1
|
Joung H, Yang SR, Lee SB, Liu H. Proteasome inhibitor MG132 modulates signal transduction pathways in ELT3 uterine leiomyoma cells. Exp Ther Med 2025; 29:71. [PMID: 39991715 PMCID: PMC11843184 DOI: 10.3892/etm.2025.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
Uterine leiomyomas, or fibroids, are common benign tumors that affect a significant percentage of women, with treatment options ranging from medication to surgery. Carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), a proteasome inhibitor, has exhibited potential in treating various cancers by disrupting key cellular processes such as apoptosis and cell cycle regulation. The present study aimed to evaluate the effects of MG132 on the viability, proliferation, apoptosis, and the production of reactive oxygen species (ROS) in Eker leiomyoma tumor-3 (ELT3) uterine leiomyoma cells and to elucidate the underlying molecular mechanisms involved. Cell viability was evaluated using an MTT assay, while cytotoxicity was assessed using a lactate dehydrogenase (LDH) release assay. Colony formation assays assessed the long-term effects of MG132. Apoptosis and cell cycle distribution were analyzed using flow cytometry with Annexin V staining, and ROS production was also measured by flow cytometry. Western blot analysis was performed to examine key proteins related to the cell cycle and apoptosis. The findings of the present study revealed that MG132 significantly reduced the cell viability and impaired colony formation in ELT3 cells, as evidenced by decreased cell viability and increased LDH activity. MG132 treatment significantly increased apoptosis and induced cell cycle arrest at the G2/M phase. Additionally, MG132 increased the levels of ROS, which contributed to ROS-mediated apoptosis. Western blot analysis revealed that MG132 modulated key proteins involved in cell proliferation and apoptosis, including p21, p27, ERK, and caspase-3. Furthermore, MG132 treatment induced autophagy, as indicated by the increased conversion of LC3 I to LC3 II. Overall, MG132 was revealed to exert potent cytotoxic effects on ELT3 uterine leiomyoma cells by inducing ROS-mediated apoptosis and cell cycle arrest, and triggering autophagy. These findings suggest that MG132 provides a proof of concept for targeting the proteasome in uterine leiomyomas.
Collapse
Affiliation(s)
- Hosouk Joung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - So-Ra Yang
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Su Bin Lee
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Hyunju Liu
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
- Department of Obstetrics and Gynecology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Zhang Z, Ding Y. MG132-mediated Suppression of the Ubiquitin-proteasome Pathway Enhances the Sensitivity of Endometrial Cancer Cells to Cisplatin. Anticancer Agents Med Chem 2025; 25:281-291. [PMID: 39354755 DOI: 10.2174/0118715206343550240919055701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Tumor cell resistance to cisplatin is a common challenge in endometrial cancer chemotherapy, stemming from various mechanisms. Targeted therapies using proteasome inhibitors, such as MG132, have been investigated to enhance cisplatin sensitivity, potentially offering a novel treatment approach. OBJECTIVE The aim of this study was to investigate the effects of MG132 on cisplatin sensitivity in the human endometrial cancer (EC) cell line RL95-2, focusing on cell proliferation, apoptosis, and cell signaling. METHODS Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration. RESULTS MG132 exposure significantly reduced cell viability in a dose-dependent manner. It augmented cisplatin- induced proliferation inhibition and enhanced apoptosis, correlating with caspase-3 activation and ROS upregulation. Molecular analysis revealed a profound inhibition of the ubiquitin-proteasome system. MG132 also significantly increased the expression of cisplatin-induced pro-inflammatory cytokines, suggesting a transition from chronic to acute inflammation. CONCLUSION MG132 enhances the therapeutic efficacy of cisplatin in human EC cells by suppressing the ubiquitin- proteasome pathway, reducing cell viability, enhancing apoptosis, and shifting the inflammatory response. These findings highlighted the potential of MG132 as an adjuvant in endometrial cancer chemotherapy. Further research is needed to explore detailed mechanisms and clinical applications of this combination therapy.
