1
|
Cheng J, Zhu J, Chen R, Zhang M, Han B, Zhu M, He Y, Yi H, Tang S. Genetic polymorphisms and anti-tuberculosis drug-induced liver injury: an umbrella review of the evidence. Int J Clin Pharm 2025; 47:624-639. [PMID: 39954223 DOI: 10.1007/s11096-025-01880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Anti-tuberculosis drug-induced liver injury (ATLI) is a significant adverse drug reaction with genetic susceptibility implications. AIM This study aimed to integrate findings from systematic reviews and meta-analyses on genetic polymorphisms associated with ATLI risk, enhance evidence synthesis, and identify susceptibility gene polymorphisms linked to ATLI occurrence. METHOD The protocol was registered in PROSPERO (CRD42024517311). Systematic searches of PubMed, EMBASE, Web of Science, and Cochrane Library databases were conducted to identify eligible studies from inception to February 21, 2024. Two authors independently reviewed eligibility, extracted data, and assessed quality. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate associations between genetic polymorphisms and ATLI susceptibility. RESULTS A total of 25 meta-analyses were included, including 57 single nucleotide polymorphisms (SNPs) in 15 candidate genes. Significant associations were found for the glutathione S-transferase M1 (GSTM1) null genotype (OR = 1.43, 95% CI: 1.18-1.73, P < 0.001) and N-acetyltransferase 2 (NAT2) polymorphisms, including rs1799929 (dominant model, OR = 1.35, 95% CI: 1.12-1.63, P < 0.001), rs1799930 (dominant model, OR = 1.43, 95% CI: 1.23-1.66, P < 0.001), rs1799931 (dominant model, OR = 1.22, 95% CI: 1.02-1.46, P = 0.03), and the slow acetylator (SA) phenotype (OR = 2.91, 95% CI: 2.43-3.49, P < 0.001). No significant association was found between the CYP2E1 RsaI/PstI polymorphism (C1/C1 genotype) and ATLI risk (dominant model, OR = 0.79, 95% CI: 0.61-1.02, P = 0.08). CONCLUSION This umbrella review confirms that the GSTM1 null genotype, NAT2 polymorphisms (rs1799929, rs1799930, rs1799931), and the slow acetylator phenotype are associated with increased ATLI risk. These findings provide a foundation for further research on genotype-guided approaches to mitigating ATLI.
Collapse
Affiliation(s)
- Jingru Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jia Zhu
- Department of Prevention and Healthcare, Changzhou Xinbei District Sanjing People's Hospital, Changzhou, China
| | - Ruina Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Bing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yiwen He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
2
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Yi JR, Li ZN, Xie HQ, Chen BM, Jiang L, Qian LX, Xu HG, Li SR, Lei ZZ, Chen JD, Zhou J. [Effects and mechanism of human umbilical vein endothelial cells-derived exosomes on wound healing in diabetic rabbits]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:1023-1033. [PMID: 36418259 DOI: 10.3760/cma.j.cn501225-20220622-00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: The investigate the effects and mechanism of exosomes derived from human umbilical vein endothelial cells (HUVECs) on wound healing in diabetes rabbits. Methods: The experimental research methods were used. The primary vascular endothelial cells (VECs) and human skin fibroblasts (HSFs) were extracted from skin tissue around ulcer by surgical excision of two patients with diabetic ulcer (the male aged 49 years and the female aged 58 years) admitted to Xiangya Third Hospital of Central South University in June 2019. The cells were successfully identified through morphological observation and flow cytometry. The HUVEC exosomes were extracted by ultracentrifugation and identified successfully by morphological observation, particle size detection, and Western blotting detection. Twenty female 3-month-old New Zealand rabbits were taken to create one type 2 diabetic full-thickness skin defect wound respectively on both sides of the back. The wounds were divided into exosomes group and phosphate buffer solution (PBS) group and treated accordingly, with 20 wounds in each group, the time of complete tissue coverage of wound was recorded. On PID 14, hematoxylin-eosin staining or Masson staining was performed to observe angiogenesis or collagen fiber hyperplasia (n=20). The VECs and HSFs were co-cultured with HUVEC exosomes for 24 h to observe the uptake of HUVEC exosomes by the two kinds of cells. The VECs and HSFs were divided to exosome group treated with HUVEC exosomes and PBS group treated with PBS to detect