1
|
Lysitsas M, Triantafillou E, Chatzipanagiotidou I, Antoniou K, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Trop Med Infect Dis 2024; 9:109. [PMID: 38787042 PMCID: PMC11125616 DOI: 10.3390/tropicalmed9050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, blaPER, ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| | | | | | - Konstantina Antoniou
- Vet Analyseis, Private Diagnostic Laboratory, 41335 Larissa, Greece; (E.T.); (K.A.)
| | - Vassiliki Spyrou
- Department of Animal Science, University of Thessaly, 41334 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| |
Collapse
|
2
|
Bouhrour N, van der Reijden TJK, Voet MM, Schonkeren-Ravensbergen B, Cordfunke RA, Drijfhout JW, Bendali F, Nibbering PH. Novel Antibacterial Agents SAAP-148 and Halicin Combat Gram-Negative Bacteria Colonizing Catheters. Antibiotics (Basel) 2023; 12:1743. [PMID: 38136778 PMCID: PMC10741160 DOI: 10.3390/antibiotics12121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The antibiotic management of catheter-related infections (CRIs) often fails owing to the emergence of antimicrobial-resistant strains and/or biofilm/persister apparitions. Thus, we investigated the efficacy of two novel antimicrobial agents, i.e., the synthetic peptide SAAP-148 and the novel antibiotic halicin, against Gram-negative bacteria (GNB) colonizing catheters. The antibacterial, anti-biofilm, and anti-persister activities of both agents were evaluated against Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae strains. The enrolled strains were isolated from catheters and selected based on their resistance to at least three antibiotic classes and biofilm formation potential. Furthermore, the hemolysis and endotoxin neutralization abilities of these agents were explored. The bactericidal activity of both agents was reduced in urine and plasma as compared to buffered saline. In a dose-dependent manner, SAAP-148 and halicin reduced bacterial counts in 24 h preformed biofilms on silicone elastomer discs and eliminated persisters originating from antibiotic-exposed mature 7-day biofilms, with halicin being less effective than SAAP-148. Importantly, SAAP-148 and halicin acted synergistically on E. coli and K. pneumoniae biofilms but not on A. baumannii biofilms. The peptide, but not halicin, decreased the production of IL-12p40 upon exposure to UV-killed bacteria. This preliminary study showed that SAAP-148 and halicin alone/in combination are promising candidates to fight GNB colonizing catheters.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Tanny J. K. van der Reijden
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Michella M. Voet
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Bep Schonkeren-Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (R.A.C.); (J.W.D.)
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (R.A.C.); (J.W.D.)
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| |
Collapse
|
3
|
Moreno-Manjón J, Castillo-Ramírez S, Jolley KA, Maiden MCJ, Gayosso-Vázquez C, Fernández-Vázquez JL, Mateo-Estrada V, Giono-Cerezo S, Alcántar-Curiel MD. Acinetobacter baumannii IC2 and IC5 Isolates with Co-Existing blaOXA-143-like and blaOXA-72 and Exhibiting Strong Biofilm Formation in a Mexican Hospital. Microorganisms 2023; 11:2316. [PMID: 37764160 PMCID: PMC10536109 DOI: 10.3390/microorganisms11092316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen responsible for healthcare-associated infections (HAIs) and outbreaks. Antimicrobial resistance mechanisms and virulence factors allow it to survive and spread in the hospital environment. However, the molecular mechanisms of these traits and their association with international clones are frequently unknown in low- and middle-income countries. Here, we analyze the phenotype and genotype of seventy-six HAIs and outbreak-causing A. baumannii isolates from a Mexican hospital over ten years, with special attention to the carbapenem resistome and biofilm formation. The isolates belonged to the global international clone (IC) 2 and the Latin America endemic IC5 and were predominantly extensively drug-resistant (XDR). Oxacillinases were identified as a common source of carbapenem resistance. We noted the presence of the blaOXA-143-like family (not previously described in Mexico), the blaOXA-72 and the blaOXA-398 found in both ICs. A low prevalence of efflux pump overexpression activity associated with carbapenem resistance was observed. Finally, strong biofilm formation was found, and significant biofilm-related genes were identified, including bfmRS, csuA/BABCDE, pgaABCD and ompA. This study provides a comprehensive profile of the carbapenem resistome of A. baumannii isolates belonging to the same pulse type, along with their significant biofilm formation capacity. Furthermore, it contributes to a better understanding of their role in the recurrence of infection and the endemicity of these isolates in a Mexican hospital.
