1
|
Ming Y, Luo C, Ji B, Cheng J. ARPC5 acts as a potential prognostic biomarker that is associated with cell proliferation, migration and immune infiltrate in gliomas. BMC Cancer 2023; 23:937. [PMID: 37789267 PMCID: PMC10548738 DOI: 10.1186/s12885-023-11433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Gliomas are the most common malignant brain tumors, with powerful invasiveness and an undesirable prognosis. Actin related protein 2/3 complex subunit 5 (ARPC5) encodes a component of the Arp2/3 protein complex, which plays a significant role in regulating the actin cytoskeleton. However, the prognostic values and biological functions of ARPC5 in gliomas remain unclear. METHODS Based on the TCGA, GEO, HPA, and UALCAN database, we determined the expression of ARPC5 in glioma. The results were verified by immunohistochemistry and Western blot analysis of glioma samples. Moreover, Kaplan-Meier curves, ROC curves, Cox regression analyses, and prognostic nomograms were used to observe the correlation between the ARPC5 expression and the prognosis of glioma patients. GO and KEGG enrichment analyses were conducted to identify immune-related pathways involved with the differential expression of ARPC5. Subsequently, the TCGA database was used to estimate the relationship between ARPC5 expression and immunity-related indexes, such as immune scores, infiltrating immune cells, and TMB. The TCIA database was used to assess the correlation between ARPC5 with immunotherapy. The association between ARPC5 and T cells marker CD3 was also evaluated through immunohistochemistry methods. The correlation between ARPC5 and T cell, as well as the prognosis of patients, was also evaluated using immunological methods. Moreover, the effect of ARPC5 on the biological characteristics of LN229 and U251 cells was determined by MTT, clone formation, and transwell migration assay. RESULTS The high degree of ARPC5 was correlated with worse prognosis and unfavorable clinical characteristics of glioma patients. In the analysis of GO and KEGG, it is shown that ARPC5 was strongly correlated with multiple immune-related signaling pathways. The single-cell analysis revealed that ARPC5 expression was increased in astrocytes, monocytes and T cells. In addition, ARPC5 expression was strongly associated with immune scores, infiltrating immune cells, TMB, MSI, immune biomarkers, and immunotherapy. In experimental analysis, we found that ARPC5 was significantly overexpressed in gliomas and closely correlated with patient prognosis and CD3 expression. Functionally, the knockout of ARPC5 significantly reduced the proliferation and invasion of LN229 and U251 cells. CONCLUSIONS Our study revealed that the high expression level of ARPC5 may serve as a promising prognostic biomarker and be associated with tumor immunity in glioma.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Networks, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyuan Luo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Networks, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Beihong Ji
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Qu G, Zhang Y, Duan H, Tang C, Yang G, Chen D, Xu Y. ARPC5 is transcriptionally activated by KLF4, and promotes cell migration and invasion in prostate cancer via up-regulating ADAM17 : ARPC5 serves as an oncogene in prostate cancer. Apoptosis 2023; 28:783-795. [PMID: 36881291 DOI: 10.1007/s10495-023-01827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers in men worldwide. Actin-related protein 2/3 complex subunit 5 (ARPC5) has been validated as a critical regulator in several kinds of human tumors. However, whether ARPC5 is implicated in PCa progression remains largely unknown. METHODS PCa specimens and PCa cell lines were obtained for detecting gene expressions using western blot and quantitative reverse transcriptase PCR (qRT-PCR). PCa cells transfected with ARPC5 shRNA or a disintegrin and metalloprotease 17 (ADAM17) overexpressed plasmids were harvested for assessing cell proliferation, migration and invasion by using cell counting kit-8 (CCK-8), colony formation and transwell assays, respectively. The interaction relationship between molecules was testified with chromatin immunoprecipitation and luciferase reporter assay. Xenograft mice model was conducted for confirming the role of ARPC5/ADAM17 axis in vivo. RESULTS Upregulated ARPC5 was observed in PCa tissues and cells, as well as forecasted poor prognosis of PCa patients. Depletion of ARPC5 inhibited PCa cell proliferation, migration and invasion. Krüppel-like factor 4 (KLF4) was identified to be a transcriptional activator of ARPC5 via binding with its promoter region. Furthermore, ADAM17 served as a downstream effector of ARPC5. ADAM17 overexpression overturned ARPC5 knockdown-induced repressive impacts on PCa progression in vitro and in vivo. CONCLUSION Collectively, ARPC5 was activated by KLF4 and upregulated ADAM17 to promote PCa progression, which might act as a promising therapeutic target and prognostic biomarker for PCa.