Collapse
Affiliation(s)
- Zhanhu Zhang
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Yiqian Ding
- Department of Gynaecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Zheng Z, Wang X, Chen D. Proteasome inhibitor MG132 enhances the sensitivity of human OSCC cells to cisplatin via a ROS/DNA damage/p53 axis. Exp Ther Med 2023; 25:224. [PMID: 37123203 PMCID: PMC10133788 DOI: 10.3892/etm.2023.11924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cis-diamine-dichloroplatinum II (cisplatin, CDDP) is a key chemotherapeutic regimen in the treatment of oral squamous cell carcinoma (OSCC). However, the therapeutic efficacy of cisplatin in OSCC may be hampered by chemoresistance. Therefore, the development of novel combination therapy strategies to overcome the limitations of CDDP is of great importance. The proteasome inhibitor MG132 exhibits anti-cancer properties against various types of cancer. However, our knowledge of its anti-cancer effects in combination with CDDP in OSCC cells remains limited. In the current study, the synergetic effects of MG132 and CDDP were evaluated in the human CAL27 OSCC cell line. CAL27 cells were treated with CDDP alone or in combination with MG132. The results showed that MG132 significantly reduced cell viability in a dose-dependent manner. Additionally, cell viability was significantly reduced in CAL27 cells treated with 0.2 µM MG132 and 2 µM CDDP compared with cells treated with MG132 or CDDP alone. In addition, MG132 significantly enhanced the CDDP-induced generation of intracellular reactive oxygen species and DNA damage in OSCC cells. Furthermore, treatment with CDDP or MG132 alone notably inhibited colony formation and proliferation of OSCC cells. However, co-treatment of OSCC cells with MG132 and CDDP further hampered colony formation and proliferation compared with cells treated with either MG132 or CDDP alone. Finally, in cells co-treated with MG132 and CDDP, the expression of p53 was markedly elevated and the p53-mediated apoptotic pathway was further activated compared with cells treated with MG132 or CDDP alone, as shown by the enhanced cell apoptosis, Bax upregulation, and Bcl-2 downregulation. Overall, the results of the current study support the synergistic anti-cancer effects of a combination of MG132 and CDDP against OSCC, thus suggesting that the combination of MG132 and CDDP may be a promising therapeutic strategy for the management of OSCC.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiang Wang
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Correspondence to: Dr Donglei Chen or Dr Xiang Wang, Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, 6 Haierxiang Road, Nantong, Jiangsu 226000, P.R. China
| | - Donglei Chen
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Correspondence to: Dr Donglei Chen or Dr Xiang Wang, Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, 6 Haierxiang Road, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
4
|
Das D, Chakrabarty B, Srinivasan R, Roy A. Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures. J Chem Inf Model 2023; 63:1882-1893. [PMID: 36971750 DOI: 10.1021/acs.jcim.2c01301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced gene expression profiling provides a lot of useful information covering various aspects of drug discovery and development. Most importantly, this knowledge can be used to discover drugs' mechanisms of action. Recently, deep learning-based drug design methods are in the spotlight due to their ability to explore huge chemical space and design property-optimized target-specific drug molecules. Recent advances in accessibility of open-source drug-induced transcriptomic data along with the ability of deep learning algorithms to understand hidden patterns have opened opportunities for designing drug molecules based on desired gene expression signatures. In this study, we propose a deep learning model, Gex2SGen (Gene Expression 2 SMILES Generation), to generate novel drug-like molecules based on desired gene expression profiles. The model accepts desired gene expression profiles in a cell-specific manner as input and designs drug-like molecules which can elicit the required transcriptomic profile. The model was first tested against individual gene-knocked-out transcriptomic profiles, where the newly designed molecules showed high similarity with known inhibitors of the knocked-out target genes. The model was next applied on a triple negative breast cancer signature profile, where it could generate novel molecules, highly similar to known anti-breast cancer drugs. Overall, this work provides a generalized method, where the method first learned the molecular signature of a given cell due to a specific condition, and designs new small molecules with drug-like properties.
