberrant expression was detected in various human diseases, including cancers. miRNA-338 is a new identified miRNA and increasing evidence show that miRNA-338 participates in the progression of lots of cancers, such as lung cancer, hepatocellular cancer, breast cancer, glioma, and so on. Although a range of targets and signaling pathways such as MACC1 and Wnt/β-catenin signaling pathway were illustrated to be regulated by miRNA-338, which functions in tumor progression are still ambiguous and the underlying molecular mechanisms are also unclear. Herein, we reviewed the latest studies in miRNA-338 and summarized its roles in different type of human tumors, which might provide us new idea for further investigations and potential targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hanwei Cui
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Yi Liao
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Xiufeng Ye
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Weichao Sun
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| |
Collapse
|
4
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Li K, Zhang Q, Niu D, Xing H. Mining miRNAs' Expressions in Glioma Based on GEO Database and Their Effects on Biological Functions. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5637864. [PMID: 33102581 PMCID: PMC7576330 DOI: 10.1155/2020/5637864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To mine miR expression in glioma based on the Gene Expression Omnibus (GEO) database and to explore its effects on biological functions. METHODS Differentially expressed miRs in glioma-related chips were found out based on the GEO database. Fifty patients with glioma treated in our hospital from February 2012 to July 2013 (observation group, OG) and a further 50 healthy people undergoing physical examinations (control group, CG) were enrolled. miR-873-5p expression in serum and in U87, T98G, U251, LN-229, and HEK-293T cells was tested by qRT-PCR. T98G and U251 cells were transfected with miR-873-5p-mimics and miR-NC sequences. The expression in the two cells was also tested by qRT-PCR. The proliferation, invasion, and apoptosis of the transfected cells were, respectively, tested by MTT assay, Transwell, and flow cytometry. The patients were followed up for 5 years to observe their survival. RESULTS miR-873-5p expression in OG was remarkably higher than that in CG (p < 0.001). miR-873-5p was closely correlated with the tumor diameter, lymph node metastasis, and TNM staging of the patients (p < 0.05). According to the plotted receiver operating characteristic (ROC) curves, the areas under the curves (AUCs) of miR-873-5p for diagnosing the disease, tumor diameter, lymph node metastasis, and TNM staging were 0.842, 0.706, 0.865, and 0.793, respectively. The 5-year and recurrence-free survival rates in the low expression group were lower than those in the high expression group. According to multivariate Cox regression analysis, tumor diameter, lymph node metastasis, and miR-873-5p were independent prognostic factors for the disease. After transfection, compared with those in the miR-NC group, T98G and U251 cells in the miR-873-5p-mimic group had remarkably higher miR-873-5p expression (p < 0.05), remarkably lower proliferation and invasion rates (p < 0.05), and a remarkably higher apoptotic rate (p < 0.05). CONCLUSIONS miR-873-5p can inhibit glioma cells to proliferate and invade, and promote their apoptosis, so it is expected to become a potential diagnostic index and therapeutic target for glioma.
Collapse
Affiliation(s)
- Ke Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Qi Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Duan Niu
- Department of Pediatrics, Binchengqu Shili Hospital, Binzhou 256600, China
| | - Hailong Xing
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou 256603, China
| |
Collapse
|
6
|
Ji B, Chen L, Cai Q, Guo Q, Chen Z, He D. Identification of an 8-miRNA signature as a potential prognostic biomarker for glioma. PeerJ 2020; 8:e9943. [PMID: 33062427 PMCID: PMC7528815 DOI: 10.7717/peerj.9943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Glioma is the most common form of primary malignant intracranial tumor. Methods In the current study, miRNA matrix were obtained from the Chinese Glioma Genome Atlas (CGGA), and then univariate Cox regression analysis and Lasso regression analysis were utilized to select candidate miRNAs and multivariate Cox regression analysis was applied to establish a miRNA signature for predicting overall survival (OS) of glioma. The signature was assessed with the area under the curve (AUC) of the receiver operating characteristic curve (ROC) and validated by data from Gene Expression Omnibus (GEO). Results Eight miRNAs (miR-1246, miR-148a, miR-150, miR-196a, miR-338-3p, miR-342-5p, miR-548h and miR-645) were included in the miRNA signature. The AUC of ROC analysis for 1- and 3-year OS in the CGGA dataset was 0.747 and 0.905, respectively. In the GEO dataset, The AUC for 1- and 3-year was 0.736 and 0.809, respectively. The AUC in both the CGGA and GEO datasets was similar to that based on WHO 2007 classification (0.736 and 0.799) and WHO 2016 classification (0.663 and 0.807). Additionally, Kaplan–Meier plot revealed that high-risk score patients had a poorer clinical outcome. Multivariate Cox regression analysis suggested that the miRNA signature was an independent prognosis-related factor [HR: 6.579, 95% CI [1.227−35.268], p = 0.028]. Conclusion On the whole, in the present study, based on eight miRNAs, a novel prognostic signature was developed for predicting the 1- and 3- year survival rate in glioma. The results may be conducive to predict the precise prognosis of glioma and to elucidate the underlying molecular mechanisms. However, further experimental researches of miRNAs are needed to validate the findings of this study.