Collapse
Affiliation(s)
- GenYi Qu
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - YuLong Zhang
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - HongTao Duan
- Department of Ultrasound, ZhuZhou central hospital, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Cheng Tang
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Guang Yang
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Dan Chen
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China
| | - Yong Xu
- Department of Urology, ZhuZhou central hospital, No. 116, Changjiang South Road, Tianyuan District, ZhuZhou, 412000, Hunan Province, P.R. China.
| |
Collapse
|
3
|
Fäßler F, Javoor MG, Datler J, Döring H, Hofer FW, Dimchev G, Hodirnau VV, Faix J, Rottner K, Schur FK. ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning. SCIENCE ADVANCES 2023; 9:eadd6495. [PMID: 36662867 PMCID: PMC9858492 DOI: 10.1126/sciadv.add6495] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/20/2022] [Indexed: 05/10/2023]
Abstract
Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform-specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Hermann Döring
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Florian W. Hofer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
4
|
Huang JN, Zhang HM, Cai JD, Wang WL, Wang P. Long noncoding RNA DSCR8 promotes the proliferation of liver cancer cells and inhibits apoptosis via the miR-22-3p/ARPC5 Axis. J Cancer 2023; 14:35-49. [PMID: 36605483 PMCID: PMC9809336 DOI: 10.7150/jca.79475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023] Open
Abstract
Emerging evidence shows that long noncoding RNAs (lncRNAs) play a vital role in the tumorigenesis and development of cancer, implying that some lncRNAs could be potential therapeutic targets. In this study, we employed Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to construct a ceRNA network by bioinformatic analysis, and the Down syndrome critical region 8 (lncRNA_DSCR8)/miR-22-3p/actin-related protein 2/3 complex subunit 5 (ARPC5) axis was identified as a potential target in liver cancer (LC). Next, we found that DSCR8 is highly expressed in LC cell lines Hep3B and Huh7. In addition, sh-DSCR8 inhibits cell proliferation and promotes cell apoptosis. Furthermore, we certified that DSCR8 serves as function as a sponge for miR-22-3p, while ARPC5 is a target gene of miR-22-3p, and the functions of DSCR8 promoting LC cell proliferation could be rescued by miR-22-3p. This study suggests that lncRNA_DSCR8 promotes LC progression and inhibits its apoptosis by regulating the miR-22-3p/ARPC5 axis, signifying that DSCR8 could be a novel therapeutic target for LC.
