1
|
Xiao MY, Li S, Pei WJ, Gu YL, Piao XL. Natural Saponins on Cholesterol-Related Diseases: Treatment and Mechanism. Phytother Res 2025; 39:1292-1318. [PMID: 39754504 DOI: 10.1002/ptr.8432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Saponins are compounds composed of lipophilic aglycones linked to hydrophilic sugars. Natural saponins are isolated from plants and some Marine organisms. As important cholesterol-lowering drugs, natural saponins have attracted wide attention for their therapeutic potential in a variety of cholesterol-related metabolic diseases. To review the effects of natural saponins on cholesterol-related metabolic diseases, and to deepen the understanding of the cholesterol-lowering mechanism of saponins. The literature related to saponins and cholesterol-lowering diseases was collected using keywords "saponins" and "cholesterol" from PubMed, Web of Science, and Google Scholar from January 2000 to May 2024. The total number of articles related to saponins and cholesterol-lowering diseases was 240 after excluding irrelevant articles. Natural saponins can regulate cholesterol to prevent and treat a variety of diseases, such as atherosclerosis, diabetes, liver disease, hyperlipidemia, cancer, and obesity. Mechanistically, natural saponins regulate cholesterol synthesis and uptake through the AMPK/SREBP2/3-hydroxy-3-methyl-glutaryl coenzyme A reductase pathway and PCSK9/LDLR pathway, and regulate cholesterol efflux and esterification targeting Liver X receptor/ABC pathway and ACAT family. Natural saponins have broad application prospects in regulating cholesterol metabolism, for the development of more cholesterol-lowering drugs provides a new train of thought. However, it is still necessary to further explore the molecular mechanism and expand clinical trials to provide more evidence.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Si Li
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
2
|
Qu C, Tan X, Hu Q, Tang J, Wang Y, He C, He Z, Li B, Fu X, Du Q. A systematic review of astragaloside IV effects on animal models of diabetes mellitus and its complications. Heliyon 2024; 10:e26863. [PMID: 38439832 PMCID: PMC10909731 DOI: 10.1016/j.heliyon.2024.e26863] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Context Diabetes mellitus (DM) is one of the fastest-growing diseases worldwide; however, its pathogenesis remains unclear. Complications seriously affect the quality of life of patients in the later stages of diabetes, ultimately leading to suffering. Natural small molecules are an important source of antidiabetic agents. Objective Astragaloside IV (AS-IV) is an active ingredient of Astragalus mongholicus (Fisch.) Bunge. We reviewed the efficacy and mechanism of action of AS-IV in animal and cellular models of diabetes and the mechanism of action of AS-IV on diabetic complications in animal and cellular models. We also summarized the safety of AS-IV and provided ideas and rationales for its future clinical application. Methods Articles on the intervention in DM and its complications using AS-IV, such as those published in SCIENCE, PubMed, Springer, ACS, SCOPUS, and CNKI from the establishment of the database to February 2022, were reviewed. The following points were systematically summarized: dose/concentration, route of administration, potential mechanisms, and efficacy of AS-IV in animal models of DM and its complications. Results AS-IV has shown therapeutic effects in animal models of DM, such as alleviating gestational diabetes, delaying diabetic nephropathy, preventing myocardial cell apoptosis, and inhibiting vascular endothelial dysfunction; however, the potential effects of AS-IV on DM should be investigated. Conclusion AS-IV is a potential drug for the treatment of diabetes and its complications, including diabetic vascular disease, cardiomyopathy, retinopathy, peripheral neuropathy, and nephropathy. In addition, preclinical toxicity studies indicate that it appears to be safe, but the safe human dose limit is yet to be determined, and formal assessments of adverse drug reactions among humans need to be further investigated. However, additional formulations or structural modifications are required to improve the pharmacokinetic parameters and facilitate the clinical use of AS-IV.
Collapse
Affiliation(s)
- Caiyan Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Nanjiang County Hospital of Chinese Medicine, Bazhong, 635600, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yangyang Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Caiying He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - ZiJia He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaoxu Fu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China
| |
Collapse
|
3
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
4
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
5
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
6
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [PMID: 36465185 PMCID: PMC9662284 DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 05/29/2025] Open
Abstract
Aging can lead to changes in the cellular milieu of the brain. These changes may exacerbate, resulting in pathological phenomena (including impaired bioenergetics, aberrant neurotransmission, compromised resilience and neuroplasticity, mitochondrial dysfunction, and the generation of free radicals) and the onset of neurodegenerative diseases. Furthermore, alterations in the energy-sensing pathways can accelerate neuronal aging but the exact mechanism of neural aging is still elusive. In recent decades, the use of plant-derived compounds, including astragaloside IV, to treat neuronal aging and its associated diseases has been extensively investigated. This article presents the current understanding of the roles and mechanisms of astragaloside IV in combating neuronal aging. The ability of the agent to suppress oxidative stress, to attenuate inflammatory responses and to maintain mitochondrial integrity will be discussed. Important challenges to be tacked for further development of astragaloside IV-based pharmacophores will be highlighted for future research.