Collapse
Affiliation(s)
- Baowei Ji
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Lihua Chen
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Qiang Cai
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Qiao Guo
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Du He
- Department of Oncology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| |
Collapse
|
7
|
Wang WY, Lu WC. Reduced Expression of hsa-miR-338-3p Contributes to the Development of Glioma Cells by Targeting Mitochondrial 3-Oxoacyl-ACP Synthase (OXSM) in Glioblastoma (GBM). Onco Targets Ther 2020; 13:9513-9523. [PMID: 33061435 PMCID: PMC7522303 DOI: 10.2147/ott.s262873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs have been identified as major regulators and therapeutic targets of glioblastoma (GBM). It is thus meaningful to study the miRNAs differentially expressed (DE-miRNAs) in GBM. Materials and Methods We performed a meta-analysis of previously published microarray data using the R-based “metaMA” package to identify DE-miRNAs.The biological processes of the DE-miRNAs were then analyzed using FunRich. KEGG pathways of the DE-miRNAs gene targets were analyzed by mirPath V.3. Luciferase activity assay was performed to validate that OXSM is a direct target of hsa-miR338-3p. Flow cytometry was used to detect the effects of miR-338-3p on GBM cell proliferation, apoptosis and cell cycle. Results DE-miRNAs in blood and brain tissue from GBM were identified. “Type I interferon signaling pathway” and “VEGF and VEGFR signaling network” were the most significantly enriched biological processes shared by all GBM types. In KEGG pathway analysis, DE-miRNAs both in blood and tissue show altered fatty acid biosynthesis. Further validation shows hsa-miR-338-3p regulates fatty acid metabolism by directly targeting OXSM gene. In addition, our data revealed an accelerated cell cycle and an anti-apoptotic role for OXSM in glioma cells, which has not been reported. Finally, we confirmed that hsa-miR-338-3p inhibitor antagonized the effect of downregulation of OXSM on cell cycle and apoptosis of GBM cells. Conclusion We revealed that hsa-miR-338-3p, down-regulated in GBM, may affect the biogenesis and rapid proliferation of glioma cells by regulating the level of OXSM, providing new insights into understanding the pathogenesis of GBM and developing strategies to improve GBM prognosis.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Neurosurgery, Dafeng People's Hospital of Yancheng City, Yancheng City, Jiangsu Province, People's Republic of China
| | - Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
8
|
Hohmann T, Hohmann U, Kolbe MR, Dahlmann M, Kobelt D, Stein U, Dehghani F. MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma. Cell Commun Signal 2020; 18:85. [PMID: 32503676 PMCID: PMC7275321 DOI: 10.1186/s12964-020-00566-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Metastasis-associated in colon cancer 1 (MACC1) is an established marker for metastasis and tumor cell migration in a multitude of tumor entities, including glioblastoma (GBM). Nevertheless, the mechanism underlying the increased migratory capacity in GBM is not comprehensively explored. Methods We performed live cell and atomic force microscopy measurements to assess cell migration and mechanical properties of MACC1 overexpressing GBM cells. We quantified MACC1 dependent dynamics of 3D aggregate formation. For mechanistic studies we measured the expression of key adhesion molecules using qRT-PCR, and MACC1 dependent changes in short term adhesion to fibronectin and laminin. We then determined changes in sub-cellular distribution of integrins and actin in dependence of MACC1, but also in microtubule and intermediate filament organization. Results MACC1 increased the migratory speed and elastic modulus of GBM cells, but decreased cell-cell adhesion and inhibited the formation of 3D aggregates. These effects were not associated with altered mRNA expression of several key adhesion molecules or altered short-term affinity to laminin and fibronectin. MACC1 did neither change the organization of the microtubule nor intermediate filament cytoskeleton, but resulted in increased amounts of protrusive actin on laminin. Conclusion MACC1 overexpression increases elastic modulus and migration and reduces adhesion of GBM cells thereby impeding 3D aggregate formation. The underlying molecular mechanism is independent on the organization of microtubules, intermediate filaments and several key adhesion molecules, but depends on adhesion to laminin. Thus, targeting re-organization of the cytoskeleton and cell motility via MACC1 may offer a treatment option to impede GBM spreading. Video Abstract
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany
| | - Urszula Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany
| | - Marc R Kolbe
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany.
| |
Collapse
|
9
|
Yin Z, Liao L, Mao S, Liu Y, Xie T, Yu H, Zhao W. Knockdown of lncRNA KCNQ1OT1 inhibits glioma progression by regulating miR-338-3p/RRM2. Open Life Sci 2020. [DOI: 10.1515/biol-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractThe dysregulated lncRNA play essential roles in glioma development. This study aimed to investigate the role and mechanism of lncRNA potassium voltage-gated channel subfamily Q member 1 opposite strand/ antisense transcript 1 (KCNQ1OT1) in glioma progression. Tumor tissues and adjacent normal samples were collected from 30 glioma patients. The expression levels of lncRNA KCNQ1OT1, microRNA (miR)-338-3p and ribonucleotide reductase M2 (RRM2) were detected by quantitative real-time polymerase chain reaction or western blot analyses. Levels of cell viability, apoptosis, cell migration and invasion in glioma cell lines were determined using cell counting kit-8, flow cytometry with annexin V-FITC and trans-well assays, respectively. The role of KCNQ1OT1 in glioma development in vivo was investigated using a xenograft model. The target association between miR-338-3p and KCNQ1OT1 or RRM2 was validated by luciferase reporter assay. The results found that expression of KCNQ1OT1 was enhanced in glioma tissues and cells, and KCNQ1OT1 knockdown inhibited cell viability, migration and invasion, and xenograft tumor growth, but promoted apoptosis. miR-338-3p was targeted via KCNQ1OT1 and could reverse the effect of KCNQ1OT1 on glioma progression. RRM2 was targeted via miR-338-3p and attenuated the suppressive effect of miR-338-3p on glioma cell viability, migration and invasion. Besides, KCNQ1OT1 overexpression increased RRM2 expression, and this event was weakened via miR-338-3p up-regulation. In conclusion, the present finding suggest that silencing of KCNQ1OT1 can suppress the development and progression of glioma by up-regulating miR-338-3p and down-regulating RRM2.
