1
|
Zhang M, Su Y, Wen P, Shao X, Yang P, An P, Jing W, Liu L, Yang Z, Yang M. Subtype cluster analysis unveiled the correlation between m6A- and cuproptosis-related lncRNAs and the prognosis, immune microenvironment, and treatment sensitivity of esophageal cancer. Front Immunol 2025; 16:1539630. [PMID: 40034693 PMCID: PMC11872909 DOI: 10.3389/fimmu.2025.1539630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Esophageal cancer (EC) is characterized by a high degree of malignancy and poor prognosis. N6-methyladenosine (m6A), a prominent post-transcriptional modification of mRNA in mammalian cells, plays a pivotal role in regulating various cellular and biological processes. Similarly, cuproptosis has garnered attention for its potential implications in cancer biology. This study seeks to elucidate the impact of m6A- and cuproptosis-related long non-coding RNAs (m6aCRLncs) on the prognosis of patients with EC. Methods The EC transcriptional data and corresponding clinical information were retrieved from The Cancer Genome Atlas (TCGA) database, comprising 11 normal samples and 159 EC samples. Data on 23 m6A regulators and 25 cuproptosis-related genes were sourced from the latest literature. The m6aCRLncs linked to EC were identified through co-expression analysis. Differentially expressed m6aCRLncs associated with EC prognosis were screened using the limma package in R and univariate Cox regression analysis. Subtype clustering was performed to classify EC patients, enabling the investigation of differences in clinical outcomes and immune microenvironment across patient clusters. A risk prognostic model was constructed using least absolute shrinkage and selection operator (LASSO) regression. Its robustness was evaluated through survival analysis, risk stratification curves, and receiver operating characteristic (ROC) curves. Additionally, the model's applicability across various clinical features and molecular subtypes of EC patients was assessed. To further explore the model's utility in predicting the immune microenvironment, single-sample gene set enrichment analysis (ssGSEA), immune cell infiltration analysis, and immune checkpoint differential expression analysis were conducted. Drug sensitivity analysis was performed to identify potential therapeutic agents for EC. Finally, the mRNA expression levels of m6aCRLncs in EC cell lines were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results We developed a prognostic risk model based on five m6aCRLncs, namely ELF3-AS1, HNF1A-AS1, LINC00942, LINC01389, and MIR181A2HG, to predict survival outcomes and characterize the immune microenvironment in EC patients. Analysis of molecular subtypes and clinical features revealed significant differences in cluster distribution, disease stage, and N stage between high- and low-risk groups. Immune profiling further identified distinct immune cell populations and functional pathways associated with risk scores, including positive correlations with naive B cells, resting CD4+ T cells, and plasma cells, and negative correlations with macrophages M0 and M1. Additionally, we identified key immune checkpoint-related genes with significant differential expression between risk groups, including TNFRSF14, TNFSF15, TNFRSF18, LGALS9, CD44, HHLA2, and CD40. Furthermore, nine candidate drugs with potential therapeutic efficacy in EC were identified: Bleomycin, Cisplatin, Cyclopamine, PLX4720, Erlotinib, Gefitinib, RO.3306, XMD8.85, and WH.4.023. Finally, RT-qPCR validation of the mRNA expression levels of m6aCRLncs in EC cell lines demonstrated that ELF3-AS1 expression was significantly upregulated in the EC cell lines KYSE-30 and KYSE-180 compared to normal esophageal epithelial cells. Conclusion This study elucidates the role of m6aCRLncs in shaping the prognostic outcomes and immune microenvironment of EC. Furthermore, it identifies potential therapeutic agents with efficacy against EC. These findings hold significant promise for enhancing the survival of EC patients and provide valuable insights to inform clinical decision-making in the management of this disease.
Collapse
Affiliation(s)
- Ming Zhang
- Department of General Practice, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yani Su
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaolong Shao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peng Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peng An
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wensen Jing
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lin Liu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Mingyi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
3
|
Jia X, Liu J, He Y, Huang X. Porphyromonas gingivalis secretion leads to dysplasia of normal esophageal epithelial cells via the Sonic hedgehog pathway. Front Cell Infect Microbiol 2022; 12:982636. [PMID: 36262185 PMCID: PMC9573957 DOI: 10.3389/fcimb.2022.982636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the pathogenic effect of Porphyromonas gingivalis cultured media on the esophagus and the mechanism underlying the effect. Background Periodontitis is strongly associated with esophageal squamous cell carcinoma (ESCC). The cultured media of P. gingivalis may act on healthy esophagus to trigger a malignant transformation; however, this has not been confirmed. Methods Cell migration assays and cell cycle measurements were performed on normal human esophageal epithelial cells in the presence or absence of P. gingivalis cultured media. The esophagi of healthy adult C57BL/6J mice were isolated and cultured in-vitro. Hematoxylin-eosin and immunohistochemical staining using antibodies against proliferating cell nuclear antigen (PCNA), Claudin 1 and Claudin 4 were performed to detect dysplasia in specific tissues. Total mRNA was extracted to determine transcriptional dysregulation. A specific inhibitor of Sonic hedgehog signaling, cyclopamine, was used to confirm the underlying molecular mechanism. Results In the presence of P. gingivalis cultured media, proliferation and migration of normal human esophageal epithelial cells were up-regulated, and aneuploid cells appeared. Compared with control cells, the arrangement of mouse esophageal epithelial cells became disordered, the percentage of PCNA-positive cells increased, and the positive staining of Claudin 1 and Claudin 4 became weak. In addition, the expression of cancer-related pathway genes was up-regulated but tight junction-related gene expression was down-regulated. The Sonic hedgehog pathway was abnormally activated, and its inhibition reduced the pathogenic effect of P. gingivalis cultured media. Conclusions We revealed that the cultured media of the key periodontal pathogen, P. gingivalis, can induce the malignant transformation of normal esophageal epithelium through the Sonic hedgehog pathway.