Collapse
Affiliation(s)
- Qumar Zaman
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
| | - Obireddy Sreekanth Reddy
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515003, India.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China,
| |
Collapse
|
8
|
Ji W, Jiang T, Sun Z, Teng F, Ma C, Huang S, Yan S. The Enhanced Pharmacological Effects of Modified Traditional Chinese Medicine in Attenuation of Atherosclerosis Is Driven by Modulation of Gut Microbiota. Front Pharmacol 2020; 11:546589. [PMID: 33178012 PMCID: PMC7593568 DOI: 10.3389/fphar.2020.546589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicated that gut microbiota-targeted therapy is a promising strategy to treat Cardiovascular Disease (CVD). Traditional Chinese Medicine (TCM) has been used in CVD treatments for over 2,000 years which is believed to result from the modulation of gut microbiota, yet the underlying mechanism remains elusive. According to the theoretical system of TCM, we developed an innovative formula of TCM named "TongMai ZhuYu (TMZY)" on top of one classic Chinese herbal formula ["XueFu ZhuYu (XFZY)"], which can more effectively alleviate CVD in the clinical practice. Here, we first systematically assessed the pharmacological effects of TMZY, XFZY, and atorvastatin on atherosclerosis (AS) induced by high-fat diet (HFD) in rats. TMZY typically outperformed others in alleviating AS rats by characterization of pathological morphology, immunohistochemistry, inflammatory cytokines. Remarkably, combining this modified TCM formula (TMZY) with atorvastatin can further help the alleviation of AS in rats by suppressing immune and inflammatory responses. Furthermore, to test whether TMZY alleviated AS symptoms by altering gut microbial compositions (dysbiosis), we employed 16S amplicon sequencing to investigate gut microbiota changes in the AS mice induced by high choline diet (HCD) using both TMZY and XFZY under antibiotic-treated and untreated conditions. TCM formulas induced consistent and remarkable changes in the phenotypes and microbiota in the HCD mice. TMZY modulated more changes in the gut microbiota to improve diseased phenotypes than XFZY. Notably, the TMZY-intervention effect on CVD in mice attenuated after the suppression of gut microbial activity by antibiotics. Collectively, we demonstrated that TCM herbals could effectively modulate the gut microbiota as a mechanism for altering the pathogenesis of cardiovascular disorders in mice/rats.
Collapse
Affiliation(s)
- Wenyan Ji
- School of Medicine, Shandong University, Jinan, China
- Department of Cardiology, Qingdao Municipal Hospital of Traditional Chinese Medicine (Qingdao Hiser Medical Group), Qingdao, China
| | - Ting Jiang
- Department of Cardiology, Qingdao Municipal Hospital of Traditional Chinese Medicine (Qingdao Hiser Medical Group), Qingdao, China
| | - Zheng Sun
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Teng
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chenchen Ma
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Shi Huang
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Suhua Yan
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Shafi S, Gupta P, Khatik GL, Gupta J. PPARγ: Potential Therapeutic Target for Ailments Beyond Diabetes and its Natural Agonism. Curr Drug Targets 2020; 20:1281-1294. [PMID: 31131751 DOI: 10.2174/1389450120666190527115538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Intense research interests have been observed in establishing PPAR gamma as a therapeutic target for diabetes. However, PPARγ is also emerging as an important therapeutic target for varied disease states other than type 2 diabetes like neurodegenerative disorders, cancer, spinal cord injury, asthma, and cardiovascular problems. Furthermore, glitazones, the synthetic thiazolidinediones, also known as insulin sensitizers, are the largely studied PPARγ agonists and the only ones approved for the treatment of type 2 diabetes. However, they are loaded with side effects like fluid retention, obesity, hepatic failure, bone fractures, and cardiac failure; which restrict their clinical application. Medicinal plants used traditionally are the sources of bioactive compounds to be used for the development of successful drugs and many structurally diverse natural molecules are already established as PPARγ agonists. These natural partial agonists when compared to full agonist synthetic thiazolidinediones led to weaker PPARγ activation with lesser side effects but are not thoroughly investigated. Their thorough characterization and elucidation of mechanistic activity might prove beneficial for counteracting diseases by modulating PPARγ activity through dietary changes. We aim to review the therapeutic significance of PPARγ for ailments other than diabetes and highlight natural molecules with potential PPARγ agonistic activity.