Collapse
Affiliation(s)
- Zhangxing Yin
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Liqing Liao
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Sheng Mao
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Tao Xie
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Hua Yu
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| | - Wenxu Zhao
- Department of Neurosurgery, Qianjiang Central Hospital of Hubei Province, No. 22, Zhanghuazhong Road, Qianjiang, 433100, Hubei, China
| |
Collapse
|
10
|
Circular RNA SMO sponges miR-338-3p to promote the growth of glioma by enhancing the expression of SMO. Aging (Albany NY) 2019; 11:12345-12360. [PMID: 31895689 PMCID: PMC6949074 DOI: 10.18632/aging.102576] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most common tumors in the brain and complete cure still a challenge. The present research aimed to investigate the molecular mechanism of circular RNA SMO (circSMO742) in glioma, via targeting miR-338-3p and regulating SMO expression. QRT-PCR was utilized to examine the expression profiles of circSMO742 and microRNA-338-3p (miR-338-3p) in glioma. SMO protein in glioma was tested via western blot. RNA pulldown assay and dual luciferase reporter assays were used to explore the targeting correlation between RNAs. MTT assay, transwell assays and flow cytometry were used to investigate cell proliferation, migration and invasion, and apoptosis, respectively. Tumor xenograft was done to ascertain the effect of circSMO742 knocking down on tumor growth. CircSMO742 and SMO were highly expressed in glioma tissues, while miR-338-3p expression was reduced. CircSMO742 together with SMO could promote cells proliferation, migration and invasion while inhibit cells apoptosis, whereas miR-338-3p showed negative impacts on the cell activity. Knocking down of circSMO742 suppressed glioma growing in vivo. CircSMO742 promoted glioma growth by sponging miR-338-3p to regulate SMO expression. Our research revealed a new molecular mechanism of glioma growth and provide a fresh perspective on circRNAs in glioma progression.
Collapse
|
11
|
Zhang R, Shi H, Ren F, Feng W, Cao Y, Li G, Liu Z, Ji P, Zhang M. MicroRNA-338-3p suppresses ovarian cancer cells growth and metastasis: implication of Wnt/catenin beta and MEK/ERK signaling pathways. J Exp Clin Cancer Res 2019; 38:494. [PMID: 31842953 PMCID: PMC6916056 DOI: 10.1186/s13046-019-1494-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Downregulation of microRNA-338-3p (miR-338-3p) was detected in many malignant tumors, which indicated miR-338-3p might serve as a role of antioncogene in those cancers. The present study aimed to explore the roles of miR-338-3p in the growth and metastasis of ovarian cancer cells and elaborate the underlying possible molecular mechanism. METHODS Multiply biomedical databases query and KEGG pathway enrichment assay were used to infilter possible target genes and downstream pathways regulated by miR-338-3p. Overexpression miR-338-3p lentiviral vectors were transfected into ovarian cancer OVCAR-3 and OVCAR-8 cells, cell proliferation, migration and invasion were analyzed by MTT, colony formation, transwell, Matrigel assay and xenograft mouse model. One 3'-untranslated regions (UTRs) binding target gene of miR-338-3p, MACC1 (MET transcriptional regulator MACC1), and its regulated gene MET and downstream signaling pathway activities were examined by western blot. RESULTS Biomedical databases query indicated that miR-338-3p could target MACC1 gene and regulate Met, downstream Wnt/Catenin beta and MEK/ERK pathways. Rescue of miR-338-3p could inhibit the proliferation, migration and invasion of ovarian cancer cells, and suppress the growth and metastasis of xenograft tumor. Restoration of miR-338-3p could attenuate MACC1 and Met overexpression induced growth, epithelial to mesenchymal transition (EMT) and activities of Wnt/Catenin beta and MEK/ERK signaling in vitro and in vivo. CONCLUSIONS The present data indicated that restoration of miR-338-3p could suppress the growth and metastasis of ovarian cancer cells, which might due to the inhibition of proliferation and EMT induced by MACC1, Met and its downstream Wnt/Catenin beta and MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Ruitao Zhang
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Huirong Shi
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Fang Ren
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Wei Feng
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yuan Cao
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Gailing Li
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Zheying Liu
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Pengcheng Ji
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| | - Minghui Zhang
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, NO.1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052 People’s Republic of China
| |
Collapse
|
12
|
Zhang C, Li H, Wang J, Zhang J, Hou X. MicroRNA-338-3p suppresses cell proliferation, migration and invasion in human malignant melanoma by targeting MACC1. Exp Ther Med 2019; 18:997-1004. [PMID: 31316597 PMCID: PMC6601406 DOI: 10.3892/etm.2019.7644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer originating from melanocytes with increased proliferative and metastatic ability. Previous studies have revealed that microRNA-338-3p (miR-338-3p) functions as a tumor suppressor in several types of cancer, including cervical cancer, renal cell carcinoma and thyroid cancer. However, the function and mechanism underlying the action of miR-383-3p in MM remain unclear. In the study, aberrant downregulation of miR-338-3p was observed in 60 pairs of MM and adjacent non-tumor tissue using quantitative polymerase chain reaction assay. Decreased miR-383-3p expression was associated with advanced clinical stage (P<0.05) and lymph node metastasis (P<0.001). The overexpression of miR-338-3p in A375 and G361 cells suppressed cell proliferation and migration using MTT, colony formation, wound healing and transwell assays. Mechanistically, MACC1 was identified as a direct target for miR-338-3p using bioinformatics prediction and dual-luciferase assays. Furthermore, MACC1 expression was significantly increased and inversely correlated with the levels of miR-338-3p in MM tissues. More importantly, restoration of MACC1 resulted in reversed the inhibitory effects of miR-338-3p overexpression on MM cells by altering the expression levels of PCNA and epithelial-mesenchymal transition (EMT)-associated proteins. These results suggest that miR-338-3p functions as a novel tumor suppressor, at least in part, via targeting MACC1 and suggest that miR-338-3p may serve as a potential target for treatment of MM patients.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hui Li
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Junling Wang
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jibei Zhang
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiaoqian Hou
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
13
|
Hagemann C, Neuhaus N, Dahlmann M, Kessler AF, Kobelt D, Herrmann P, Eyrich M, Freitag B, Linsenmann T, Monoranu CM, Ernestus RI, Löhr M, Stein U. Circulating MACC1 Transcripts in Glioblastoma Patients Predict Prognosis and Treatment Response. Cancers (Basel) 2019; 11:cancers11060825. [PMID: 31200581 PMCID: PMC6627447 DOI: 10.3390/cancers11060825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacks reliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associated in colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinical outcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher in patients compared to controls. Low MACC1 levels clustered together with other prognostically favorable markers. It was associated with patients’ prognosis in conjunction with the isocitrate dehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable (median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (median OS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months). No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levels receiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1 levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worst prognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulating MACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcome prediction and help define more precise risk categories of glioblastoma patients.