Collapse
Affiliation(s)
- Jiu-Ning Huang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | | | - Jun-Dong Cai
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wu-Long Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,✉ Corresponding author: Ping Wang, Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China. E-mail:
| |
Collapse
|
5
|
Yao L, Jayasinghe RG, Lee BH, Bhasin SS, Pilcher W, Doxie DB, Gonzalez-Kozlova E, Dasari S, Fiala MA, Pita-Juarez Y, Strausbauch M, Kelly G, Thomas BE, Kumar SK, Cho HJ, Anderson E, Wendl MC, Dawson T, D'souza D, Oh ST, Cheloni G, Li Y, DiPersio JF, Rahman AH, Dhodapkar KM, Kim-Schulze S, Vij R, Vlachos IS, Mehr S, Hamilton M, Auclair D, Kourelis T, Avigan D, Dhodapkar MV, Gnjatic S, Bhasin MK, Ding L. Comprehensive Characterization of the Multiple Myeloma Immune Microenvironment Using Integrated scRNA-seq, CyTOF, and CITE-seq Analysis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1255-1265. [PMID: 36969740 PMCID: PMC10035369 DOI: 10.1158/2767-9764.crc-22-0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
As part of the Multiple Myeloma Research Foundation (MMRF) immune atlas pilot project, we compared immune cells of multiple myeloma bone marrow samples from 18 patients assessed by single-cell RNA sequencing (scRNA-seq), mass cytometry (CyTOF), and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to understand the concordance of measurements among single-cell techniques. Cell type abundances are relatively consistent across the three approaches, while variations are observed in T cells, macrophages, and monocytes. Concordance and correlation analysis of cell type marker gene expression across different modalities highlighted the importance of choosing cell type marker genes best suited to particular modalities. By integrating data from these three assays, we found International Staging System stage 3 patients exhibited decreased CD4+ T/CD8+ T cells ratio. Moreover, we observed upregulation of RAC2 and PSMB9, in natural killer cells of fast progressors compared with those of nonprogressors, as revealed by both scRNA-seq and CITE-seq RNA measurement. This detailed examination of the immune microenvironment in multiple myeloma using multiple single-cell technologies revealed markers associated with multiple myeloma rapid progression which will be further characterized by the full-scale immune atlas project. Significance scRNA-seq, CyTOF, and CITE-seq are increasingly used for evaluating cellular heterogeneity. Understanding their concordances is of great interest. To date, this study is the most comprehensive examination of the measurement of the immune microenvironment in multiple myeloma using the three techniques. Moreover, we identified markers predicted to be significantly associated with multiple myeloma rapid progression.
Collapse
Affiliation(s)
- Lijun Yao
- Washington University School of Medicine, Saint Louis, Missouri
| | | | - Brian H. Lee
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | | | | | | | | | | | - Mark A. Fiala
- Washington University School of Medicine, Saint Louis, Missouri
| | - Yered Pita-Juarez
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Geoffrey Kelly
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | | | | | - Hearn Jay Cho
- Icahn School of Medicine at Mt. Sinai, New York, New York
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | | | | | - Travis Dawson
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Darwin D'souza
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Stephen T. Oh
- Washington University School of Medicine, Saint Louis, Missouri
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ying Li
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Ravi Vij
- Washington University School of Medicine, Saint Louis, Missouri
| | - Ioannis S. Vlachos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Shaadi Mehr
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | - Mark Hamilton
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | - Daniel Auclair
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | | | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Sacha Gnjatic
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | | | - Li Ding
- Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
6
|
Huang S, Sun L, Hou P, Liu K, Wu J. A comprehensively prognostic and immunological analysis of actin-related protein 2/3 complex subunit 5 in pan-cancer and identification in hepatocellular carcinoma. Front Immunol 2022; 13:944898. [PMID: 36148220 PMCID: PMC9485570 DOI: 10.3389/fimmu.2022.944898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Actin-related protein 2/3 complex subunit 5 (ARPC5) is one of the members of actin-related protein 2/3 complex and plays an important role in cell migration and invasion. However, little is known about the expression pattern, prognosis value, and biological function of ARPC5 in pan-cancer. Thus, we focus on ARPC5 as cut point to explore a novel prognostic and immunological biomarker for cancers. Methods The public databases, including TCGA, GTEx, and UCEC, were used to analyze ARPC5 expression in pan-cancer. The Human Protein Atlas website was applied to obtain the expression of ARPC5 in different tissues, cell lines, and single-cell types. Univariate Cox regression analysis and Kaplan–Meier analysis were used to explore the prognosis value of ARPC5 in various cancers. Spearman’s correlation analysis was performed to investigate the association between ARPC5 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, RNA modification genes, DNA methyltransferases, and tumor stemness. Moreover, qPCR, Western blot, and immunohistochemistry were carried out to examine the differential expression of ARPC5 in HCC tissues