Collapse
Affiliation(s)
- Julia Moreno-Manjón
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
- Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (S.C.-R.); (V.M.-E.)
| | - Keith A. Jolley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; (K.A.J.); (M.C.J.M.)
| | - Martin C. J. Maiden
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; (K.A.J.); (M.C.J.M.)
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (S.C.-R.); (V.M.-E.)
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| |
Collapse
|
4
|
Khoshnood S, Sadeghifard N, Mahdian N, Heidary M, Mahdian S, Mohammadi M, Maleki A, Haddadi MH. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia. J Clin Lab Anal 2022; 37:e24814. [PMID: 36573013 PMCID: PMC9833984 DOI: 10.1002/jcla.24814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a pathogen responsible for nosocomial infections, especially in patients with burns and ventilator-associated pneumonia (VAP). The aims of this study was to compare the biofilm formation capacity, antimicrobial resistance patterns and molecular typing based on PFGE (Pulsed-Field Gel Electrophoresis) in A. baumannii isolated from burn and VAP patients. MATERIALS AND METHODS A total of 50 A. baumannii isolates were obtained from burn and VAP patients. In this study, we assessed antimicrobial susceptibility, biofilm formation capacity, PFGE fingerprinting, and the distribution of biofilm-related genes (csuD, csuE, ptk, ataA, and ompA). RESULTS Overall, 74% of the strains were multidrug resistant (MDR), and 26% were extensively drug-resistant (XDR). Regarding biofilm formation capacity, 52%, 36%, and 12% of the isolates were strong, moderate, and weak biofilm producers. Strong biofilm formation capacity significantly correlated with XDR phenotype (12/13, 92.3%). All the isolates harbored at least one biofilm-related gene. The most prevalent gene was csuD (98%), followed by ptk (90%), ataA (88%), ompA (86%), and csuE (86%). Harboring all the biofilm-related genes was significantly associated with XDR phenotype. Finally, PFGE clustering revealed 6 clusters, among which cluster No. 2 showed a significant correlation with strong biofilm formation and XDR phenotype. CONCLUSION Our findings revealed the variable distribution of biofilm-related genes among MDR and XDR A. baumannii isolates from burn and VAP patients. A significant correlation was found between strong biofilm formation capacity and XDR phenotype. Finally, our results suggested that XDR phenotype was predominant among strong-biofilm producer A. baumannii in our region.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | | - Nahid Mahdian
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Mohsen Heidary
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
| | - Somayeh Mahdian
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Maryam Mohammadi
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Abbas Maleki
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | |
Collapse
|
5
|
Rafiei E, Shahini Shams Abadi M, Zamanzad B, Gholipour A. The frequency of efflux pump genes expression in Acinetobacter baumannii isolates from pulmonary secretions. AMB Express 2022; 12:103. [PMID: 35925415 PMCID: PMC9352836 DOI: 10.1186/s13568-022-01444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen, and the cause of nosocomial infections worldwide in recent decades. Efflux pumps are considered as the important causes of multidrug resistance of A. baumannii. The aim of this study was to determine the frequency of efflux pump genes, and evaluate the antibiotic effect of Tigecycline on the expression of adeB gene in isolates of multidrug-resistant. A. baumannii. 70 isolates of A. baumannii were collected and confirmed by biochemical and molecular tests. Antibiotic resistance (Ciprofloxacin, Trimethoprim-sulfamethoxazole, and Tigecycline) was performed based on the minimum inhibitory concentration (MIC) method. Then, the effect of Carbonyl cyanide m-chlorophenyl hydrazone inhibitor (CCCP) on isolates was investigated and the frequency of adeB, adeG, adeJ and abeM genes were examined by PCR for isolates with reduced in MIC titer. Also, the antibiotic effect of Tigecycline on adeB gene expression in A. baumannii isolates was analyzed by Real-Time PCR. The antibiotic resistance for Ciprofloxacin, Trimethoprim-sulfamethoxazole, and Tigecycline was 97.1%, 95.8% and 37.2%, respectively. Following CCCP inhibitor use, the MIC titer had a decrease in MIC titer containing CCCP inhibitor was 64.3% for Ciprofloxacin, 51.5% for Trimethoprim-sulfamethoxazole and 50% for Tigecycline. The frequencies of genes associated with adeB, adeG, adeJ and abeM efflux pump were 100%, 92.8%, 86% and 98.5%, respectively. Real-Time