Collapse
Affiliation(s)
- Carsten Hagemann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Nikolas Neuhaus
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | - Almuth F Kessler
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | - Pia Herrmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
| | - Matthias Eyrich
- Department of Pediatric Hematology/Oncology, University Children's Hospital, University of Würzburg, D-97080 Würzburg, Germany.
| | - Benjamin Freitag
- Department of Pediatric Hematology/Oncology, University Children's Hospital, University of Würzburg, D-97080 Würzburg, Germany.
| | - Thomas Linsenmann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | - Ralf-Ingo Ernestus
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Mario Löhr
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Radhakrishnan H, Walther W, Zincke F, Kobelt D, Imbastari F, Erdem M, Kortüm B, Dahlmann M, Stein U. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev 2019; 37:805-820. [PMID: 30607625 DOI: 10.1007/s10555-018-9771-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deciphering the paths to metastasis and identifying key molecules driving this process is one important issue for understanding and treatment of cancer. Such a key driver molecule is Metastasis Associated in Colon Cancer 1 (MACC1). A decade long research on this evolutionarily conserved molecule with features of a transcription factor as well as an adapter protein for versatile protein-protein interactions has shown that it has manifold properties driving tumors to their metastatic stage. MACC1 transcriptionally regulates genes involved in epithelial-mesenchymal transition (EMT), including those which are able to directly induce metastasis like c-MET, impacts tumor cell migration and invasion, and induces metastasis in solid cancers. MACC1 has proven as a valuable biomarker for prognosis of metastasis formation linked to patient survival and gives promise to also act as a predictive marker for individualized therapies in a broad variety of cancers. This review discusses the many features of MACC1 in the context of the hallmarks of cancer and the potential of this molecule as biomarker and novel therapeutic target for restriction and prevention of metastasis.
Collapse
Affiliation(s)
- Harikrishnan Radhakrishnan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Fabian Zincke
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Francesca Imbastari
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Müge Erdem
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
15
|
Lu M, Huang H, Yang J, Li J, Zhao G, Li W, Li X, Liu G, Wei L, Shi B, Zhao C, Fu Y. miR-338-3p regulates the proliferation, apoptosis and migration of SW480 cells by targeting MACC1. Exp Ther Med 2019; 17:2807-2814. [PMID: 30906469 PMCID: PMC6425231 DOI: 10.3892/etm.2019.7260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The mortality and incidence rates of colorectal cancer (CRC) vary widely worldwide. miR-338-3p inhibits tumor cell proliferation in several types of cancer, however, the role of miR-338-3p on CRC remains unknown. The aim of the current study was to investigate the cellular function of miRNA-338-3p (miR-338-3p) in CRC, the malignant behavior of CRC cells and the interaction between miR-338-3p and metastasis-associated in colon cancer-1 (MACC1). miR-338-3p expression was significantly decreased in CRC tissue compared with adjacent normal tissue. In the CRC cell line SW480, miR-338-3p overexpression suppressed cell proliferation and migration and induced G1/S cell cycle arrest and apoptosis. By contrast, miR-338-3p knockdown significantly enhanced cell proliferation and migration, and suppressed G1/S cell cycle arrest and apoptosis. Furthermore, the dual-luciferase reporter assay confirmed MACC1 as a direct target of miR-338-3p. In addition, miR-338-3p overexpression reduced the level of MACC1 protein expression and MACC1 expression was significantly upregulated in CRC tissue samples. MACC1 siRNA significantly reduced CRC cell proliferation and migration, whilst cell apoptosis was significantly increased. In conclusion, miR-338-3p expression was decreased in CRC. miR-338-3p regulated the proliferation, apoptosis and migration of CRC cells by targeting MACC1.