and cell lines. CCK8, EdU, flow cytometry, wound-healing assays, and transwell assays were conducted to explore its role in tumor proliferation, apoptosis, migration, and invasion among HCC cells. Results ARPC5 expression was upregulated in most cancer types and significantly associated with worse prognosis in KIRC, KIRP, LGG, and LIHC. mRNA expression of ARPC5 showed low tissue and cell specificity in normal tissues, cell lines, and single-cell types. ARPC5 expression was positively correlated with the tumor microenvironment scores, immune infiltrating cells, immune checkpoint–related genes in most cancers. ARPC5 in STAD and BRCA was positively associated with TMB, MSI, and neoantigens. We also discovered that ARPC5 was correlated with the expression of m1A-related genes, m5C-related genes, m6A-related genes, and DNA methyltransferases. In experiment analyses, we found that ARPC5 was significantly highly expressed in HCC tissues and HCC cells. Functionally, silencing ARPC5 dramatically decreased proliferation, migration, and invasion ability of HCC cells. Conclusions ARPC5 expression affects the prognosis of multiple tumors and is closely correlated to tumor immune infiltration and immunotherapy. Furthermore, ARPC5 may function as an oncogene and promote tumor progression in HCC.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Hou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
7
|
Gaouaoui-Azouaou H, L'Homme B, Benadjaoud MA, Sache-Aloui A, Granger R, Voyer F, Lestaevel P, Gruel G, Caire-Maurisier F, Crambes C, Dare-Doyen S, Benderitter M, Souidi M. Protection and safety of a repeated dosage of KI for iodine thyroid blocking during pregnancy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011512. [PMID: 34700314 DOI: 10.1088/1361-6498/ac336e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
In case of nuclear power plant accidents resulting in the release of radioactive iodine (131I) in large amounts, a single intake of stable iodine is recommended in order to prevent131I fixation to the thyroid gland. However, in situations of prolonged exposure to131I (e.g. Fukushima-Daiichi natural and nuclear disaster), repetitive administration of iodine may be necessary to ensure adequate protection, with acceptable safety in vulnerable populations including pregnant women. Here we conducted toxicological studies on adult rats progeny following prolonged exposure to potassium iodide (KI)in utero. Pregnant Wistar rats were treated with 1 mg kg d-1KI or saline water for 2 or 4 d either between gestation days gestational day (GD) GD 9-12, or GD13-16. Plasma samples from the progeny were tested 30 d post-weaning for clinical biochemistry, thyroid hormones, and anti-thyroid antibody levels. Thyroid and brain were collected for gene expression analysis. The hormonal status was similar for the mothers in all experimental conditions. In the offspring, while thyroid-stimulating hormone and anti-thyroid peroxidase (anti-TPO) antibody levels were similar in all groups, a significant increase of FT3 and FT4 levels was observed in GD9-GD10 and in GD13-GD14 animals treated for 2 d, respectively. In addition, FT4 levels were mildly decreased in 4 d treated GD13-16 individuals. Moreover, a significant decrease in the expression level of thyroid genes involved in iodide metabolism, TPO and apical iodide transporter, was observed in GD13-GD14 animals treated for 2 d. We conclude that repeated KI administration for 2-4 d during gestation did not induce strong thyroid toxicity.
Collapse
Affiliation(s)
- Hayat Gaouaoui-Azouaou
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Bruno L'Homme
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Mohamed Amine Benadjaoud
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Amandine Sache-Aloui
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Romain Granger
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Frederic Voyer
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Gaëtan Gruel
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - François Caire-Maurisier
- Pharmacie Centrale des Armées, Direction des Approvisionnement en produits de santé des armées, 45404 Fleury-les Aubrais, France
| | - Caroline Crambes
- Pharmacie Centrale des Armées, Direction des Approvisionnement en produits de santé des armées, 45404 Fleury-les Aubrais, France
| | - Stephanie Dare-Doyen
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Lui JW, Moore SP, Huang L, Ogomori K, Li Y, Lang D. YAP facilitates melanoma migration through regulation of actin-related protein 2/3 complex subunit 5 (ARPC5). Pigment Cell Melanoma Res 2022; 35:52-65. [PMID: 34468072 PMCID: PMC8958630 DOI: 10.1111/pcmr.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/31/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023]
Abstract
Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators that have been implicated in driving metastasis and progression in many cancers, mainly through their transcriptional regulation of downstream targets. Although YAP and TAZ have shown redundancy in many contexts, it is still unknown whether or not this is true in melanoma. Here, we show that while both YAP and TAZ are expressed in a panel of melanoma cell lines, depletion of YAP results in decreased cell numbers, focal adhesions, and the ability to invade matrigel. Using non-biased RNA-sequencing analysis, we find that melanoma cells depleted of YAP, TAZ, or YAP/TAZ exhibit drastically different transcriptomes. We further uncover the ARP2/3 subunit ARPC5 as a specific target of YAP but not TAZ and that ARPC5 is essential for YAP-dependent maintenance of melanoma cell focal adhesion numbers. Our findings suggest that in melanoma, YAP drives melanoma progression, survival, and invasion.