PCR results showed a correlation between the antibiotic effects of Tigecycline on adeB gene expression. The antibiotic resistance of the isolates was relatively high. The isolates were resistant to Ciprofloxacin and Trimethoprim-sulfamethoxazole antibiotics, while more sensitive to Tigecycline. Also, efflux pump genes, which are the antibiotic resistance factors of A. baumannii, are frequently high in the isolates but it seems that isolates use other effluxe pumps than RND family to exit tigecycline. The frequencies of genes associated with adeB, adeG, adeJ and abeM efflux pump were 100%, 92.8%, 86% and 98.5%, respectively. Real-Time PCR results showed a correlation between the antibiotic effects of Tigecycline on adeB gene expression. The antibiotic resistance of the isolates was relatively high. Also, efflux pump genes, which are the antibiotic resistance factors of A. baumannii, are frequently high in the isolates but it seems that isolates use other effluxe pumps than RND family to exit tigecycline.
Collapse
Affiliation(s)
- Ebrahim Rafiei
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Shahini Shams Abadi
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Behnam Zamanzad
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abolfazl Gholipour
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Borges Duarte DF, Gonçalves Rodrigues A. Acinetobacter baumannii: insights towards a comprehensive approach for the prevention of outbreaks in health-care facilities. APMIS 2022; 130:330-337. [PMID: 35403751 DOI: 10.1111/apm.13227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is known to be an opportunistic pathogen frequently responsible for outbreaks in health-care facilities, particularly in Intensive Care Units (ICU). It can easily survive in the hospital setting for long periods and can be transmitted throughout the hospital in a variety of ways, explored in this review. It can also easily acquire antibiotic resistance determinants rendering several antibiotic drugs useless. In 2019, the US Centre for Disease Control (CDC) considered the organism as an urgent threat. The aim of this review was to raise the awareness of the medical community about the relevance of this pathogen and discuss how it may impact seriously the healthcare institutions particularly in the aftermath of the recent COVID-19 pandemic. PubMed was searched, and articles that met inclusion criteria were reviewed. We conclude by the need to raise awareness to this pathogen's relevance and to encourage the implementation of preventive measures in order to mitigate its consequences namely the triage of specific high-risk patients.
Collapse
Affiliation(s)
- Diogo Filipe Borges Duarte
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Acácio Gonçalves Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,RISE - Health Research Network, Porto, Portugal.,Burn Unit, Department of Plastic and Reconstructive Surgery, S. Joao University Center Hospital, Porto, Portugal
| |
Collapse
|
7
|
Upmanyu K, Haq QMR, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100131. [PMID: 35909621 PMCID: PMC9325880 DOI: 10.1016/j.crmicr.2022.100131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii has notably become a superbug due to its mounting risk of infection and escalating rates of antimicrobial resistance, including colistin, the last-resort antibiotic. Its propensity to form biofilm on biotic and abiotic surfaces has contributed to the majority of nosocomial infections. Bacterial cells in biofilms are resistant to antibiotics and host immune response, and pose challenges in treatment. Therefore current scenario urgently requires the development of novel therapeutic strategies for successful treatment outcomes. This article provides a holistic understanding of sequential events and regulatory mechanisms directing A. baumannii biofilm formation. Understanding the key factors functioning and regulating the biofilm machinery of A. baumannii will provide us insight to develop novel approaches to combat A. baumannii infections. Further, the review article deliberates promising strategies for the prevention of biofilm formation on medically relevant substances and potential therapeutic strategies for the eradication of preformed biofilms which can help tackle biofilm-associated A. baumannii infections. Advances in emerging therapeutic opportunities such as phage therapy, nanoparticle therapy and photodynamic therapy are also discussed to comprehend the current scenario and future outlook for the development of successful treatment against biofilm-associated A. baumannii infections.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| |
Collapse
|
8
|