Collapse
Affiliation(s)
- Mingliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinhui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Weihua Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xinhua Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Guobin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Li Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Baoping Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Chunping Zhao
- Department of Gastroenterology, No. 1 People's Hospital of Dali City, Dali, Yunnan 671000, P.R. China
| | - Yan Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
16
|
Zhang R, Shi H, Ren F, Liu Z, Ji P, Zhang W, Wang W. Down-regulation of miR-338-3p and Up-regulation of MACC1 Indicated Poor Prognosis of Epithelial Ovarian Cancer Patients. J Cancer 2019; 10:1385-1392. [PMID: 31031848 PMCID: PMC6485222 DOI: 10.7150/jca.29502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To detect the expression of microRNA-338-3p (miR-338-3p) and MET transcriptional regulator MACC1 (MACC1) gene in different ovarian tissues, to analyze their relationships, their correlations to the clinicopathologic characteristics of epithelial ovarian cancer and their significant to the progression of ovarian cancer. Methods The expression of miR-338-3p and MACC1 gene in 20 specimens of normal ovarian tissues, 20 specimens of benign epithelial ovarian tumor and 65 specimens of epithelial ovarian cancer was detected by real-time PCR method. Their interrelationships and their correlations to the clinicopathologic characteristics of epithelial ovarian cancer were analyzed. Risk factors of recurrence and death were discussed by binary Logistic regression analysis. The relations between miR-338-3p and MACC1 expression and the survival of ovarian cancer were measured by Kaplan-Meier analysis. Results The expressions of miR-338-3p and MACC1 gene in epithelial ovarian cancer tissues were (0.331±0.038) and (0.774±0.025), significant differences were noted between epithelial ovarian cancer and normal ovarian tissues, benign ovarian tumors (F=77.916, P=1.205E-18; F=77.945, P=1.187E-18). In different ovarian tissues, miR-338-3p expression was negatively correlated to MACC1 expression (r = -0.968, P<0.0001). In epithelial ovarian cancer, lower expression of miR-338-3p and higher expression of MACC1 were associated with more advanced FIGO stage, higher histological grade and developed lymph node metastasis. Down-regulation of miR-338-3p was related with the recurrence (P=0. 005, OR=12.862, 95%CI: 2.120~78.026) and death (P=0. 007, OR=12.837, 95%CI: 2.205~81.389) of ovarian cancer patients, which was showed by binary Logistic regression analysis. Compared to other patients, the overall survival rate and progression free survival rate of patients with lower miR-338-3p and higher MACC1 expression were obviously poorer (χ2=16.955, P=7.219E-5; χ2=18.929, P=2.828E-5). Conclusions Down-regulation of miR-338-3p and up-regulation of MACC1 gene were closely related with the poor prognosis of epithelial ovarian cancer patients, which could served as bio-markers of the progression and recurrence of ovarian cancer.
Collapse
Affiliation(s)
- Ruitao Zhang
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Huirong Shi
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Fang Ren
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zheying Liu
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Pengcheng Ji
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Weiwei Zhang
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wenwen Wang
- Department of Gynecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
Luan X, Wang Y. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p. J Gynecol Oncol 2018; 29:e95. [PMID: 30207103 PMCID: PMC6189437 DOI: 10.3802/jgo.2018.29.e95] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Cervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390. METHODS LncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively. RESULTS Based on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression. CONCLUSION Taken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Xiaotian Luan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yankui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Qu X, Zhao B, Hu M, Ji Z, Xu J, Xia W, Qu Y. Downregulation of TBC1 Domain Family Member 24 (BC1D24) Inhibits Breast Carcinoma Growth via IGF1R/PI3K/AKT Pathway. Med Sci Monit 2018; 24:3987-3996. [PMID: 29893377 PMCID: PMC6029514 DOI: 10.12659/msm.906736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND TBC1 domain family member 24 (TBC1D24) pathogenic mutations affect its binding to ARF6 and then result in severe impairment of neuronal development. However, there are no reports about the expression and function of TBC1D24 in cancer. The aim of the present study was to evaluate the effect of proliferation, migration, and invasion after silencing TBC1D24 expression in breast cancer MCF-7 cells, and to elucidate the potential mechanism of TBC1D24 in breast cancer. MATERIAL AND METHODS The expression of TBC1D24 in breast cancer tissues and the adjacent non-tumor tissues was determined by S-P immunohistochemistry. The malignant behavior, including proliferation, migration, and invasion ability, was determined after silencing TBC1D24 in breast cancer MCF-7 cells. The expression of IGF1R was determined after silencing TBC1D24. The expression of TBC1D24 and IGF1R was detected after transfecting miR-30a mimics or inhibitors. The effect of TBC1D24 on MCF-7 cells growth in vivo was evaluated by a tumor xenograft study. RESULTS TBC1D24 expression was elevated and was associated with poor outcome in breast carcinoma. TBC1D24 high expression was significantly correlated with unfavorable OS and RFS for breast cancer patients (p<0.05). Silencing TBC1D24 inhibited the proliferation, migration, and invasion ability of MCF-7 cells. TBC1D24 and IGF1R expression were decreased when transfected with miR-30a mimics. However, TBC1D24 and IGF1R expression were increased when transfected with miR-30a inhibitors (p<0.05). Knockdown of TBC1D24 inhibited the expression of IGF1R, PI3K, and p-AKT (p<0.05). Knockdown of TBC1D24 abolished tumorigenicity of MCF-7 cells. The average volume and weight of tumors was lower after silencing TBC1D24 expression (P<0.05). CONCLUSIONS Silencing TBC1D24 inhibited MCF-7 cells growth in vitro and in vivo. TBC1D24 promoted breast carcinoma growth through the IGF1R/PI3K/AKT pathway. TBC1D24 is a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xiusheng Qu
- Department of Radiotherapy and Chemotherapy, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Bin Zhao
- Department of Anus and Intestine Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Min Hu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Zhiwu Ji
- Department of Anus and Intestine Surgery, Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Jian Xu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Weibin Xia
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Yikun Qu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| |