Collapse
|
5
|
Alwahsh M, Farhat J, Talhouni S, Hamadneh L, Hergenröder R. Bortezomib advanced mechanisms of action in multiple myeloma, solid and liquid tumors along with its novel therapeutic applications. EXCLI JOURNAL 2023; 22:146-168. [PMID: 36998701 PMCID: PMC10043448 DOI: 10.17179/excli2022-5653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/12/2023] [Indexed: 04/01/2023]
Abstract
Bortezomib (BTZ) is a first-in-class reversible and selective proteasome inhibitor. It inhibits the ubiquitin proteasome pathway that leads to the degradation of many intracellular proteins. Initially, BTZ was FDA approved for the treatment of refractory or relapsed multiple myeloma (MM) in 2003. Later, its usage was approved for patients with previously untreated MM. In 2006, BTZ was approved for the treatment of relapsed or refractory Mantle Cell Lymphoma (MCL) and, in 2014, for previously untreated MCL. BTZ has been extensively studied either alone or in combination with other drugs for the treatment of different liquid tumors especially in MM. However, limited data evaluated the efficacy and safety of using BTZ in patients with solid tumors. In this review, we will discuss the advanced and novel mechanisms of action of BTZ documented in MM, solid tumors and liquid tumors. Moreover, we will shed the light on the newly discovered pharmacological effects of BTZ in other prevalent diseases.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Institute of Pathology and Medical Research Center (ZMF), University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
- *To whom correspondence should be addressed: Mohammad Alwahsh, Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan, E-mail:
| | - Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, PO Box 127788, United Arab Emirates
| | - Shahd Talhouni
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| |
Collapse
|
6
|
Esparza-López J, Longoria O, De La Cruz-Escobar EN, Garibay-Díaz JC, León-Rodríguez E, De Jesús Ibarra-Sánchez M. Paclitaxel resistance is mediated by NF-κB on mesenchymal primary breast cancer cells. Oncol Lett 2022; 23:50. [PMID: 34992683 PMCID: PMC8721864 DOI: 10.3892/ol.2021.13168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel has been used widely to treat breast cancer and other types of cancer. However, resistance is a major cause of failure for treatment and results in cancer progression. The present study investigated the association between paclitaxel resistance and the mesenchymal phenotype, using a model of primary breast cancer cells and employing four different cultures, two with an epithelial phenotype (MBCDF and MBCD17) and two with a mesenchymal phenotype (MBCDF-D5 and MBCD3). Epithelial-mesenchymal markers were evaluated by western blotting; MBCDF and MBCD17 cells expressed E-cadherin, SNAIL, Slug, and Twist, low levels of N-cadherin, but not vimentin. MBCDF-D5 and MBCD3 cells expressed N-cadherin, vimentin, and higher levels of SNAIL, and low levels of E-cadherin, Slug, and Twist. Cell viability was evaluated using a crystal violet assay after paclitaxel treatment; primary breast cancer cells with mesenchymal phenotype were resistant to paclitaxel compared with the epithelial primary breast cancer cells. Furthermore, using western blotting, it was revealed that mesenchymal cells had elevated levels of nuclear factor-κΒ (NF-κB) p65 and IκB kinase (IKK). Additionally, it was demonstrated that paclitaxel-induced degradation of the inhibitor of NF-κB, activation of NF-κB in a dose-dependent manner, and Bcl-2 and Bcl-xL upregulation. Finally, employing western blotting and crystal violet assays, the effects of the proteasome inhibitor ALLN were assessed. ALLN inhibited paclitaxel-induced NF-κB activation and restored the sensitivity to paclitaxel. Together, these data suggest that targeting the NF-κB/IKK axis might be a promising strategy to overcome paclitaxel resistance.