Silva AMCMDA, Costa Júnior SD, Lima JLC, Farias Filho JLBDE, Cavalcanti IMF, Maciel MAV. Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. AN ACAD BRAS CIENC 2021; 93:e20210245. [PMID: 34550209 DOI: 10.1590/0001-3765202120210245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the phenotypic and molecular patterns of biofilm formation in infection and colonization isolates of Acinetobacter spp. from patients who were admitted in a public hospital of Recife-PE-Brazil in 2018-2019. For the biofilm phenotypic analysis, Acinetobacter spp. isolates were evaluated by the crystal violet staining method; the search of virulence genes (bap, ompA, epsA, csuE and bfmS) was performed by PCR; and the ERIC-PCR was performed for molecular typing. Amongst the 38 Acinetobacter spp. isolates, 20 were isolated from infections and 18 from colonization. The resistance profile pointed that 86.85% (33/38) of the isolates were multidrug-resistant, being three infection isolates, and two colonization isolates resistant to polymyxin B. All the isolates were able to produce biofilm and they had at least one of the investigated virulence genes on their molecular profile, but the bap gene was found in 100% of them. No clones were detected by ERIC-PCR. There was no correlation between biofilm formation and the resistance profile of the bacteria, neither to the molecular profile of the virulence genes. Thus, the ability of Acinetobacter spp. to form biofilm is probably related to the high frequency of virulence genes.
Collapse
Affiliation(s)
- Adriana Maria C M DA Silva
- Federal University of Pernambuco, Medical Science Center, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Sérgio D Costa Júnior
- Federal University of Pernambuco, Medical Science Center, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jailton L C Lima
- Federal University of Pernambuco, Medical Science Center, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - José Luciano B DE Farias Filho
- Federal University of Pernambuco, Medical Science Center, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Isabella M F Cavalcanti
- Federal University of Pernambuco, Laboratory of Immunopathology Keizo Asami (LIKA), Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Maria Amélia V Maciel
- Federal University of Pernambuco, Medical Science Center, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
9
|
Li Z, Ding Z, Liu Y, Jin X, Xie J, Li T, Zeng Z, Wang Z, Liu J. Phenotypic and Genotypic Characteristics of Biofilm Formation in Clinical Isolates of Acinetobacter baumannii. Infect Drug Resist 2021; 14:2613-2624. [PMID: 34262306 PMCID: PMC8274629 DOI: 10.2147/idr.s310081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acinetobacter baumannii is an important pathogen in clinical infections, and biofilm formation is an effective way for A. baumannii to survive under external pressures. In this study, the aims were to examine the antimicrobial resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of A. baumannii. Materials and Methods A total of 104 clinical A. baumannii isolates were collected from a large teaching hospital in Southwest China. The antibiotics susceptibilities were tested, and biofilm-forming ability was evaluated by crystal violet staining by confocal laser scanning microscopy (CLSM). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) of ciprofloxacin, meropenem, and ceftazidime were tested on selected strains by broth microdilution method. Biofilm-associated genes were detected by polymerase chain reaction (PCR), and expression of genes at planktonic stage and biofilm stage were analyzed by real-time reverse transcription PCR (RT-PCR). Results Multidrug-resistant (MDR) isolates accounted for 65.4%, but no strain was resistant to tigecycline and polymyxin B. Moreover, non-MDR strains tended to form stronger biofilms than MDR strains, and a negative correlation between biofilm-forming ability and resistance profiles to each of tested antimicrobials were observed. The MBECs and MBICs of ciprofloxacin, ceftazidime, and meropenem were evidently increased compared with MICs and MBCs among all tested strains. Additionally, the biofilm formation ability of the csuD-positive strains was stronger than that of the csuD-negative strains. The strains in MDR group had higher carrying rate of csuA and csuD genes than non-MDR group, while non-MDR strains possessed more ompA gene than MDR group. Finally, abaI gene was significantly up-regulated after biofilm formation. Conclusion These results revealed valuable data for the negative correlation between antimicrobial resistance and biofilm formation, as well as phenotypic and genotypic characteristics of biofilm formation in A. baumannii.