Collapse
|
19
|
Zou T, Duan J, Liang J, Shi H, Zhen T, Li H, Zhang F, Dong Y, Han A. miR-338-3p suppresses colorectal cancer proliferation and progression by inhibiting MACC1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2256-2267. [PMID: 31938338 PMCID: PMC6958210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/18/2018] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. This study aimed to elucidate the clinicopathological significance of miR-338-3p and its association with metastasis-associated in colon cancer-1 (MACC1) in CRC. We evaluated miR-338-3p and MACC1 expression in CRC cell lines and analyzed the clinicopathological features of miR-338-3p in 98 samples of CRC tissues. Subsequent Western blot and cellular biological techniques, and xenograft mouse models were performed to investigate the biological role of miR-338-3p and its association with MACC1 in CRC. Our results show that miR-338-3p expression is lower in CRC cell lines and tissues than that in a human normal colonic epithelial cell line and adjacent normal colorectal tissue, respectively. miR-338-3p expression was significantly associated with histological differentiation, UICC stage, T classification, N classification, and M classification in 98 samples of CRC. The overall survival of CRC patients was significantly less in the low miR-338-3p expression group than in the high miR-338-3p expression group (p<0.01). miR-338-3p mimics suppressed cell proliferation, colony formation, migration, and invasion, but induced apoptosis in CRC cells. miR-338-3p inhibitor reversed these biological phenotypes. miR-338-3p mimics or inhibitor suppressed or increased MACC1 expression in HCT116 and SW620. miR-338-3p mimics reversed the effect of increased MACC1 expression induced by HCT116 with MACC1 over-expression plasmid. Increased cell proliferation, colony formation, and suppressed cell apoptosis caused by MACC1 over-expression were significantly reversed in HCT116 transfected with miR-338-3p mimics, respectively. Suppressed cell proliferation, colony formation, migration, invasion, and increased cell apoptosis caused by MACC1 knockdown were significantly reversed in SW620 transfected with miR-338-3p inhibitor, respectively. In vivo, miR-338-3p agomir significantly inhibited xenograft CRC tumor growth and reversed the effect of increased xenograft tumor growth induced from HCT116 with MACC1 overexpression. In conclusion, our data suggest that miR-338-3p suppresses CRC carcinogenesis and progression by inhibiting MACC1. Targeting miR-338-3p might be a novel treatment strategy for CRC.
Collapse
Affiliation(s)
- Teng Zou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Jing Duan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Fenfen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Yu Dong
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, Guangdong, China
| |
Collapse
|
20
|
Wang N, Zhang Y, Liang H. MicroRNA-598 Inhibits Cell Proliferation and Invasion of Glioblastoma by Directly Targeting Metastasis Associated in Colon Cancer-1 (MACC1). Oncol Res 2018; 26:1275-1283. [PMID: 29444745 PMCID: PMC7844726 DOI: 10.3727/096504018x15185735627746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dysregulation of microRNA (miRNA) expression is closely related with tumorigenesis and tumor development in glioblastoma (GBM). In this study, we found that miRNA-598 (miR-598) expression was significantly downregulated in GBM tissues and cell lines. Restoring miR-598 expression inhibited cell proliferation and invasion in GBM. Moreover, we validated that metastasis associated in colon cancer-1 (MACC1) is a novel target of miR-598 in GBM. Restoring MACC1 expression reversed the inhibitory effects of miR-598 overexpression on GBM cells. In addition, miR-598 overexpression suppressed Met/AKT pathway activation in GBM. Our results provided compelling evidence that miR-598 serves tumor-suppressive roles in GBM and that its antioncogenic effects are mediated chiefly through the direct suppression of MACC1 expression and regulation of the Met/AKT signaling pathway. Therefore, miR-598 is a potential target in the treatment of GBM.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R. China
| | - Huaxin Liang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Jilin, P.R. China
| |
Collapse
|
21
|
Liu S, Suo J, Wang C, Sun X, Wang D, He L, Zhang Y, Li W. Downregulation of tissue miR-338-3p predicts unfavorable prognosis of gastric cancer. Cancer Biomark 2017; 21:117-122. [PMID: 29060930 DOI: 10.3233/cbm-170339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suoning Liu
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jian Suo
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xuan Sun
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Daguang Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Liang He
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Zhang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
22
|
Zhao Q, Xie D, Liu H, Wang F, Yan GY, Chen X. SSCMDA: spy and super cluster strategy for MiRNA-disease association prediction. Oncotarget 2017; 9:1826-1842. [PMID: 29416734 PMCID: PMC5788602 DOI: 10.18632/oncotarget.22812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022] Open
Abstract
In the biological field, the identification of the associations between microRNAs (miRNAs) and diseases has been paid increasing attention as an extremely meaningful study for the clinical medicine. However, it is expensive and time-consuming to confirm miRNA-disease associations by experimental methods. Therefore, in recent years, several effective computational models for predicting the potential miRNA-disease associations have been developed. In this paper, we proposed the Spy and Super Cluster strategy for MiRNA-Disease Association prediction (SSCMDA) based on known miRNA-disease associations, integrated disease similarity and integrated miRNA similarity. For problems of mixed unknown miRNA-disease pairs containing both potential associations and real negative associations, which will lead to inaccurate prediction, spy strategy is adopted by SSCMDA to identify reliable negative samples from the unknown miRNA-disease pairs. Moreover, the super-cluster strategy could gather as many positive samples as possible to improve the accuracy of the prediction by overcoming the shortage of lacking sufficient positive training samples. As a result, the AUCs of global leave-one-out cross validation (LOOCV), local LOOCV and 5-fold cross validation were 0.9007, 0.8747 and 0.8806+/-0.0025, respectively. According to the AUC results, SSCMDA has shown a significant improvement compared with some previous models. We further carried out case studies based on various version of HMDD database to test the prediction performance robustness of SSCMDA. We also implemented case study to examine whether SSCMDA was effective for new diseases without any known associated miRNAs. As a result, a large proportion of the predicted miRNAs have been verified by experimental reports.