Collapse
Affiliation(s)
- Jason W. Lui
- Department of Dermatology, Boston University, Boston MA, 02118,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637,These authors contributed equally
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston MA, 02118,These authors contributed equally
| | - Lee Huang
- Department of Dermatology, Boston University, Boston MA, 02118
| | - Kelsey Ogomori
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago Il, 60637
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston MA, 02118
| |
Collapse
|
9
|
Luxenburger A, Bougen-Zhukov N, Fraser MG, Beetham H, Harris LD, Schmidt D, Cameron SA, Guilford PJ, Evans GB. Discovery of AL-GDa62 as a Potential Synthetic Lethal Lead for the Treatment of Gastric Cancer. J Med Chem 2021; 64:18114-18142. [PMID: 34878770 DOI: 10.1021/acs.jmedchem.1c01609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diffuse gastric cancer and lobular breast cancer are aggressive malignancies that are frequently associated with inactivating mutations in the tumor suppressor gene CDH1. Synthetic lethal (SL) vulnerabilities arising from CDH1 dysfunction represent attractive targets for drug development. Recently, SLEC-11 (1) emerged as a SL lead in E-cadherin-deficient cells. Here, we describe our efforts to optimize 1. Overall, 63 analogues were synthesized and tested for their SL activity toward isogenic mammary epithelial CDH1-deficient cells (MCF10A-CDH1-/-). Among the 26 compounds with greater cytotoxicity, AL-GDa62 (3) was four-times more potent and more selective than 1 with an EC50 ratio of 1.6. Furthermore, 3 preferentially induced apoptosis in CDH1-/- cells, and Cdh1-/- mammary and gastric organoids were significantly more sensitive to 3 at low micromolar concentrations. Thermal proteome profiling of treated MCF10A-CDH1-/- cell protein lysates revealed that 3 specifically inhibits TCOF1, ARPC5, and UBC9. In vitro, 3 inhibited SUMOylation at low micromolar concentrations.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Nicola Bougen-Zhukov
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Michael G Fraser
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Henry Beetham
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Dorian Schmidt
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| |
Collapse
|
10
|
Shen Z, Liu S, Liu J, Liu J, Yao C. Weighted Gene Co-Expression Network Analysis and Treatment Strategies of Tumor Recurrence-Associated Hub Genes in Lung Adenocarcinoma. Front Genet 2021; 12:756235. [PMID: 34868230 PMCID: PMC8636777 DOI: 10.3389/fgene.2021.756235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the recent progress of lung adenocarcinoma (LUAD) therapy, tumor recurrence remained to be a challenging factor that impedes the effectiveness of treatment. The objective of the present study was to predict the hub genes affecting LUAD recurrence via weighted gene co-expression network analysis (WGCNA). Microarray samples from LUAD dataset of GSE32863 were analyzed, and the modules with the highest correlation to tumor recurrence were selected. Functional enrichment analysis was conducted, followed by establishment of a protein-protein interaction (PPI) network. Subsequently, hub genes were identified by overall survival analyses and further validated by evaluation of expression in both myeloid populations and tissue samples of LUAD. Gene set enrichment analysis (GSEA) was then carried out, and construction of transcription factors (TF)-hub gene and drug-hub gene interaction network was also achieved. A total of eight hub genes (ACTR3, ARPC5, RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and NOP58) were finally identified to be closely correlated with LUAD recurrence. In addition, TFs that regulate hub genes have been predicted, including MYC, PML, and YY1. Finally, drugs including arsenic trioxide, cisplatin, Jinfukang, and sunitinib were mined for the treatment of the eight hub genes. In conclusion, our study may facilitate the invention of targeted therapeutic drugs and shed light on the understanding of the mechanism for LUAD recurrence.