Collapse
Affiliation(s)
- José Esparza-López
- Biochemistry Unit, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico.,Research Support Network, National Autonomous University of Mexico-Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | - Ossian Longoria
- Hematology and Oncology Department, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | | | - Julio Cesar Garibay-Díaz
- Hematology and Oncology Department, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | - Eucario León-Rodríguez
- Hematology and Oncology Department, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | | |
Collapse
|
7
|
Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S. Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells. Mol Biol Rep 2021; 48:5121-5133. [PMID: 34169395 DOI: 10.1007/s11033-021-06509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
Collapse
Affiliation(s)
- Sivasangkary Gandhi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Lee HK, Park SH, Nam MJ. Proteasome inhibitor MG132 induces apoptosis in human osteosarcoma U2OS cells. Hum Exp Toxicol 2021; 40:1985-1997. [PMID: 34002651 DOI: 10.1177/09603271211017972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MG132 is a potent, reversible, and cell-permeable 20S proteasome inhibitor and it is derived from a Chinese medicinal plant. The purpose of this study is to investigate the anticancer effects of MG132 against human osteosarcoma U2OS cells. We first performed MTT and colony formation assays to investigate the anti-proliferative effects of MG132. The results demonstrated that MG132 suppressed the proliferation of U2OS cells. Furthermore, we found that treatment with MG132 increased apoptosis and induced DNA damage in U2OS cells. Additionally, zymography, wound healing, and invasion assays showed that MG132 suppressed the enzymatic activity of matrix metalloproteinases, cell migration, and invasion, respectively of U2OS cells. Furthermore, western blotting assay was performed to investigate the apoptotic signaling pathways in MG132-treated U2OS cells. Our results showed that MG132 downregulated the expression of antiapoptotic proteins, including CDK2, CDK4, Bcl-xL, and Bcl-2, whereas it upregulated the expression of proapoptotic proteins, including p21, p27, p53, p-p53 (ser15, ser20, and ser46), cleaved forms of caspase-3, caspase-7, caspase-9, and PARP, and FOXO3 in U2OS cells. These results demonstrated that MG132 activated apoptotic signaling pathways in U2OS cells. Interestingly, MG132 downregulated the phosphorylation of Akt and Erk. Taken together, our results suggest that MG132 has anticancer effects in U2OS cells. Therefore, MG132 may be a potential therapeutic agent for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Han Ki Lee
- Department of Biological Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Baloni P, Dinalankara W, Earls JC, Knijnenburg TA, Geman D, Marchionni L, Price ND. Identifying Personalized Metabolic Signatures in Breast Cancer. Metabolites 2020; 11:20. [PMID: 33396819 PMCID: PMC7823382 DOI: 10.3390/metabo11010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023] Open
Abstract
Cancer cells are adept at reprogramming energy metabolism, and the precise manifestation of this metabolic reprogramming exhibits heterogeneity across individuals (and from cell to cell). In this study, we analyzed the metabolic differences between interpersonal heterogeneous cancer phenotypes. We used divergence analysis on gene expression data of 1156 breast normal and tumor samples from The Cancer Genome Atlas (TCGA) and integrated this information with a genome-scale reconstruction of human metabolism to generate personalized, context-specific metabolic networks. Using this approach, we classified the samples into four distinct groups based on their metabolic profiles. Enrichment analysis of the subsystems indicated that amino acid metabolism, fatty acid oxidation, citric acid cycle, androgen and estrogen metabolism, and reactive oxygen species (ROS) detoxification distinguished these four groups. Additionally, we developed a workflow to identify potential drugs that can selectively target genes associated with the reactions of interest. MG-132 (a proteasome inhibitor) and OSU-03012 (a celecoxib derivative) were the top-ranking drugs identified from our analysis and known to have anti-tumor activity. Our approach has the potential to provide mechanistic insights into cancer-specific metabolic dependencies, ultimately enabling the identification of potential drug targets for each patient independently, contributing to a rational personalized medicine approach.
Collapse
Affiliation(s)
- Priyanka Baloni
- Institute for Systems Biology, Seattle, WA 98109, USA; (P.B.); (J.C.E.); (T.A.K.)
| | - Wikum Dinalankara
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - John C. Earls
- Institute for Systems Biology, Seattle, WA 98109, USA; (P.B.); (J.C.E.); (T.A.K.)
| | - Theo A. Knijnenburg
- Institute for Systems Biology, Seattle, WA 98109, USA; (P.B.); (J.C.E.); (T.A.K.)