Collapse
Affiliation(s)
- Qi Zhao
- School of Mathematics, Liaoning University, Shenyang, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, China
| | - Di Xie
- School of Mathematics, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, China.,School of Life Science, Liaoning University, Shenyang, China
| | - Fan Wang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China.,Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
23
|
Liu DZ, Zhao H, Zou QG, Ma QJ. MiR-338 suppresses cell proliferation and invasion by targeting CTBP2 in glioma. Cancer Biomark 2017; 20:289-297. [PMID: 28826173 DOI: 10.3233/cbm-170128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- De-Zhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin, China
| | - Hui Zhao
- Department of Thoracic Oncology, Jilin Cancer Hospital, Jilin, China
| | - Qin-Guang Zou
- Department of Thoracic Oncology, Jilin Cancer Hospital, Jilin, China
| | - Qing-Jie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin, China
| |
Collapse
|
24
|
Zhao Y, Lin L, Zhang Y, Geng D. SHP-2 Activating Mutation Promotes Malignant Biological Behaviors of Glioma Cells. Med Sci Monit 2017; 23:2931-2938. [PMID: 28620155 PMCID: PMC5484608 DOI: 10.12659/msm.904381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background This study investigated the mechanism underlying the activating mutation of SHP-2 in promoting malignant biological behaviors of glioma cells. Material/Methods The SHP-2 empty plasmid pcDNA3.1 and SHP-2 activating mutation plasmid pcDNA3.1 SHP-2 D61G mutant eukaryotic expression vectors were designed; stable SHP-2-expressing cells transfected with pcDNA3.1 SHP-2 D61G mutant were set as the mutation group; cells transfected with pcDNA3.1 were set as the empty vector group; and cells without transfection were set as the control group. The cell reproductive capacity in each group was measured by MTT method. The invasion ability of cells in vitro was detected by Transwell chamber assay, the cell apoptosis in each group was detected by Annexin-V/PE dual-staining method, and the clone formation ability of cells in vitro was detected by Tablet clone-forming assay. The activation of ERK1/2, ARK, and p38MAPK signal pathways in each group was determined by Western blot. Results After transfection, the expression of SHP-2 protein in the mutant group was significantly higher than that in the control group and empty vector group. The proliferation ability of transfected cells, the apoptosis rate, the invasion ability, and the expression levels of phosphorylated ERK1/2, AKT, and p38 in the mutation group was significantly higher than in the empty vector group and the control group (P<0.05). Moreover, the cell clone formation ability of the mutation group was obviously enhanced (P<0.05). Conclusions The activating mutation of SHP-2 can lead to malignant changes in biological behaviors of glioma cells, and the specific mechanism may be related to the activation of ERK1/2, AKT, and p38 signal pathway. SHP-2 protein may become a new target for anti-malignant transformation of glioma.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Lin Lin
- Fourth Affiliated Hospital , Xinjiang Medical University, Urumqi, Xinjiang, Uganda
| | - Yonghui Zhang
- Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Dangmurenjiafu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
25
|
MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation. PLoS One 2017; 12:e0177661. [PMID: 28493990 PMCID: PMC5426787 DOI: 10.1371/journal.pone.0177661] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis is a highly-regulated process occurring in the dentate gyrus that has been linked to learning, memory, and antidepressant efficacy. MicroRNAs (miRNAs) have been previously shown to play an important role in the regulation of neuronal development and neurogenesis in the dentate gyrus via modulation of gene expression. However, this mode of regulation is both incompletely described in the literature thus far and highly multifactorial. In this study, we designed sensors and detected relative levels of expression of 10 different miRNAs and found miR-338-3p was most highly expressed in the dentate gyrus. Comparison of miR-338-3p expression with neuronal markers of maturity indicates miR-338-3p is expressed most highly in the mature neuron. We also designed a viral “sponge” to knock down in vivo expression of miR-338-3p. When miR-338-3p is knocked down, neurons sprout multiple primary dendrites that branch off of the soma in a disorganized manner, cellular proliferation is upregulated, and neoplasms form spontaneously in vivo. Additionally, miR-338-3p overexpression in glioblastoma cell lines slows their proliferation in vitro. Further, low miR-338-3p expression is associated with increased mortality and disease progression in patients with glioblastoma. These data identify miR-338-3p as a clinically relevant tumor suppressor in glioblastoma.