Collapse
Affiliation(s)
- Zhengze Shen
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwei Liu
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Liu
- JiangJin Central Hosptial of Chongqing, Chongqing, China
| | - Jingdong Liu
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New District, Chongqing, China
| | - Caoyuan Yao
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Huang S, Li D, Zhuang L, Sun L, Wu J. Identification of Arp2/3 Complex Subunits as Prognostic Biomarkers for Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690151. [PMID: 34307456 PMCID: PMC8299467 DOI: 10.3389/fmolb.2021.690151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
The actin-related protein 2/3 complex (Arp2/3) is a major actin nucleator that has been widely reported and plays an important role in promoting the migration and invasion of various cancers. However, the expression patterns and prognostic values of Arp2/3 subunits in hepatocellular carcinoma (HCC) remain unclear. In this study, The Cancer Genome Atlas (TCGA) and UCSC Xena databases were used to obtain mRNA expression and the corresponding clinical information, respectively. The differential expression and Arp2/3 subunits in HCC were analyzed using the “limma” package of R 4.0.4 software. The prognostic value of each subunit was evaluated using Kaplan–Meier survival analysis and Cox proportional hazards regression analyses. The results revealed that mRNA expression of Arp2/3 members (ACTR2, ACTR3, ARPC1A, APRC1B, ARPC2, ARPC3, ARPC4, ARPC5, and ARPC5L) was upregulated in HCC. Higher expression of Arp2/3 members was significantly correlated with worse overall survival (OS) and shorter progression-free survival (PFS) in HCC patients. Cox proportional hazards regression analyses demonstrated that ACTR3, ARPC2, and ARPC5 were independent prognostic biomarkers of survival in patients with HCC. The relation between tumor immunocyte infiltration and the prognostic subunits was determined using the TIMER 2.0 platform and the GEPIA database. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanisms of prognostic subunits in the carcinogenesis of HCC. The results revealed that ACTR3, ARPC2, and ARPC5 were significantly positively correlated with the infiltration of immune cells in HCC. The GSEA results indicated that ACTR3, ARPC2, and ARPC5 are involved in multiple cancer-related pathways that promote the development of HCC. In brief, various analyses indicated that Arp2/3 complex subunits were significantly upregulated and predicted worse survival in HCC, and they found that ACTR3, ARPC2, and ARPC5 could be used as independent predictors of survival and might be applied as promising molecular targets for diagnosis and therapy of HCC in the future.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - LingLing Zhuang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China.,Department of Gynaecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
12
|
Yang Y, Huang B, Liu J, Chen M, Kuang L, Xu X, Li J. Heparanase-induced proliferation and inhibition of apoptosis are associated with the phosphatase and tensin homologue deleted on chromosome 10/focal adhesion kinase signaling pathway in multiple myeloma. MATERIALS EXPRESS 2021; 11:634-646. [DOI: 10.1166/mex.2021.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Heparanase (HPSE) has an important effect on the proliferation, invasion, metastasis, and drug resistance of tumor cells. HPSE can promote proliferation and inhibit apoptosis of various solid tumor cells. Previous studies regarding the function of HPSE in multiple myeloma (MM) have
primarily focused on tumor invasion and metastasis, whereas few studies have examined the proliferation and apoptosis of MM and the mechanisms associated with HPSE. This study recruited patients with MM and isolated MM cells (RPMI8226, LP-1) were isolated to measure the expression levels of
HPSE, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), and focal adhesion kinase (FAK) proteins to elucidate their roles in tumor formation. Compared with non-tumor patients, the mRNA and protein expression levels of HPSE and FAK in MM patients increased, whereas the levels
of PTEN mRNA and protein decreased. Thus, the increase of HPSE coincided with an increase of FAK and a decrease of PTEN. MM cells exhibiting high HPSE expression exhibited increased proliferation and decreased AS2O3-induced apoptosis. These results indicate that changes
in HPSE expression affect the proliferation and apoptosis of MM cells and this mechanism may be associated with the PTEN/FAK signaling pathway. Gene transfection needs proper vector, and proper gene transport system can improve transfection efficiency. In this paper, magnetic nanoparticles
were transfected with overexpressed HPSE, and to detect the transfection efficiency and the proliferation ability of MM cells in the control group. The results showed that the cells transfected with magnetic nanoparticles had higher transfection efficiency and higher gene expression level.