Collapse
Affiliation(s)
- Sana Shafi
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| | - Pawan Gupta
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India.,Department of Research and Development, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| |
Collapse
|
10
|
Liu B, Song Z, Yu J, Li P, Tang Y, Ge J. The atherosclerosis-ameliorating effects and molecular mechanisms of BuYangHuanWu decoction. Biomed Pharmacother 2020; 123:109664. [DOI: 10.1016/j.biopha.2019.109664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
|
11
|
Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:89-112. [PMID: 32089240 DOI: 10.1016/bs.apha.2019.08.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Decoctions prepared from the roots of Astragali Radix are known as "Huangqi" and are widely used in traditional Chinese medicine for treatment of viral and bacterial infections, inflammation, as well as cancer. Astragaloside IV (AS-IV), one of the major compounds from the aqueous extract of Astragalus membranaceus, is a cycloartane-type triterpene glycoside chemical. To date, many studies in cellular and animal models have demonstrated that AS-IV possesses potent protective effects in cardiovascular, lung, kidney and brain. Based on studies over the past several decades, this review systematically summarizes the pharmacological effects, pharmacokinetics and the toxicity of AS-IV. We analyze in detail the pharmacological effects of AS-IV on neuroprotection, liver protection, anti-cancer and anti-diabetes, attributable to its antioxidant, anti-inflammatory, anti-apoptotic properties, and the roles in enhancement of immunity, attenuation of the migration and invasion of cancer cells and improvement of chemosensitivity of chemotherapy drugs. In addition, the latest developments in the combination of AS-IV and other active ingredients of traditional Chinese medicine or chemical drugs are detailed. These pharmacological effects are associated with multiple signaling pathways, including the Raf-MEK-ERK pathway, EGFR-Nrf2 signaling pathway, Akt/PDE3B signaling pathway, AMPK signaling pathway, NF-κB signaling pathway, Nrf2 antioxidant signaling pathways, PI3K/Akt/mTOR signaling pathway, PKC-α-ERK1/2-NF-κB pathway, IL-11/STAT3 signaling pathway, Akt/GSK-3β/β-catenin pathway, JNK/c-Jun/AP-1 signaling pathway, PI3K/Akt/NF-κB pathway, miRNA-34a/LDHA pathway, Nox4/Smad2 pathway, JNK pathway and NF-kB/PPARγ pathway. This review will provide an overall understanding of the pharmacological functions of astragaloside IV on neuroprotection, liver protection, anti-cancer and anti-diabetes. In light of this, AS-IV will be a potent alternative therapeutic agent for treatment of the above mentioned diseases.
Collapse
Affiliation(s)
- Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Chuxuan Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P. R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| |
Collapse
|
12
|
Peng S, Li P, Liu P, Yan H, Wang J, Lu W, Liu C, Zhou Y. Cistanches alleviates sevoflurane-induced cognitive dysfunction by regulating PPAR-γ-dependent antioxidant and anti-inflammatory in rats. J Cell Mol Med 2019; 24:1345-1359. [PMID: 31802591 PMCID: PMC6991648 DOI: 10.1111/jcmm.14807] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/06/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate the protective effects and underlying mechanisms of cistanche on sevoflurane‐induced aged cognitive dysfunction rat model. Aged (24 months) male SD rats were randomly assigned to four groups: control group, sevoflurane group, control + cistanche and sevoflurane + cistanche group. Subsequently, inflammatory cytokine levels were measured by ELISA, and the cognitive dysfunction of rats was evaluated by water maze test, open‐field test and the fear conditioning test. Three days following anaesthesia, the rats were killed and hippocampus was harvested for the analysis of relative biomolecules. The oxidative stress level was indicated as nitrite and MDA concentration, along with the SOD and CAT activity. Finally, PPAR‐γ antagonist was used to explore the mechanism of cistanche in vivo. The results showed that after inhaling the sevoflurane, 24‐ but not 3‐month‐old male SD rats developed obvious cognitive impairments in the behaviour test 3 days after anaesthesia. Intraperitoneal injection of cistanche at the dose of 50 mg/kg for 3 consecutive days before anaesthesia alleviated the sevoflurane‐induced elevation of neuroinflammation levels and significantly attenuated the hippocampus‐dependent memory impairments in 24‐month‐old rats. Cistanche also reduced the oxidative stress by decreasing nitrite and MDA while increasing the SOD and CAT activity. Moreover, such treatment also inhibited the activation of microglia. In addition, we demonstrated that PPAR‐γ inhibition conversely alleviated cistanche‐induced protective effect. Taken together, we demonstrated that cistanche can exert antioxidant, anti‐inflammatory, anti‐apoptosis and anti‐activation of microglia effects on the development of sevoflurane‐induced cognitive dysfunction by activating PPAR‐γ signalling.