the cell proliferation on 4 d of culture with cell count kit 8, to detect and calculate the cell migration rate at 24 and 48 h after scratch by scratch test, to detect the cell migration number at 24 h of culture with Transwell test, and to detect the mRNA expressions of nuclear factor-erythroid 2-related factor 2 (NRF2) and transcription activating factor 3 (ATF3) by real time fluorescence quantitative reverse transcription polymerase chain reaction. Besides, the number of vascular branches and vascular length were observed in the tube forming experiment after 12 h of culture of VECs (n=3). The VECs and HSFs were taken and divided into PBS group and exosome group treated as before, and NRF2 interference group, ATF3 interference group, and no-load interference group with corresponding gene interference. The proliferation and migration of the two kinds of cells, and angiogenesis of VECs were detected as before (n=3). Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, independent sample t test, and least significant difference test. Results: The time of complete tissue coverage of wound in exosome group was (17.9±1.9) d, which was significantly shorter than (25.2±2.3) d in PBS group (t=4.54, P<0.05). On PID14, the vascular density of wound in PBS group was significantly lower than that in exosome group (t=10.12, P<0.01), and the collagen fiber hyperplasia was less than that in exosome group. After 24 h of culture, HUVEC exosomes were successfully absorbed by VECs and HSFs. The proliferative activity of HSFs and VECs in exosome group was significantly higher than that in PBS group after 4 d of culture (with t values of 54.73 and 7.05, respectively, P<0.01). At 24 and 48 h after scratch, the migration rates of HSFs (with t values of 3.42 and 11.87, respectively, P<0.05 or P<0.01) and VECs (with t values of 21.42 and 5.49, respectively, P<0.05 or P<0.01) in exosome group were significantly higher than those in PBS group. After 24 h of culture, the migration numbers of VECs and HSFs in exosome group were significantly higher than those in PBS group (with t values of 12.31 and 16.78, respectively, P<0.01). After 12 h of culture, the mRNA expressions of NRF2 in HSFs and VECs in exosome group were significantly higher than those in PBS group (with t values of 7.52 and 5.78, respectively, P<0.05 or P<0.01), and the mRNA expressions of ATF3 were significantly lower than those in PBS group (with t values of 13.44 and 8.99, respectively, P<0.01). After 12 h of culture, the number of vascular branches of VECs in exosome group was significantly more than that in PBS group (t=17.60, P<0.01), and the vascular length was significantly longer than that in PBS group (t=77.30, P<0.01). After 4 d of culture, the proliferation activity of HSFs and VECs in NRF2 interference group was significantly lower than that in PBS group and exosome group (P<0.05 or P<0.01); the proliferation activity of HSFs and VECs in ATF3 interference group was significantly higher than that in PBS group (P<0.05 or P<0.01) and significantly lower than that in exosome group (P<0.05 or P<0.01). At 24 and 48 h after scratch, the migration rates of HSFs and VECs in ATF3 interference group were significantly higher than those in PBS group (P<0.05 or P<0.01) and significantly lower than those in exosome group (P<0.05 or P<0.01). At 24 and 48 h after scratch, the migration rates of HSFs and VECs in NRF2 interference group were significantly lower than those in PBS group and exosome group (P<0.05 or P<0.01). After 24 h of culture, the migration numbers of VECs and HSFs in ATF3 interference group were significantly more than those in PBS group (P<0.05) and significantly less than those in exosome group (P<0.05 or P<0.01); the migration numbers of VECs and HSFs in NRF2 interference group were significantly less than those in PBS group and exosome group (P<0.01). After 12 h of culture, the vascular length and number of branches of VECs in NRF2 interference group were significantly decreased compared with those in PBS group and exosome group (P<0.01); the vascular length and number of branches of VECs in ATF3 interference group were significantly increased compared with those in PBS group (P<0.01) and were significantly decreased compared with those in exosome group (P<0.01). Conclusions: HUVEC exosomes can promote the wound healing of diabetic rabbits by promoting the proliferation and migration of VECs and HSFs, and NRF2 and ATF3 are obviously affected by exosomes in this process, which are the possible targets of exosome action.