The results of this experiment provide a new way to explore new cancer therapy genes.
Collapse
Affiliation(s)
- Yuxing Yang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Beihui Huang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Junru Liu
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Meilan Chen
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Lifen Kuang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Xiaoxuan Xu
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| |
Collapse
|
13
|
Juarez-Flores A, Zamudio GS, José MV. Novel gene signatures for stage classification of the squamous cell carcinoma of the lung. Sci Rep 2021; 11:4835. [PMID: 33649335 PMCID: PMC7921642 DOI: 10.1038/s41598-021-83668-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The squamous cell carcinoma of the lung (SCLC) is one of the most common types of lung cancer. As GLOBOCAN reported in 2018, lung cancer was the first cause of death and new cases by cancer worldwide. Typically, diagnosis is made in the later stages of the disease with few treatment options available. The goal of this work was to find some key components underlying each stage of the disease, to help in the classification of tumor samples, and to increase the available options for experimental assays and molecular targets that could be used in treatment development. We employed two approaches. The first was based in the classic method of differential gene expression analysis, network analysis, and a novel concept known as network gatekeepers. The second approach was using machine learning algorithms. From our combined approach, we identified two sets of genes that could function as a signature to identify each stage of the cancer pathology. We also arrived at a network of 55 nodes, which according to their biological functions, they can be regarded as drivers in this cancer. Although biological experiments are necessary for their validation, we proposed that all these genes could be used for cancer development treatments.
Collapse
Affiliation(s)
- Angel Juarez-Flores
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, Mexico
| | - Gabriel S Zamudio
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, Mexico
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, Mexico.
| |
Collapse
|
14
|
Kudryavtseva AV, Kalinin DV, Pavlov VS, Savvateeva MV, Fedorova MS, Pudova EA, Kobelyatskaya AA, Golovyuk AL, Guvatova ZG, Razmakhaev GS, Demidova TB, Simanovsky SA, Slavnova EN, Poloznikov AА, Polyakov AP, Melnikova NV, Dmitriev AA, Krasnov GS, Snezhkina AV. Mutation profiling in eight cases of vagal paragangliomas. BMC Med Genomics 2020; 13:115. [PMID: 32948195 PMCID: PMC7500026 DOI: 10.1186/s12920-020-00763-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Background Vagal paragangliomas (VPGLs) belong to a group of rare head and neck neuroendocrine tumors. VPGLs arise from the vagus nerve and are less common than carotid paragangliomas. Both diagnostics and therapy of the tumors raise significant challenges. Besides, the genetic and molecular mechanisms behind VPGL pathogenesis are poorly understood. Methods The collection of VPGLs obtained from 8 patients of Russian population was used in the study. Exome library preparation and high-throughput sequencing of VPGLs were performed using an Illumina technology. Results Based on exome analysis, we identified pathogenic/likely pathogenic variants of the SDHx genes, frequently mutated in paragangliomas/pheochromocytomas. SDHB variants were found in three patients, whereas SDHD was mutated in two cases. Moreover, likely pathogenic missense variants were also detected in SDHAF3 and SDHAF4 genes encoding for assembly factors for the succinate dehydrogenase (SDH) complex. In a patient, we found a novel variant of the IDH2 gene that was predicted as pathogenic by a series of algorithms used (such as SIFT, PolyPhen2, FATHMM, MutationTaster, and LRT). Additionally, pathogenic/likely pathogenic variants were determined for several genes, including novel genes and some genes previously reported as associated with different types of tumors. Conclusions Results indicate a high heterogeneity among VPGLs, however, it seems that driver events in most cases are associated with mutations in the SDHx genes and SDH assembly factor-coding genes that lead to disruptions in the SDH complex.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladislav S Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander L Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Razmakhaev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana B Demidova
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Simanovsky
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey А Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey P Polyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|