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Luigi Marchionni
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA 98109, USA; (P.B.); (J.C.E.); (T.A.K.)
| |
Collapse
|
10
|
Kim YM, Kim HJ. Proteasome Inhibitor MG132 is Toxic and Inhibits the Proliferation of Rat Neural Stem Cells but Increases BDNF Expression to Protect Neurons. Biomolecules 2020; 10:biom10111507. [PMID: 33147870 PMCID: PMC7692322 DOI: 10.3390/biom10111507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of protein expression is essential for maintaining normal cell function. Proteasomes play important roles in protein degradation and dysregulation of proteasomes is implicated in neurodegenerative disorders. In this study, using a proteasome inhibitor MG132, we showed that proteasome inhibition reduces neural stem cell (NSC) proliferation and is toxic to NSCs. Interestingly, MG132 treatment increased the percentage of neurons in both proliferation and differentiation culture conditions of NSCs. Proteasome inhibition reduced B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio. In addition, MG132 treatment induced cAMP response element-binding protein phosphorylation and increased the expression of brain-derived neurotrophic factor transcripts and proteins. These data suggest that proteasome function is important for NSC survival and differentiation. Moreover, although MG132 is toxic to NSCs, it may increase neurogenesis. Therefore, by modifying MG132 chemical structure and developing none toxic proteasome inhibitors, neurogenic chemicals can be developed to control NSC cell fate.
Collapse
Affiliation(s)
| | - Hyun-Jung Kim
- Correspondence: ; Tel.: +82-2-820-5619; Fax: +82-2-816-7338
| |
Collapse
|
11
|
Zhou X, Li R, Chen R, Liu J. Altered Mitochondrial Dynamics, Biogenesis, and Functions in the Paclitaxel-Resistant Lung Adenocarcinoma Cell Line A549/Taxol. Med Sci Monit 2020; 26:e918216. [PMID: 32129321 PMCID: PMC7071736 DOI: 10.12659/msm.918216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemoresistance is a primary hindrance for current cancer treatments. The influence of abnormal mitochondria in chemotherapy resistance is not well known. To explore the correlation between mitochondria and acquired chemoresistance, this work studied alterations in mitochondrial dynamics, biogenesis, and functions for paclitaxel-resistant cancer cell line A549/Taxol and its parental line A549. MATERIAL AND METHODS Mitochondrial morphology was observed by transmission electron microscopy and confocal microscopy. We measured the mitochondrial mass and mitochondrial membrane potential using fluorescent dyes. The glucose metabolic profile and ATP (adenosine triphosphate) content were determined by bioluminescent cell assays. Seahorse bio-energy analyzer XF24 was used to detect the mitochondrial respiratory function. The expressions of mitochondrial dynamics and biogenesis related genes were quantified using real-time polymerase chain reaction. RESULTS We observed fusion morphology of the mitochondrial network in A549/Taxol cells, with upregulation of fusion genes (Mfn1 and Mfn2) and downregulation of fission gene Fis1. In A549/Taxol cells, mitochondrial mass showed a significant decrease, while the mitochondrial biogenesis pathway was strongly activated. Despite the decreased mitochondrial membrane potential, the capability for mitochondrial respiration was not impaired in A549/Taxol cells. CONCLUSIONS Our study revealed a series changes of mitochondrial characteristics in paclitaxel-resistant cells. Mfn1 and Mfn2 and PGC-1alpha increased, while Fis1 expression and mitochondrial oxidative phosphorylation decreased in A549/Taxol cell lines. These changes to mitochondrial fusion, fission, and biological function contributed to the occurrence of paclitaxel resistance in tumor cells which induced paclitaxel resistance.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Rui Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
12
|
Jia M, Zheng D, Wang X, Zhang Y, Chen S, Cai X, Mo L, Hu Z, Li H, Zhou Z, Li J. Cancer Cell enters reversible quiescence through Intracellular Acidification to resist Paclitaxel Cytotoxicity. Int J Med Sci 2020; 17:1652-1664. [PMID: 32669967 PMCID: PMC7359388 DOI: 10.7150/ijms.46034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cells can enter quiescent or dormant state to resist anticancer agents while maintaining the potential of reactivation. However, the molecular mechanism underlying quiescence entry and reactivation remains largely unknown. In this paper, cancer cells eventually entered a reversible quiescent state to resist long-term paclitaxel (PTX) stress. The quiescent cells were characterized with Na+/H+ exchanger 1 (NHE1) downregulation and showed acidic intracellular pH (pHi). Accordingly, decreasing pHi by NHE1 inhibitor could induce cell enter quiescence. Further, acidic pHi could activate the ubiquitin-proteasome system and inhibiting proteasome activity by MG132 prevented cells entering quiescence. In addition, we show that after partial release, the key G1-S transcription factor E2F1 protein level was not recovered, while MCM7 protein returned to normal level in the reactivated cells. More importantly, MCM7 knockdown inhibited G1/S genes transcription and inhibited the reactivated proliferation. Taken together, this study demonstrates a regulatory function of intracellular acidification and subsequent protein ubiquitination on quiescence entry, and reveals a supportive effect of MCM7 on the quiescence-reactivated proliferation.