Collapse
Affiliation(s)
- J R Yi
- Department of Breast Cancer Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Z N Li
- Department of Burns and Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha 410006, China
| | - H Q Xie
- Department of Rehabilitation Medicine, Xiangya Third Hospital, Central South University, Changsha 410006, China
| | - B M Chen
- Department of Burns and Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha 410006, China
| | - L Jiang
- Xiangya School of Medicine, Central South University, Changsha 410006, China
| | - L X Qian
- Department of Burns and Plastic Surgery, Xiangya Second Hospital, Central South University, Changsha 410004, China
| | - H G Xu
- Department of Neurosurgery, Changde First People's Hospital, Xiangya School of Medicine, Central South University, Changde 415003, China
| | - S R Li
- Department of Trauma Repair and Dermatologic Surgery, Taihe Hospital, Hubei Medical College, Shiyan 442000, China
| | - Z Z Lei
- Department of Burn Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410005, China
| | - J D Chen
- Department of Burns and Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha 410006, China
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha 410006, China
| |
Collapse
|
4
|
Mohamed FA, Thangavelu G, Rhee SY, Sage PT, O’Connor RS, Rathmell JC, Blazar BR. Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Front Immunol 2021; 12:757836. [PMID: 34712243 PMCID: PMC8546182 DOI: 10.3389/fimmu.2021.757836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Roddy S. O’Connor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
5
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
7
|
Zhang M, Huang LL, Teng CH, Wu FF, Ge LY, Shi YJ, He ZL, Liu L, Jiang CJ, Hou RN, Xiao J, Zhang HY, Chen DQ. Isoliquiritigenin Provides Protection and Attenuates Oxidative Stress-Induced Injuries via the Nrf2-ARE Signaling Pathway After Traumatic Brain Injury. Neurochem Res 2018; 43:2435-2445. [PMID: 30446968 DOI: 10.1007/s11064-018-2671-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health and medical problem worldwide. Oxidative stress plays a vital role in the pathogenesis of TBI. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important factor in the cellular defense against oxidative stress, is activated following TBI. In this study, the protective effects of Isoliquiritigenin (ILG), a promising antioxidant stress drug, was evaluated as a protective agent against TBI. In a mouse model of controlled cortical impact Injury, we found that the ILG administration reduced the Garcia neuroscore, injury histopathology, brain water content, cerebral vascular permeability, the expression of cleaved caspase3, aquaporin-4, glial fibrillary acidic protein and the increased the expression of neurofilament light chain protein, indicating the protective effects against TBI in vivo. ILG treatment after TBI also restored the oxidative stress and promoted the Nrf2 protein transfer from the cytoplasm to the nucleus. We then used Nrf2-/- mice to test the protective effect of Nrf2 during ILG treatment of TBI. Our findings indicated that Nrf2-/- mice had greater brain injury and oxidative stress than wild-type (WT) mice and ILG was less effective at inhibiting oxidative stress and repairing the brain injury than in the WT mice. In vitro studies in SY5Y cells under oxygen glucose deprivation/re-oxygenation stimulation yielded results that were consistent with those obtained in vivo showing that ILG promotes Nrf2 protein transfer from the cytoplasm to the nucleus. Taken together, our findings demonstrate that Nrf2 is an important protective factor against TBI-induced injuries, which indicates that the protective effects of ILG are mediated by inhibiting oxidative stress after TBI via a mechanism that involves the promotion of Nrf2 protein transfer from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Li Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen-Huai Teng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Yun Ge
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Juan Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng-Le He
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Liu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng-Jie Jiang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruo-Nan Hou
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|