Collapse
Affiliation(s)
- Xueting Jia
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinan Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yinxue He
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaofeng Huang,
| |
Collapse
|
4
|
Chen J, Zhou Z, Lin X, Liao J, Zhang Y, Xie B, Huang Y, Peng L. Environmental Cadmium Exposure Promotes the Development, Progression and Chemoradioresistance of Esophageal Squamous Cell Carcinoma. Front Cell Dev Biol 2022; 10:792933. [PMID: 35252173 PMCID: PMC8894704 DOI: 10.3389/fcell.2022.792933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) exposure has been implicated in the etiology of esophageal squamous cell carcinoma (ESCC), albeit with inconsistent results from epidemiologic studies and without causal evidence. In this study, we explore the relationship of Cd exposure and the development, progression and therapeutic resistance of ESCC. A total of 150 ESCC patients and 177 matched controls from a coastal region with a high incidence of ESCC in China were included in the study. It was found that the median blood Cd level (BCL) was significantly higher in ESCC patients than that in the controls. Odds ratios for ESCC risk were 3.12 (95% CI 1.54-6.30) and 3.71 (95% CI 1.84-7.48) in the third and fourth quartiles of Cd distribution, respectively. Notably, BCL above 4.71 μg/L was strongly associated with shorter progression-free survival time compared to that below 1.60 μg/L (p < 0.001). The chronic Cd-treated ESCC cells (CCT-ESCC) CCT-EC109 and CCT-EC9706 exhibited increased cell proliferation and tumorigenesis, enhanced migration and invasion, and upregulated EMT biomarkers following 12 weeks of exposure to 5 μM cadmium chloride. Furthermore, Cd treatment attenuated the efficacy of 5-fluorouracil, cisplatin and irradiation treatment in CCT-ESCC cells both in vitro and in vivo. Moreover, we revealed that Cd stimulated the cancer cell stemness and Wnt/β-catenin signaling pathway in the CCT-ESCC cells. Additionally, 5-aza-2-deoxy-cytidine treatment resulted in suppression of the Wnt/β-catenin signaling pathway and rescue of the Cd-induced cell radioresistance. These results offer new insights into the role of environmental Cd exposure in the development, progression and chemoradioresistance of ESCC.
Collapse
Affiliation(s)
- Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhangzhu Zhou
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Laboratory, Jiangmen Central Hospital, Jiangmen, China
| | - Xueqiong Lin
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jiahui Liao
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Bingmeng Xie
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lin Peng
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Zubčić V, Rinčić N, Kurtović M, Trnski D, Musani V, Ozretić P, Levanat S, Leović D, Sabol M. GANT61 and Lithium Chloride Inhibit the Growth of Head and Neck Cancer Cell Lines Through the Regulation of GLI3 Processing by GSK3β. Int J Mol Sci 2020; 21:6410. [PMID: 32899202 PMCID: PMC7504345 DOI: 10.3390/ijms21176410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Several signaling pathways are aberrantly activated in head and neck squamous cell carcinoma (HNSCC), including the Hedgehog-Gli (HH-GLI), WNT, EGFR, and NOTCH pathways. The HH-GLI pathway has mostly been investigated in the context of canonical signal transduction and the inhibition of the membrane components of the pathway. In this work we investigated the role of downstream inhibitors GANT61 and lithium chloride (LiCl) on cell viability, wound closure, and colony forming ability of HNSCC cell lines. Five HNSCC cell lines were treated with HH-GLI pathway inhibitors affecting different levels of signal transduction. GANT61 and LiCl reduce the proliferation and colony formation capabilities of HNSCC cell lines, and LiCl has an additional effect on wound closure. The major effector of the HH-GLI signaling pathway in HNSCC is the GLI3 protein, which is expressed in its full-length form and is functionally regulated by GSK3β. LiCl treatment increases the inhibitory Ser9 phosphorylation of the GSK3β protein, leading to increased processing of GLI3 from full-length to repressor form, thus inhibiting HH-GLI pathway activity. Therefore, downstream inhibition of HH-GLI signaling may be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Vedran Zubčić
- Department of Maxillofacial Surgery, University Hospital Osijek, Ulica Josipa Huttlera 4, Osijek 31000, Croatia;
- School of Medicine, The Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Osijek 31000, Croatia
| | - Nikolina Rinčić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Dinko Leović
- School of Medicine, The Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Osijek 31000, Croatia
- Department of Otorhinolaryngology and Head and Neck Surgery, Maxillofacial Surgery Unit, Clinical Hospital Centre Zagreb, Kišpatićeva ulica 12, Zagreb 10000, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| |
Collapse
|