Collapse
Affiliation(s)
- Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zixuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xinrui Jin
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jingling Xie
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tingting Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhibin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, Liu H, Jiang H, Shang X, Wu X, Nie X. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30434-30457. [PMID: 34161080 DOI: 10.1021/acsami.1c10309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the face of the abundant production of various types of carbapenemases, the antibacterial efficiency of imipenem, seen as "the last line of defense", is weakening. Following, the incidence of carbapenem-resistant Acinetobacter baumannii (CRAB), which can generate antibiotic-resistant biofilms, is increasing. Based on the superior antimicrobial activity of silver nanoparticles against multifarious bacterial strains compared with common antibiotics, we constructed the IPM@AgNPs-PEG-NOTA nanocomposite (silver nanoparticles were coated with SH-PEG-NOTA as well as loaded by imipenem) whose core was a silver nanoparticle to address the current challenge, and IPM@AgNPs-PEG-NOTA was able to function as a novel smart pH-sensitive nanodrug system. Synergistic bactericidal effects of silver nanoparticles and imipenem as well as drug-resistance reversal via protection of the β-ring of carbapenem due to AgNPs-PEG-NOTA were observed; thus, this nanocomposite confers multiple advantages for efficient antibacterial activity. Additionally, IPM@AgNPs-PEG-NOTA not only offers immune regulation and accelerates tissue repair to improve therapeutic efficacy in vivo but also can prevent the interaction of pathogens and hosts. Compared with free imipenem or silver nanoparticles, this platform significantly enhanced antibacterial efficiency while increasing reactive oxygen species (ROS) production and membrane damage, as well as affecting cell wall formation and metabolic pathways. According to the results of crystal violet staining, LIVE/DEAD backlight bacterial viability staining, and real-time quantitative polymerase chain reaction (RT-qPCR), this silver nanocomposite downregulated the levels of ompA expression to prevent formation of biofilms. In summary, this research demonstrated that the IPM@AgNPs-PEG-NOTA nanocomposite is a promising antibacterial agent of security, pH sensitivity, and high efficiency in reversing resistance and synergistically combatting carbapenem-resistant A. baumannii. In the future, various embellishments and selected loads for silver nanoparticles will be the focus of research in the domains of medicine and nanotechnology.
Collapse
Affiliation(s)
- Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xueling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xin Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha 410000, Hunan, China
| |
Collapse
|
11
|
El-Shiekh RA, Hassan M, Hashem RA, Abdel-Sattar E. Bioguided Isolation of Antibiofilm and Antibacterial Pregnane Glycosides from Caralluma quadrangula: Disarming Multidrug-Resistant Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10070811. [PMID: 34356732 PMCID: PMC8300726 DOI: 10.3390/antibiotics10070811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Acinetobacter baumannii (MDRAB) present a serious challenge because of their capability to cause biofilm resistance to commonly used antibiotics producing chronic infections and hindering the process of wound healing. In the current study, we investigated the antibacterial activity of Caralluma quadrangula extracts (MeOH, and its fractions CH2Cl2 and n-butanol) against multidrug-resistant MRSA USA300 and A. baumannii AB5057. In vitro, the MeOH extract and both fractions of C. quadrangula significantly inhibited biofilm formation and disrupted previously established biofilm by MRSA and MDRAB at all the tested concentrations (0.625, 0.313, and 0.156 mg/mL). In vivo, C. quadrangula extracts successfully decreased bacterial loads in MRSA-infected skin lesions in mice. Four pregnane glycosides and one flavone glycoside were isolated from the bioactive n-butanol fraction. The isolated compounds (Rus A–E) were tested for their biofilm inhibition and biofilm detachment activities. The results revealed that Rus C was the most active compound (IC50 = 0.139 mmole), while Rus E was the least active (IC50 = 0.818 mmole). These results support the potential use of C. quadrangula extracts or their isolated compounds for hindering the biofilm attachment and the virulence of MRSA and MDRAB and their application as a topical antimicrobial preparation for MRSA skin infections.