Collapse
Affiliation(s)
- Sheng Peng
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Pengyi Li
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Red Cross Cancer Center, Nanjing, Jiangsu, China
| | - Peirong Liu
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Hongzhu Yan
- Department of Pathology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Juan Wang
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Weihua Lu
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Chunliang Liu
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Yixin Zhou
- Department of Neurology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| |
Collapse
|
13
|
Liu Y, Qu Y, Liu L, Zhao H, Ma H, Si M, Cheng L, Nie L. PPAR-γ agonist pioglitazone protects against IL-17 induced intervertebral disc inflammation and degeneration via suppression of NF-κB signaling pathway. Int Immunopharmacol 2019; 72:138-147. [DOI: 10.1016/j.intimp.2019.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
|
14
|
Zhu Z, Li J, Zhang X. Astragaloside IV Protects Against Oxidized Low-Density Lipoprotein (ox-LDL)-Induced Endothelial Cell Injury by Reducing Oxidative Stress and Inflammation. Med Sci Monit 2019; 25:2132-2140. [PMID: 30901320 PMCID: PMC6441302 DOI: 10.12659/msm.912894] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Endothelial injury is the main mechanism of atherosclerosis, and is caused by oxidized low-density lipoprotein (ox-LDL). Astragaloside IV (AS-IV) is the primary active ingredient of the Chinese herb Huangqi, and exhibits antioxidant and anti-inflammatory properties in cardiovascular diseases. This study investigated the protective effect of AS-IV in human umbilical vein endothelial cells (HUVECs). Material/Methods HUVEC cells were induced with ox-LDL to establish an in vitro atherosclerosis model. Then HUVECs were pretreated for 1 h with AS-IV at different concentrations (10, 20, and 50 μM) and then exposed to ox-LDL (100 μg/mL) for 48 h. The cell viability, lactate dehydrogenase (LDH) release, apoptosis, migration, intracellular reactive oxygen species (ROS), and NADPH oxidase activity of HUVECs were measured. qRT-PCR was performed to measure the mRNA expressions of Nrf2, HO-1, TNFα, and IL-6. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the supernatant contents of TNFα and IL-6. Results Exposure of HUVECs to ox-LDL reduced cell viability and migration, induced apoptosis, and increased intracellular ROS production and NADPH oxidase. Pretreatment with AS-IV (10, 20, and 50 μM) significantly enhanced the cell viability and migration, suppressed LDH release, apoptosis, ROS production, and NADPH oxidase in HUVECs, in a concentration-dependent manner. The AS-IV (50 μM) alone did not show significant differences from control. AS-IV increased mRNA expressions of Nrf2 and HO-1 and decreased mRNA expressions of TNFα and IL-6 in the ox-LDL-HUEVC cells. Furthermore, AS-IV reduced supernatant contents of TNFα and IL-6. Conclusions Astragaloside IV prevents ox-LDL-induced endothelial cell injury by reducing apoptosis, oxidative stress, and inflammatory response.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| | - Jinyu Li
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| | - Xiaorong Zhang
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| |
Collapse
|
15
|
Zhang W, Liu M, Yang L, Huang F, Lan Y, Li H, Wu H, Zhang B, Shi H, Wu X. P-glycoprotein Inhibitor Tariquidar Potentiates Efficacy of Astragaloside IV in Experimental Autoimmune Encephalomyelitis Mice. Molecules 2019; 24:molecules24030561. [PMID: 30717494 PMCID: PMC6384695 DOI: 10.3390/molecules24030561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), often reduce drug efficacy and are the major cause of drug resistance. Astragaloside IV (ASIV), one of the bioactive saponins isolated from Astragalus membranaceus, has been demonstrated to alleviate the progression of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model for multiple sclerosis (MS). In the present study, we found for the first time that ASIV induced the upregulation of P-gp and BCRP in the central nervous system (CNS) microvascular endothelial cells of EAE mice. Further study disclosed that tariquidar, a P-gp inhibitor, could facilitate the penetration of ASIV into CNS. On bEnd.3 cells, a mouse brain microvascular endothelial cell line, tariquidar benefited the net uptake and transport of ASIV. Additional molecular docking experiment suggested that ASIV might be a potential substrate of P-gp. In EAE mice, tariquidar was demonstrated to enhance the efficacy of ASIV, as shown by attenuated clinical symptom and reduced incidence rate as well as mitigated inflammatory infiltration and decreased demyelination in the CNS. Collectively, our findings implicate that P-gp inhibitor can promote the therapeutic efficacy of ASIV on EAE mice, which may boost its clinical usage together with ASIV in the therapy of MS.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Blood-Brain Barrier
- Cell Line
- Drug Synergism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Mice
- Molecular Conformation
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Quinolines/chemistry
- Quinolines/metabolism
- Quinolines/pharmacokinetics
- Saponins/chemistry
- Saponins/metabolism
- Saponins/pharmacology
- Substrate Specificity
- Triterpenes/chemistry
- Triterpenes/metabolism
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mei Liu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yunyi Lan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongli Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Beibei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|