Collapse
|
26
|
Sui GQ, Fei D, Guo F, Zhen X, Luo Q, Yin S, Wang H. MicroRNA-338-3p inhibits thyroid cancer progression through targeting AKT3. Am J Cancer Res 2017; 7:1177-1187. [PMID: 28560065 PMCID: PMC5446482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023] Open
Abstract
microRNA-338-3p (miR-338-3p) has been implicated in tumor development and progression in many types of cancers. However, the function and mechanism underlying the action of miR-383-3p in thyroid cancer remain unclear and were therefore investigated in this study by in vitro and in vivo experiments. We found that miR-338-3p was downregulated in thyroid cancer tissues and cell lines. miR-338-3p expression was significantly associated with the clinical stage and lymph node metastasis of thyroid cancer. Forced expression of miR-338-3p suppressed thyroid cancer cell proliferation, clonogenicity, migration, and invasion in vitro and inhibited tumorigenesis in a nude mouse xenograft model system. Moreover, AKT3, a known oncogene, was confirmed as a direct target of miR-383-3p in thyroid cancer cells, as evidenced by the fact that ectopic miR-383 expression suppressed AKT3 expression and its downstream pathway (AKT pathway). In addition, AKT3 silencing by siRNA mimicked the effect of ectopic miR-338-3p on the growth and invasion of thyroid cancer cells. In contrast, AKT3 overexpression attenuated the inhibitory effect induced by miR-338-3p overexpression in thyroid cancer cells. These results suggest that miR-338-3p functions as a novel tumor suppressor that blocks thyroid cancer cell growth through targeting AKT3.
Collapse
Affiliation(s)
- Guo-Qing Sui
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Dan Fei
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Feng Guo
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Xi Zhen
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Qiang Luo
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Shuai Yin
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Hui Wang
- Department of Ultrasound, The China-Japan Union Hospital of Jilin UniversityChangchun 130033, China
| |
Collapse
|
27
|
MiR-338-5p suppresses proliferation, migration, invasion, and promote apoptosis of glioblastoma cells by directly targeting EFEMP1. Biomed Pharmacother 2017; 89:957-965. [DOI: 10.1016/j.biopha.2017.01.137] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/21/2022] Open
|
28
|
Peng T, Zhang S, Li W, Fu S, Luan Y, Zuo L. MicroRNA-141 inhibits glioma cells growth and metastasis by targeting TGF-β2. Am J Transl Res 2016; 8:3513-3521. [PMID: 27648141 PMCID: PMC5009403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
MicroRNA-141 (miR-141) has been reported to function as tumor suppressor in many types of cancer. However, the molecular function and underlying mechanisms of miR-141 in glioma is still unknown. The aims of this study were to investigate miR-141 expression and determine its biological function and underlying mechanism in glioma. In this study, we found that miR-141 expression levels, both in glioma cell lines and in tissues, were significantly lower than that in a normal human astrocyte cell line or adjacent non-cancerous tissues. Overexpression of miR-141 significantly inhibited glioma cell proliferation, colony formation, migration and invasion in vitro, as well as suppressed glioma tumor growth in vivo. In addition, transforming growth factor beta 2 (TGF-β2) was identified as a target of miR-141 in glioma cells. TGF-β2 expression was also found to be upregulated, and negatively associated with miR-141 in glioma tissues. TGF-β2 over-expression partly reversed the effect caused by transfection of miR-141 mimic. These findings together suggested that miR-141 functioned as tumor suppressor by targeting TGF-β2, and that miR-141 might be a promising therapeutic strategy for future treatment of glioma.
Collapse
Affiliation(s)
- Tao Peng
- Department of Neurosurgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin Province, P. R. China
| | - Shuyan Zhang
- Department of Neurosurgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin Province, P. R. China
| | - Wenchen Li
- Department of Neurosurgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin Province, P. R. China
| | - Shuanglin Fu
- Department of Neurosurgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin Province, P. R. China
| | - Yongxin Luan
- Department of Neurosurgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin Province, P. R. China
| | - Ling Zuo
- Department of Ophthalmology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin Province, P. R. China
| |
Collapse
|
29
|
Lang B, Shang C, Meng L. Targeted Silencing of S100A8 Gene by miR-24 to Increase Chemotherapy Sensitivity of Endometrial Carcinoma Cells to Paclitaxel. Med Sci Monit 2016; 22:1953-8. [PMID: 27279639 PMCID: PMC4920097 DOI: 10.12659/msm.899179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The objective of this study was to determine whether miR-24 can regulate malignant proliferation and chemotherapy sensitivity of EC cells by targeted silencing of the S100 Calcium Binding Protein A8 (S100A8) gene. Material/Methods The expression of miR-24 in EC tissues was detected by quantitative real-time PCR. The proliferation ability and chemotherapy sensitivity were analyzed by MTT assay. Bioinformatics software was used to predict some potential target genes of miR-24. Luciferase activity assay was used to verify the relationship between target genes and miR-24. S100A8 protein expression was detected by Western blot analysis. Results The low expression of miR-24 in EC tissues compared with normal control tissues suggests miR-24 might play a role in tumorigenesis of EC. EC HEC-1A cells were transfected with miR-24 agonist (agomiR-24) to up-regulate the expression of miR-24. Up-regulation of miR-24 inhibited the cell proliferation and advanced the chemotherapy sensitivity to paclitaxel in HEC-1A cells significantly. We used several types of bioinformatic software to predict that miR-24 could specifically combine with the 3′ untranslated region (3′UTR) of the S100A8 gene, and this prediction was verified by Western blot and luciferase activities assay. The regulation effects of miR-24 enhancement on cell proliferation and chemotherapy sensitivity were largely reversed by S100A8 up-regulation. Conclusions miR-24 acts as a tumor-suppressing gene to inhibit malignant proliferation and advance chemotherapy sensitivity to paclitaxel in EC by targeted silencing of the S100A8 gene.
Collapse
Affiliation(s)
- Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao, China (mainland)
| | - Chao Shang
- Department of Neurobiology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lirong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao, China (mainland)
| |
Collapse
|