Collapse
Affiliation(s)
- Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt;
- Correspondence: (M.H.); (E.A.-S.); Tel.: +20-(122)-337-6326 (M.H.); +20-(106)-584-7211 (E.A.-S.)
| | - Rasha A. Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt;
- Correspondence: (M.H.); (E.A.-S.); Tel.: +20-(122)-337-6326 (M.H.); +20-(106)-584-7211 (E.A.-S.)
| |
Collapse
|
12
|
Mayer C, Muras A, Parga A, Romero M, Rumbo-Feal S, Poza M, Ramos-Vivas J, Otero A. Quorum Sensing as a Target for Controlling Surface Associated Motility and Biofilm Formation in Acinetobacter baumannii ATCC ® 17978 TM. Front Microbiol 2020; 11:565548. [PMID: 33101239 PMCID: PMC7554515 DOI: 10.3389/fmicb.2020.565548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC® 17978TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC® 17978TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Soraya Rumbo-Feal
- Microbioloxía, Instituto de Investigación Biomédica da Coruña, Centro de Investigacións Científicas Avanzadas da Coruña, Universidade da Coruña, A Coruña, Spain
| | - Margarita Poza
- Microbioloxía, Instituto de Investigación Biomédica da Coruña, Centro de Investigacións Científicas Avanzadas da Coruña, Universidade da Coruña, A Coruña, Spain
| | - José Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla, Santander, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
13
|
In Vitro Anti-Biofilm Activity of Curcumin Nanoparticles in Acinetobacter baumannii: A Culture-Based and Molecular Approach. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.83263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Raorane CJ, Lee JH, Kim YG, Rajasekharan SK, García-Contreras R, Lee J. Antibiofilm and Antivirulence Efficacies of Flavonoids and Curcumin Against Acinetobacter baumannii. Front Microbiol 2019; 10:990. [PMID: 31134028 PMCID: PMC6517519 DOI: 10.3389/fmicb.2019.00990] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/18/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is well adapted to hospital environments, and the persistence of its chronic infections is mainly due to its ability to form biofilms resistant to conventional antibiotics and host immune systems. Hence, the inhibitions of biofilm formation and virulence characteristics provide other means of addressing infections. In this study, the antibiofilm activities of twelve flavonoids were initially investigated. Three most active flavonoids, namely, fisetin, phloretin, and curcumin, dose-dependently inhibited biofilm formation by a reference A. baumannii strain and by several clinical isolates, including four multidrug-resistant isolates. Furthermore, the antibiofilm activity of curcumin (the most active flavonoid) was greater than that of the well-known biofilm inhibitor gallium nitrate. Curcumin inhibited pellicle formation and the surface motility of A. baumannii. Interestingly, curcumin also showed antibiofilm activity against Candida albicans and mixed cultures of C. albicans and A. baumannii. In silico molecular docking of the biofilm response regulator BfmR showed that the binding efficacy of flavonoids with BfmR was correlated with antibiofilm efficacy. In addition, curcumin treatment diminished A. baumannii virulence in an in vivo Caenorhabditis elegans model without cytotoxicity. The study shows curcumin and other flavonoids have potential for controlling biofilm formation by and the virulence of A. baumannii.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | | | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
15
|
Detection of Genes Involved in Biofilm Formation in MDR and XDR Acinetobacter baumannii Isolated from Human Clinical Specimens in Isfahan, Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.85766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11:2277-2299. [PMID: 30532562 PMCID: PMC6245380 DOI: 10.2147/idr.s169894] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| | - Hafizah Y Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
17
|
Bahador A, Farshadzadeh Z, Raoofian R, Mokhtaran M, Pourakbari B, Pourhajibagher M, Hashemi FB. Association of virulence gene expression with colistin-resistance in Acinetobacter baumannii: analysis of genotype, antimicrobial susceptibility, and biofilm formation. Ann Clin Microbiol Antimicrob 2018; 17:24. [PMID: 29859115 PMCID: PMC5984448 DOI: 10.1186/s12941-018-0277-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/19/2018] [Indexed: 12/01/2022] Open
Abstract