Collapse
Affiliation(s)
- Min Jia
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuyun Wang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjun Zhang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Sansan Chen
- Department of Urology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiangsheng Cai
- Clinical Laboratory, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxin Zhou
- Department of Vascular Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Yang Z, Li D, Zhao X, Wang L, Dai L. Retracted:
Studies of proteasome inhibition and antitumor activity by novel amino acid‐polypyridine‐copper complexes. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zi‐Bo Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin China
| | - Dong‐Dong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin China
| | - Xiu‐Mei Zhao
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin China
| | - Lu‐Yao Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin China
| | - Lin‐Lin Dai
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin China
| |
Collapse
|
14
|
Li D, Wang L, Yagüe E, Dai L, Zhao X, Yang Z, Zhi S, Hu Y. Studies of proteasome inhibition and apoptosis induction in triple‐negative breast cancer cells by novel amino acid–polypyridine–copper complex. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Luyao Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Faculty of MedicineImperial College London, Hammersmith Hospital Campus London W12 0NN UK
| | - Linlin Dai
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Xiumei Zhao
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Zibo Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Shuang Zhi
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Yunhui Hu
- Third Department of Breast CancerTianjin Medical University Cancer Institute and Hospital Tianjin 300060 China
| |
Collapse
|
15
|
Parkin facilitates proteasome inhibitor-induced apoptosis via suppression of NF-κB activity in hepatocellular carcinoma. Cell Death Dis 2019; 10:719. [PMID: 31558697 PMCID: PMC6763437 DOI: 10.1038/s41419-019-1881-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
The ubiquitin–proteasome system (UPS) is a tight homeostatic control mechanism of intracellular protein degradation and turnover involved in many human diseases. Proteasome inhibitors were initially developed as anticancer agents with potential benefits in the suppression of tumor growth. However, clinical trials of patients with solid tumors fail to demonstrate the same efficacy of these proteasome inhibitors. Here, we show that Parkin, an E3 ubiquitin ligase, is implicated in tumorigenesis and therapy resistance of hepatocellular carcinoma (HCC), the most common type of primary liver cancer in adults. Lower Parkin expression correlates with poor survival in patients with HCC. Ectopic Parkin expression enhances proteasome inhibitor-induced apoptosis and tumor suppression in HCC cells in vitro and in vivo. In contrast, knockdown of Parkin expression promotes apoptosis resistance and tumor growth. Mechanistically, Parkin promotes TNF receptor-associated factor (TRAF) 2 and TRAF6 degradation and thus facilitates nuclear factor-kappa-B (NF-κB) inhibition, which finally results in apoptosis. These findings reveal a direct molecular link between Parkin and protein degradation in the control of the NF-κB pathway and may provide a novel UPS-dependent strategy for the treatment of HCC by induction of apoptosis.
Collapse
|
16
|
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 2018; 11:2063-2073. [PMID: 29695914 PMCID: PMC5905465 DOI: 10.2147/ott.s161109] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a group of cells that malignantly grow and proliferate uncontrollably. At present, treatment modes for cancer mainly comprise surgery, chemotherapy, radiotherapy, molecularly targeted therapy, gene therapy, and immunotherapy. However, the curative effects of these treatments have been limited thus far by specific characteristics of tumors. Abnormal activation of signaling pathways is involved in tumor pathogenesis and plays critical roles in growth, progression, and relapse of cancers. Targeted therapies against effectors in oncogenic signaling have improved the outcomes of cancer patients. NFκB is an important signaling pathway involved in pathogenesis and treatment of cancers. Excessive activation of the NFκB-signaling pathway has been documented in various tumor tissues, and studies on this signaling pathway for targeted cancer therapy have become a hot topic. In this review, we update current understanding of the NFκB-signaling pathway in cancer.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Lu Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Department of Medical Microbiology, Immunology, and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|