Background Acinetobacter baumannii causes difficult-to-treat nosocomial infections, which often lead to morbidity due to the development of antimicrobial drug resistance and expression of virulence genes. Data regarding the association of resistance to colistin, a last treatment option, and the virulence gene expression of A. baumannii is scarce. Methods We evaluated the MLVA genotype, antimicrobial resistance, and biofilm formation of 100 A. baumannii isolates from burn patients, and further compared the in vitro and in vivo expression of four virulence genes among five colistin-resistant A. baumannii (Cst-R-AB) isolates. Five Cst-R-AB isolates were tested; one from the present study, and four isolated previously. Results Our results showed that reduced expression of recA, along with increased in vivo expression of lpsB, dnaK, and blsA; are associated with colistin resistance among Cst-R-AB isolates. Differences in virulence gene expressions among Cst-R-AB isolates, may in part explain common discrepant in vitro vs. in vivo susceptibility data during treatment of infections caused by Cst-R-AB. Conclusions Our findings highlight the intricate relationship between colistin-resistance and virulence among A. baumannii isolates, and underscore the importance of examining the interactions between virulence and antimicrobial resistance toward efforts to control the spread of multidrug-resistant A. baumannii (MDR-AB) isolates, and also to reduce disease severity in burn patients with MDR-AB infection. Electronic supplementary material The online version of this article (10.1186/s12941-018-0277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.,Innovative Research Center, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Masoumeh Mokhtaran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Babak Pourakbari
- Pediatrics Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.
| |
Collapse
|
18
|
Bardbari AM, Arabestani MR, Karami M, Keramat F, Alikhani MY, Bagheri KP. Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb Pathog 2017; 108:122-128. [PMID: 28457900 DOI: 10.1016/j.micpath.2017.04.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Acinetobacter baumannii potential to form biofilm and exhibit multiple antibiotic resistances may be responsible in its survival in hospital environment. Accordingly, our study was aimed to determine the correlation between ability of biofilm formation and the frequency of biofilm related genes with antibiotic resistance phenotypes, and also the categorization of their patterns in clinical and environmental isolates. A total of 75 clinical and 32 environmental strains of the A. baumannii were collected and identified via API 20NE. Antibiotic susceptibility was evaluated by disk diffusion and microdilution broth methods. Biofilm formation assay was performed by microtiter plate method. OXA types and biofilm related genes including BlaOXA-51, BlaOXA-23, BlaOXA-24, BlaOXA-58, bap, blaPER-1, and ompA were amplified by PCR. The rate of MDR A. baumannii in clinical isolates (100%) was higher than environmental (81.2%) isolates (p < 0.05). Among 10 antibiotypes, the predominant resistance pattern in clinical and environmental isolates was antibiotypes I (85.3 and 78.1%, respectively). Analysis of the frequency of blaOXA-23 gene revealed a statistically significant difference between clinical (85.3%) and environmental (68.7%) isolates (p < 0.05). The prevalence of strong biofilm producers in clinical and environmental isolates were 31.2%-58.7%, respectively. In the clinical and environmental isolates, the frequencies of ompA, blaRER-1 and bap genes were 100%, 53.3%, 82.7% and 100%, 37.5%, 84.4% respectively. Statistical analysis revealed a significant correlation between the frequency of MDR isolates and biofilm formation ability (p = 0.008). The high frequency of antibiotype I would be indicated that an outbreak has been happened earlier and an endemic strain is currently being settled in the hospital environment. It would be suggested that if there was no difference in the frequency of pattern I and biofilm formation ability between clinical and environmental isolates, it is a critical point representing the higher risk of bacterial transmission from environment to the patients. The resulting data would be assisted in the improvement of disinfection strategies to better control of nosocomial infections. One dominant resistance pattern has shown among clinical and environmental isolates. The frequency of blaOXA-23 had significant difference between clinical and environmental isolates. The presence of bap gene in the A. baumannii isolates was associated with biofilm formation. There was a significant correlation between multiple drug resistance and biofilm formation. The clinical isolates had a higher ability to form strong biofilms compared to the environmental samples.
Collapse
Affiliation(s)
- Ali Mohammadi Bardbari
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fariba Keramat
- Department of Infectious Diseases, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|